

Universität Stuttgart <u>IGS</u>

Institut für Geotechnik Boden- und Felsmechanik, Erd- und Grundbau, Felsbau, Spezialtiefbau, Tunnelbau, Umweltgeotechnik Univ.-Prof. Dr.-Ing. habil. Chr. Moormann Hochschule für Technik Stuttgart

Fakultät B, Fachgebiet Geotechnik Prof. Dr.-Ing. Th. Benz Prof. Dr.-Ing. C. Vogt-Breyer

Stuttgarter Geotechnik-Seminar

Monday, 16 November 2020

Applications of Dilatometer (DMT) and Seismic Dilatometer (SDMT) in Geotechnical Engineering

Eng. Diego Marchetti Studio Prof. Marchetti

Italy

www.marchetti-dmt.it

Many different tools for site investigation..

"Soil borings ... laboratory testing ... SPT ... pressuremeter (PMT) ... vane (VST) ... crosshole (CHT) ... All of these are valid and suitable ... yet at considerable cost in time and money ..." Mayne 2009

Direct Push Technology: SCPT & SDMT increasing leadership in penetrable soils:

Direct Push Technology:

- ✓ simple
- ✓ fast
- ✓ repeatable
- ✓ continuous soil profile
- ✓ results real time

Sands:

recovering undisturbed samples very difficult
→ Direct Push Technology is the state-of-practice

Seismic Dilatometer (S + DMT)

Seismic Module 2004

Prof. Silvano Marchetti (1943 – 2016)

inventor of the Flat Dilatometer (1974)

Flat Dilatometer (DMT)

BLADE

Flexible Steel Membrane $\Phi = 60 \text{ mm}$

DMT Test Layout

DMT Data: A, B and C with depth (Z)

🖪 st	F SDMT Pro - 🗆 X								
		File Tools Info							
\odot	Project				Dmt				
	Maaaaaa	Acquisition M	anual Input						
	Measurements	Z	32.40 m		Time 💽				
₽	DMT calibration				Thrust		500 S		
*	DMT	A	kPa		s	400		600	
J	S wave (T.I.)	В	kPa		S	300		700	
	Processing	С	kPa		Read C	-			-
*	DMT	Auto save			Reset	-200		800	-
Ju	S wave (T.I.)	Z [m]	A [kPa]	B [kPa]	C [kPa]	100	kPa	900	
	Graphs	29.80	688	1,602				1000	
ф	Single plots	30.00	752	1,756	232				
		30.20	1,008	2,197					
	Overlay plots	30.40	1,126	2,331					
	Output	30.60	976	2,220					
Ŀ	Report	30.80	1,209	2,573					
X	Export	31.00	1,164	2,638	238				
		31.20	1,252	2,897			0		
		31.40	1,250	2,918			0	кРа	
		31.60	1,321	2,995				BUZZO	r
		31.80	1,499	3,286				DULLEI	1
		32.00	1,649	3,457	250		Reset Zero		
		32.20	1,681	3,643					
		Project: Catania Harbour - Test: SDMT 2							

SDMT – Test Layout

Shear wave velocity measurement

🗛 sd	- 🗆 X				
	File Tools Info				
\odot	Project	c Recorded Signals			
	Measurements		Gain 5120 V Auto		
ŧ	DMT calibration		T sample 200 Υ μs		
~	DMT	No data to plot	Hammer dist 0.30 m		
J.	S wave (T.I.)		Trigger Esterno v		
/	Inclination	Data acquisition	Time shift		
~	Processing	Energize now			
•	Frocessing	Rephased Signals —			
V	DMT	Cancel	Notes		
Ju	S wave (T.I.)		Test		
~	Graphs	No data to plot	+50 cm		
դ	Single plots		Save		
Q	Overlay plots		Acquisition		
	Stampe		Grid		
L	Report	SUMITIP Blade Vs m/s ZVs 29. 7 tip 20.00 m Var Cooff % 751 30.	Background		
X	Export	Z up S0.00 m var coerr % Z ST 29. Vs Repeat m/s ZS2 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 20. 29. <	75 m		
		Project: Guspini - Miniera Montevecchio - Test: SDMT 01	(>		

