

# Pile design according to EN 1997-3:2024 -Overview of Clause 6: Pile foundations

Univ.-Prof. Dr.-Ing. habil. Christian Moormann

University of Stuttgart, Institute for Geotechnical Engineering, Germany christian.moormann@igs.uni-stuttgart.de



## Outline

- 1. Introduction: Evolution of pile design in EN 1997:2024
- 2. Overview: Structure and content of EN 1997-3: Clause 6
  - 2.1 Scope of Clause 6
  - 2.2 Link to EN 1990 and EN 1997-1
  - 2.3 Design by calculation, by testing, by prescriptive rules, ...
  - 2.4 Ground model method and model pile method
  - 2.5 Confirmation of pile design by testing
- 3. Major modifications in comparison to 1<sup>st</sup> generation
  - 3.1 Single pile vs. pile group piled raft
  - 3.2 Harmonized verification principles
  - 3.3 Design for effect of ground displacements
  - 3.4 Splitting of previous correlation factors in correlation & model factors
  - 3.5 Application of numerical methods

### 4. Conclusions



### Introduction: Timeline - Evolution of Clause on Pile Design



intensive review and commenting (NSBs, ...) at regular intervals

### Introduction: Pile Design based on EN 1997:2024



## Introduction: prEN1997-3 'Geotechnical Structures' - Contents

| EN 1997-3:2024                                                      |                                   | EN 1997-1:2004                                           |
|---------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------|
| 0                                                                   | Introduction                      |                                                          |
| 1                                                                   | Scope                             |                                                          |
| 2                                                                   | Normative references              |                                                          |
| 3                                                                   | Terms, definitions, and symbols   |                                                          |
| 4                                                                   | Slopes, cuttings, and embankments | ← Chapter 11 ´Overall Stability´ + 12 ´Embankments´      |
| 5                                                                   | Spread foundations                | ← Chapter 6 ´Spread Foundations´                         |
| 6                                                                   | Piled foundations                 | ← Chapter 7 'Pile Foundations'                           |
| 7                                                                   | Retaining structures              | ← Chapter 9 ´Retaining Structures´                       |
| 8                                                                   | Anchors                           | ← Chapter 8 ´Anchorages´                                 |
| 9                                                                   | Reinforced fill structures        | ← new (section 5.5 'Ground improvement & reinforcement') |
| 10                                                                  | Ground reinforcing elements       | ← new                                                    |
| 11                                                                  | Ground improvement                | $\leftarrow$ new (section 5.5)                           |
| 12                                                                  | Groundwater control               | ← new (section 5.4 ´Dewatering´)                         |
| Annexes A, B, C, D, E, F, G<br>(to Clauses 4, 5, 6, 7, 8, 9 and 11) |                                   |                                                          |
| Bibliography                                                        |                                   | 5440 B 25562                                             |



## Introduction: prEN1997-3 'Geotechnical Structures' - Contents

#### EN 1997-3:2024

- 0 Introduction
- 1 Scope
- 2 Normative references
- 3 Terms, definitions, and symbols
- 4 Slopes, cuttings, and embankments
- 5 Spread foundations
- 6 Piled foundations
- 7 Retaining structures
- 8 Anchors
- 9 Reinforced fill structures
- 10 Ground reinforcing elements
- 11 Ground improvement
- 12 Groundwater control
- Annexes A, B, C, D, E, F, G (to Clauses 4, 5, 6, 7, 8, 9 and 11)
   Bibliography

### uniform structure of Clauses 4 to 11

- x.1 Scope and field of application
- x.2 Basis of design
- x.3 Materials
- x.4 Groundwater
- x.5 Geotechnical analysis
- x.6 Ultimate limit states
- x.7 Serviceability limit states
- x.8 Implementation of design
- x.9 Testing
- x.10 Reporting

### EN 1997-1:2024

- 0 Introduction
- 1 Scope
- 2 Normative references
- 3 Terms, definitions, and symbols
- 4 Basis of design
- 5 Materials

6

- Groundwater
- 7 Geotechnical analysis
- 8 Ultimate limit states
- 9 Serviceability limit states
- **10** Implementation of design
- 11 Testing
- 12 Reporting



### EN 1997-3:2024, Clause 6

#### 6.1 Scope and field of application

- 6.2 Basis of design
- 6.3 Materials
- 6.4 Groundwater
- 6.5 Geotechnical analysis
- 6.6 Ultimate limit states
- 6.7 Serviceability limit states
- 6.8 Implementation of design
- 6.9 Testing
- 6.10 Reporting