Generate S-wave at surface

Data transfer of seismic wave (≈ 5 sec)

🛃 st	SDMT Pro — 🗆 🗙					
	File Tools Info					
\odot	Project	- Recorded Signals	Vs Acquisition			
	Measurements	necoraca signais	Gain	5120 👻 🗹 Auto		
₽	DMT calibration		T sample	200 ¥ μs		
4	DMT		No data to plot Hammer dist	0.30 m		
J	S wave (T.I.)		Trigger	Esterno v		
/	Inclination		Acquisition progress 60			
¢°	Processing	Rephased Signals —	Sensor G1:			
*	DMT		Sensor G2: = 142 Notes			
J	S wave (T.I.)			Test		
-	Graphs		No data to plot +	50 cm		
P	Single plots			Save		
P	Overlay plots			quisition		
	Stampe		Gr	id 💽		
Þ	Report	Z tip	30.00 m Var Coeff % ZS1 29.25 m Backgrour			
X	Export	Vs Repeat	m/s ZS2 29.75 m			
		Project: Guspini - Minie	a Montevecchio - Test: SDMT_01	¢;\$		

Vs available real time

SDMT main features

- **SDMT**
- Test execution is rapid
 - no hole (if soil is penetrable)
 - no wait time for cementation (e.g. crosshole, downhole)
- Vs interpretation
 - Automatic
 - operator independent
 - real time

Accuracy of delay (Δt) calculation

- Signals are amplified and digitized in depth → clean waves → delay Δt very clear
- True-interval (2 receivers) vs Pseudo-interval (1 receiver)
 - Trigger offset <u>no influence</u> on Δt calculation
 - Same wave to both receivers

SPDMT for compression wave velocity

Heavy Truck Penetrometer – most efficient

Able to push 20+ tons without lateral instability

Light Penetrometer – cost effective

Juan Santamaria Airport, Costarica

Economical and easy to transport, but requires anchoring

Many ways for advancing the DMT blade

Driven by Spt tripod

Pushed by drill rig

Driven by drill rig

Driven or pushed by light penetrometer

Soils testable by DMT/SDMT

DMTALL SANDS, SILTS, CLAYS

- Very soft soils (Su = 2-4 kPa, M=0.5 MPa)
- Hard soils/Soft Rock (Su = 1 MPa, M=400 MPa)
- Blade <u>robust</u> (safe push 25 ton)

SDMT

- All penetrable soils (like DMT above)
- Also in non penetrable soils like gravel, very dense sand, etc: inside a backfilled borehole (Totani et al 2009)
 Max depth: 135 m in L'Aquila (2009)

Interpretation of the Results

Corrected readings:

to account for membrane rigidity (calibration)

DMT Intermediate parameters

Corrected Readings Intermediate Parameters **I**_D: Material Index P₀ **K**_D: Horizontal Stress Index **P**₁ **E**_D: Dilatometer Modulus Ρ, **U**_D: Pore Pressure Index

I_D, K_D, E_D, U_D are definitions, not correlations !!!

Interpreted Geotechnical Parameters

Interpreted Geotechnical Parameters

- **M: Constrained Modulus**
- **Cu: Undrained Shear Strength (clay)**
- **K**₀: Earth Pressure Coeff (clay)
- **OCR: Overconsolidation Ratio (clay)**
- Φ : Safe floor friction angle (sand)
- γ : Unit weight and description
- U : Pore pressure (sand)

Drained vs Undrained behaviour

DMT Formulae (1980 - today)

1	SYMBOL	PARAMETER NAME	FORMULA /DESCRIPTION		
	Α	First Reading	Membrane lift-off pressure		
Field Readings	В	Second Reading	Pressure for 1.1 mm membrane expansion		
	С	Third Reading	Membrane closing pressure		
	ΔΑ	Membrane Calibration (A in free air)	Suction as positive pressure		
	ΔΒ	Membrane Calibration (B in free air)	Inflation as positive pressure		
	[T, A]	Dissipation Test Readings	A-readings with time (at specific depth)		
Corrected Readings	Po	Corrected First Reading	$P_0 = 1.05 (A + \Delta A) - 0.05 (B - \Delta B)$		
	P 1	Corrected Second Reading	$P_1 = B - \Delta B$		
	P ₂	Corrected Third Reading	$P_2 = C + \Delta A$		
ermediate ameters	Ι _D	Material Index	$I_{\rm D} = (P_1 - P_0) / (P_0 - U_0)$		
	K _D	Horizontal Stress Index	$K_{\rm D} = (P_0 - U_0) / \sigma'_{v_0}$		
	E _D	Dilatometer Modulus	$E_{\rm D} = 34.7 (P_1 - P_0)$		
	U _D	Pore Pressure Index	$U_{\rm D} = (P_2 - U_0) / (P_0 - U_0)$		
Par	T _{Flex}	Dissipation Flex Point			
	γ	Unit weight	see unit weight chart		
	Ko	Earth Pressure Coefficient	$K_{0 \text{ DMT}} = (K_{D} / 1.5)^{0.47} - 0.6$ $I_{D} \le 1.2$		
	OCR	Overconsolidation Ratio	$OCR_{DMT} = (0.5 \text{ K}_{D})^{1.56}$ $I_{D} \le 1.2$		
	Su	Undrained Shear Strength	$Su_{DMT} = 0.22 \sigma'_{v0} (0.5 \text{ K})_{D}^{1.25}$ $I_{D} \le 1.2$		
	Φ	Friction Angle	$\Phi_{safe DMT} = 28 + 14.6 \log K_{D} - 2.1 \log^{2} K_{D}$ $I_{D} > 1.8$		
S	м	Vertical Drained Constrained Modulus	$M_{DMT} = R_{M} E_{D}$		
arametei			If ($I_D \le 0.6$) $R_M = 0.14 + 2.36 \log K_D$		
			If $(I_D \ge 3)$ $R_M = 0.5 + 2 \log K_D$		
Cal P			If $(0.6 < I_D < 3)$ $R_M = R_{M0} + (2.5 - R_{M0}) \log K_D$		
terpreted Geotechnic			$R_{M0} = 0.14 + 0.15 (I_{D} + 0.6)$		
			If ($K_{\rm D} > 10$) $R_{\rm M} = 0.32 + 2.18 \log K_{\rm D}$		
			If ($R_{M} < 0.85$) set $R_{M} = 0.85$		
	C _h	Coefficient of Consolidation	$C_{h DMT} = 7 \text{ cm}^2 / T_{Flex}$		
	K _h	Coefficient of Permeability	$K_{h DMT} = C_{h DMT} \gamma_w / M_h$ $(M_h \approx K_{0 DMT} M_{DMT})$		
<u>ء</u>	Uo	Equilibrium Pore Pressure	$U_0 \approx P_2$ for drained layers only		

SBT chart and (γ / γ_w)

The Flat Dilatometer Test (DMT) in Soil Investigations (2001) – A Report by the ISSMGE Committee TC16. Proceedings, Int. Conf. on In-Situ Measurement of Soil Properties and Case Histories, 95–131. Parahyangan Catholic University, Bandung, Indonesia.