Annex C

### 6.1 Scope and field of application

- (1) This Clause shall apply to single piles, pile groups and piled rafts.
- (2) Piles should be classified according to their method of execution.

| Pile type             | Description                                                   | Class                |
|-----------------------|---------------------------------------------------------------|----------------------|
| Displacement pile     | Pile installed in the ground without                          | Full displacement    |
|                       | excavation of material                                        | Partial displacement |
| Replacement pile      | Pile installed in the ground after the excavation of material | Replacement          |
| Pile not listed above |                                                               | Unclassified         |

Table 6.1 — (NDP) Classification of piles

- ↗ Pile class (only) used to determine resistance factors  $\gamma_R$
- Annex C.3: Examples of pile types in different classes







#### EN 1997-3:2024, Clause 6

6.1 Scope and field of application

#### 6.2 Basis of design

- 6.3 Materials
- 6.4 Groundwater
- 6.5 Geotechnical analysis
- 6.6 Ultimate limit states
- 6.7 Serviceability limit states
- 6.8 Implementation of design
- 6.9 Testing
- 6.10 Reporting

Annex C

### 6.2 Basis of design

#### Ground investigations

- general requirements (field and lab investigations, properties, ...)
- minimum extent of field investigations

#### Table 6.4 — (NDP) Minimum depth of field investigation for piled foundations







### EN 1997-3:2024, Clause 6

- 6.1 Scope and field of application
- 6.2 Basis of design
- 6.3 Materials

#### 6.4 Groundwater

- 6.5 Geotechnical analysis
- 6.6 Ultimate limit states
- 6.7 Serviceability limit states
- 6.8 Implementation of design
- 6.9 Testing
- 6.10 Reporting

Annex C

### 6.4 Groundwater

- just reference to EN 1997-1, 6
- no specific rules for piles.



### EN 1997-3:2024, Clause 6

- 6.1 Scope and field of application
- 6.2 Basis of design
- 6.3 Materials
- 6.4 Groundwater

#### 6.5 Geotechnical analysis

- 6.6 Ultimate limit states
- 6.7 Serviceability limit states
- 6.8 Implementation of design
- 6.9 Testing
- 6.10 Reporting

Annex C

### 6.5 Geotechnical analysis

- Effect of ground displacement:
- Downdrag
- Heave
- Transverse loading
- → detailed rules for calculation of downdrag for SLS- and ULS- verification
- Axially loaded single piles:
- Calculation
- Testing
- Prescriptive rules
- → design by calculation using
  - o ground properties determined from field & laboratory tests (Ground Model Method)
  - individual pile resistance profiles determined from correlations with field test results (Model Pile Method).
- $\rightarrow$  design by testing using
  - o static pile load tests for ULS- and SLS-verification of piles in compression and tension
  - o dynamic impact or rapid load tests for ULS-verification of piles in compression
- Transversely loaded single piles



### EN 1997-3:2024, Clause 6

- 6.1 Scope and field of application
- 6.2 Basis of design
- 6.3 Materials
- 6.4 Groundwater

#### 6.5 Geotechnical analysis

- 6.6 Ultimate limit states
- 6.7 Serviceability limit states
- 6.8 Implementation of design
- 6.9 Testing
- 6.10 Reporting
- Annex C

### 6.5 Geotechnical analysis

Pile groups

$$R_{\text{group}} = min\left\{\sum_{i}^{n} R_{i}; R_{\text{block}}\right\}$$

Piled rafts

$$R_{\text{piled-raft}} = \left(\sum_{i}^{n} R_{\text{c,i}} + R_{\text{raft}}\right)$$

- → requirement to consider interaction effects
- → numerical, analytical, or empirical calculation methods

#### Displacements of piled foundations

- Singe piles
- Pile groups and piled rafts
- → requirements on effects to be considered for calculation
- → specification of possible approaches



#### EN 1997-3:2024, Clause 6

- 6.1 Scope and field of application
- 6.2 Basis of design
- 6.3 Materials
- 6.4 Groundwater
- 6.5 Geotechnical analysis
- 6.6 Ultimate limit states
- 6.7 Serviceability limit states
- 6.8 Implementation of design
- 6.9 Testing
- 6.10 Reporting

Annex C

### 6.5 Geotechnical analysis

- Confirmation of pile design by site-specific load testing or comparable experience
  - $\rightarrow$  Pile design should be validated using site-specific static load testing (...)
  - → Pile resistance to axial compression may be confirmed using dynamic impact or rapid load tests provided that these tests have been validated by static pile load tests.
  - $\rightarrow$  Site-specific ultimate control test may be omitted where there is comparable experience

### Table 6.2 — (NDP) Minimum quantity of load testing for confirmation of pile design by calculation

| Type of load test                               | Confirmation of design by<br>Ultimate Control Tests | Confirmation of design by<br>Serviceability Control<br>Tests |
|-------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|
| Static load test                                | max (1, 0.5 % <i>N</i> )                            | max (2, 1 % <i>N</i> )                                       |
| Rapid load test                                 | max (3, 1.0 % <i>N</i> )                            | max (6, 5 % <i>N</i> )                                       |
| Dynamic impact load test                        | max (3, 1.0 % <i>N</i> )                            | max (6, 5 % <i>N</i> )                                       |
| NOTE N = total number of piles in similar groun |                                                     |                                                              |



#### EN 1997-3:2024, Clause 6

- 6.1 Scope and field of application
- 6.2 Basis of design
- 6.3 Materials
- 6.4 Groundwater
- 6.5 Geotechnical analysis
- 6.6 Ultimate limit states
- 6.7 Serviceability limit states
- 6.8 Implementation of design
- 6.9 Testing
- 6.10 Reporting

Annex C

### 6.6 Ultimate limit state

- Single piles:
  - Representative values of resistance
    - $\rightarrow$  for design by calculation using the Ground Model Method  $R_{\rm rep} = R_{\rm calc}$
    - $\rightarrow$  for design by calculation using the Model Pile Method

$$R_{\rm rep} = min\left\{\frac{R_{\rm calc,mean}}{\xi_{\rm mean}}; \frac{R_{\rm calc,min}}{\xi_{\rm min}}\right\}$$

 $\rightarrow$  for design by testing

$$R_{\text{rep}} = min\left\{\frac{R_{test,mean}}{\xi_{\text{mean}}}; \frac{R_{test,min}}{\xi_{\text{min}}}\right\}$$
 with:  $\xi$  - correlation factors



### EN 1997-3:2024, Clause 6

- 6.1 Scope and field of application
- 6.2 Basis of design
- 6.3 Materials
- 6.4 Groundwater
- 6.5 Geotechnical analysis

#### 6.6 Ultimate limit states

- 6.7 Serviceability limit states
- 6.8 Implementation of design
- 6.9 Testing
- 6.10 Reporting

Annex C

### 6.6 Ultimate limit state

- Single piles:
  - Verification of axial compressive resistance

$$F_{\rm cd} \leq R_{\rm cd} \qquad R_{\rm cd} = \frac{R_{\rm c,rep}}{\gamma_{\rm Rc} \cdot \gamma_{\rm Rd}} \ or \ \left(\frac{R_{\rm b,rep}}{\gamma_{\rm Rb} \cdot \gamma_{\rm Rd}} + \frac{R_{\rm s,rep}}{\gamma_{\rm Rs} \cdot \gamma_{\rm Rd}}\right)$$

- with:  $\gamma_{Rd}$  model factor  $\gamma_{Rc}$ ,  $\gamma_{Rb}$ ,  $\gamma_{Rs}$  resistance factors
- Verification of axial tensile resistance
- Verification of transverse resistance
- Downdrag
- Transverse ground loading





for single piles, pile groups and piled rafts



### EN 1997-3:2024, Clause 6

- 6.1 Scope and field of application
- 6.2 Basis of design
- 6.3 Materials
- 6.4 Groundwater
- 6.5 Geotechnical analysis
- 6.6 Ultimate limit states

#### 6.7 Serviceability limit states

- 6.8 Implementation of design
- 6.9 Testing
- 6.10 Reporting

Annex C

### 6.7 Serviceability limit states

- Reference to EN 1997-1, 9
- Permission to omit explicit SLS-verification for single piles in case of comparable experience or by applying a simplified evaluation

 $F_{\rm cd,SLS} \leq \kappa_{\rm b,SLS} R_{\rm b,rep} + \kappa_{\rm b,SLS} R_{\rm s,rep}$ 

with  $\kappa_{b,SLS}$  and  $\kappa_{s,SLS}$  mobilization factor for base resp. shaft resistance in SLS

#### SLS-verification for pile groups and piled rafts should consider

- non-linear stiffness of the ground,
- flexural stiffness of the structure, and
- interaction between ground, structures, and piles



#### EN 1997-3:2024, Clause 6

- 6.1 Scope and field of application
- 6.2 Basis of design
- 6.3 Materials
- 6.4 Groundwater
- 6.5 Geotechnical analysis
- 6.6 Ultimate limit states
- 6.7 Serviceability limit states

#### 6.8 Implementation of design

6.9 Testing

6.10 Reporting

Annex C

### 6.8 Implementation of design

- Reference to standards on execution of piles (EN 1536, EN 12699, EN 14199) but also to EN 1538 (diaphragm walls), EN 12716 (jet grouting), EN 14679 (deep mixing) etc.
- for 'Inspection', 'Monitoring' and 'Maintenance' reference to EN 1997-1, 10
- no further specific requirements for piles



#### EN 1997-3:2024, Clause 6

- 6.1 Scope and field of application
- 6.2 Basis of design
- 6.3 Materials
- 6.4 Groundwater
- 6.5 Geotechnical analysis
- 6.6 Ultimate limit states
- 6.7 Serviceability limit states
- 6.8 Implementation of design

6.9 Testing

6.10 Reporting

Annex C

### 6.9 Testing

- Reference to standards on execution of pile load tests (EN ISO 22477-x)
- Specifications on trial piles and determination of test proof loads
  - e.g. (...) a smaller diameter trial pile may be installed provided that:
  - the ratio of the trial pile to working pile diameter is not less than 0.5; (...)
  - the trial pile is instrumented to allow separation of base and shaft resistance.

e.g. determination of test load for Ultimate Control Tests:

 $P_{\rm P} \geq \gamma_{\rm Rd} \cdot \xi \cdot \gamma_{\rm R} \cdot F_{\rm d, ULS} + D_{\rm add} + D_{\rm sup}$ 

 Specifications on planning and interpretation of static load tests, rapid load tests and dynamic impact tests

e.g. (...), the ultimate compressive resistance may be determined as:

- the maximum applied test load; or
- the test load at a pile head settlement equal to 10 % of the pile's base diameter.



### Introduction: Clause 6 'Piled foundations'

#### EN 1997-3:2024, Clause 6

- 6.1 Scope and field of application
- 6.2 Basis of design
- 6.3 Materials
- 6.4 Groundwater
- 6.5 Geotechnical analysis
- 6.6 Ultimate limit states
- 6.7 Serviceability limit states
- 6.8 Implementation of design
- 6.9 Testing

#### 6.10 Reporting

Annex C

### 6.10 Reporting

- Reference to EN 1997-1, 12, and to standards on execution of piles and on pile load tests (EN ISO 22477-x)
- No further specific regulations for piles



### EN 1997-3:2024, Clause 6

- 6.1 Scope and field of application
- 6.2 Basis of design
- 6.3 Materials
- 6.4 Groundwater
- 6.5 Geotechnical analysis
- 6.6 Ultimate limit states
- 6.7 Serviceability limit states
- 6.8 Implementation of design
- 6.9 Testing
- 6.10 Reporting

#### Annex C

| Annex                        | C 'Piled Foundations' (informative)                                                                                    |
|------------------------------|------------------------------------------------------------------------------------------------------------------------|
| C.3                          | Examples of pile types (Classification)                                                                                |
| C.4,C.5<br>C.6<br>C.7<br>C.8 | Calculation of axial pile resistance based on<br>ground parameters<br>CPT profiles<br>PMT profiles<br>empirical tables |
| C.9                          | Calculation of downdrag due to vertical ground movements                                                               |
| C.10                         | Pile groups subject to axial tension                                                                                   |
| C.11                         | Calculation model for single pile settlement using load transfer functions                                             |
| C.12                         | Calculation model for single pile lateral displacement using load transfer functions                                   |
| C.13                         | Calculation model for buckling and second order effects                                                                |
| C.14                         | Determination of axial pile resistance under cyclic loading                                                            |



### Major modifications: Single piles – pile groups – piled rafts

Equivalent consideration of single piles, pile groups and piled rafts

 $\rightarrow$  geotechnical analysis, ULS-/SLS-verification, partial resistance factors

#### Design of pile groups



#### Design of piled rafts

#### 6.5.6 Piled rafts

(1) The ultimate compressive resistance of a piled raft  $R_{\text{piled-raft}}$  should be determined from Formula 6.9 considering the compatibility of the displacements of the piles and the rafts:



where

- $R_{\rm raft}$  is the ultimate compressive resistance of the raft alone;
- $R_{c,i}$  is the compressive resistance of the i-th pile;
- *i* is an index that varies from 1 to n;
- *n* is the number of piles supporting the piled-raft.
- (2) The design of piled rafts should consider the interaction effects shown in Figure 6.1:



### Major modifications: Smooth transition for foundation types

### Stringent foundation design and verification concept for all types of foundation

→ smooth transition from spread foundations via ground improvement to piled rafts and piled foundations with comparable equivalent global safety level



## Major modifications: Harmonisation of verification concept

### Harmonized verification concept for piles throughout Europe

- Harmonized verification approach of ULS
  - $\rightarrow$  RFA for axially loaded single piles
  - $\rightarrow\,$  MFA for laterally loaded single piles



Axial pile design in Europe acc. to  $1^{st}$  generation of EC 7



Table 6.8 — (NDP) Partial factors for the verification of ultimate resistance of single piles for fundamental (persistent and transient) design situations - Ground Model Method



### Major modifications: Modified set of model & correlation factors

Concept for model and correlations factors adjusted

- Set of partial, model and correlation factors for pile design modified  $\rightarrow$  more stringent concept
- Adjustment of previous correlation factors ξ into
  - correlation factors  $\xi \rightarrow$  considering (solely) spatial soil variability
  - model factors  $\gamma_{Rd} \rightarrow$  considering uncertainties related
    - to the calculation model (for design by calculation)
    - to the execution and evaluation of pile load tests (for design by testing)

#### separate set of correlations and model factors for

- static load tests
- rapid load tests
- dynamic impact tests



### Major modifications: Actions due to ground displacement

More detailed guidance for consideration of actions due to vertical and horizontal ground displacement  $\rightarrow$  downdrag, heave, transverse loading

#### Example: Downdrag

detailed rules for calculation of downdrag and consideration for ULS- and SLS-verifications

#### C.9 Downdrag due to vertical ground movements



#### 6.5.2.2 Downdrag

- The adverse effects of the drag force caused by moving ground shall be included in the verification of serviceability and ultimate limit states.
- (2) The effects of the downdrag should be modelled by carrying out a ground-pile interaction analysis, to determine the depth of the neutral plane  $L_{dd}$  corresponding to the point where the pile settlement spile equals the ground settlement.

NOTE 1 The neutral plane marks the boundary between downwards shaft friction (occurring above the neutral plane), and upwards shaft friction (occurring below the neutral plane).

NOTE 2 The depth of the neutral plane  $L_{dd}$  is usually different for serviceability and ultimate limit state conditions.

(6) The equivalent drag force  $D_{rep}$  should be determined from Formula 6.3:

$$D_{\rm rep} = p \int_0^{L_{\rm dd}} \tau_{\rm s} \cdot dz \tag{6.3}$$

where

- p is the perimeter of the pile;
- $\tau_s$  is the unit shaft friction causing downdrag at depth z;
- $L_{dd}$  is the depth to the neutral plane.



## Major modifications: Numerical calculation of piled foundations

# Numerical calculations established for piled foundations in addition to analytical or empirical methods

 $\rightarrow$  for pile groups and piled rafts recommended

#### 6.5.6 Piled rafts

- (3) Analysis of a piled raft may be based on numerical modelling including nonlinear stress–strain models for the ground, the structural flexural stiffness of the raft and the interactions between ground, raft and piles.
- → EN 1997-1, 8.2 provides guidance for verification by numerical models



## **Conclusions:** Pile design in 2<sup>nd</sup> generation of Eurocode 7

- Pile design acc. to EN 1997:2024 is an evolution of 1<sup>st</sup> generation rules (*no revolution …*)
- many new design aspects are covered: pile groups, piled rafts, numerical calculations, ...
  additional guidance for engineering practice
- Code specifies basic requirements for analysis and verification of piled foundations, (no comprehensive text-book ...)
  - $\rightarrow$  additional national guidelines, recommendations, textbooks might be applied
- all sets of factors are 'Nationally Determined Parameters' (NPDs)
  - $\rightarrow$  can be adjusted acc. to national experience
- ⇒ Clause 6 reflects up to date European consensus for pile design
- ⇒ EN 1997:2024 provides a modern framework for state-of-the-art pile design that can be combined with national experience and approaches

**Disclaimer:** The presentation is based on August 2022 draft of prEN 1997. Some aspects might still be subjected to change in consequence of Formal Enquiry.