I_D contains information on soil type

Definition:

 $I_{\rm D} = \frac{(P_1 - P_0)}{(P_0 - U_0)}$

SILT falls in between

I_D contains information on soil type

K_D contains information on stress history

$$K_{\rm D} = \frac{(P_0 - U_0)}{\sigma'_{\rm v}}$$

same formula as $K_0: (P_0 - U_0) \rightarrow \sigma'_h$

 K_D is an '*amplified*' K_0 , because ($P_0 - U_0$) is an '*amplified*' σ'_h , due to penetration

K_D well correlated to K₀ & OCR (clay)

K_D contains information on stress history

K_D contains information on stress history

Taranto 1987

CLAY: K_D correlated to OCR

CLAY: K_D correlated to K₀

$$K_0 = \left(\frac{K_D}{1.5}\right)^{0.47} - 0.6$$

Marchetti 1980 (experimental)

Experimental Marchetti (1980)

Theoretical 2004 Yu

Example: σ'_h relaxation behind a landslide (K₀)

E_D contains information on deformation

Theory of elasticity:

 E_D = elastic modulus of the horizontal load test performed

by the DMT membrane (D = 60mm, 1.1 mm expansion)

$$E_D = 34.7 \cdot (P_1 - P_0)$$

Gravesen S. "Elastic Semi-Infinite Medium bounded by a Rigid Wall with a Circular Hole", Danmarks Tekniske Højskole, No. 11, Copenhagen, 1960, p. 110.

E_D not directly usable \rightarrow corrections (penetration, etc)

M obtained from E_D using information on soil type I_D and stress history K_D

M Comparison from DMT and from Oedometer

Virginia - U.S.A.

ONSOY Clay - NORWAY

Tokyo Bay Clay - JAPAN

Failmezger, 1999

Norwegian Geotechnical Institute (1986). "In Situ Site Investigation Techniques and interpretation for offshore practice". Report 40019-28 by S. Lacasse, Fig. 16a, 8 Sept 86 Iwasaki K, Tsuchiya H., Sakai Y., Yamamoto Y. (1991) "Applicability of the Marchetti Dilatometer Test to Soft Ground in Japan", GEOCOAST '91, Sept. 1991, Yokohama 1/6

Su in clay (Ladd 1977 Tokyo)

Ladd: best Su measurement not from TRX UU !! best Su: oedometer → OCR → SHANSEP

$$\left(\frac{Su}{\sigma'_{v}}\right)_{OC} = \left(\frac{Su}{\sigma'_{v}}\right)_{NC} \circ OCR^{m}$$

$$OCR = \left(0.5 \cdot K_{D}\right)^{1.56}$$

Using m \approx 0.8 (Ladd 1977) and (Su/ σ'_v)_{NC} \approx 0.22 (Mesri 1975)
Su comparisons from DMT and from other tests

Mekechuk J. (1983). "DMT Use on C.N. Rail Line British Columbia", First Int.Conf. on the Flat Dilatometer, Edmonton, Canada, Feb 83, 50 Iwasaki K, Tsuchiya H., Sakai Y., Yamamoto Y. (1991) "Applicability of the Marchetti Dilatometer Test to Soft Ground in Japan", GEOCOAST '91, Sept. 1991, Yokohama 1/6

Su at National Site FUCINO – ITALY

Pore water pressure: C Readings (P₂)

Schmertmann 1988 (DMT Digest No. 10, May 1988, Fig. 3)

SAND: $P_2 \approx U_0$ drainage (\approx piezometer)

CLAY: $P_2 > U_0$ no drainage (\approx highlights Δu)

Definition: $U_D = \frac{(P_2 - U_0)}{(P_0 - U_0)}$

EXAMPLE OF SDMT TESTS IN SAND

Catania Harbour - 2012

SDMT TESTS IN SAND (Catania 2012)

DMT Dissipation Test

Test procedure:

- Stop penetration (origin T = 0 s)
- Repeat only A readings (deflate)

NO MEMBRANE EXPANSION

T [min]	A [kPa]
0.280	1,040
0.600	966
0.870	921
1.350	868
2.430	776
4.600	674

Dissipation test in cohesive soils estimate *coefficient consolidation* & *permeability*

cone From u(t) in a singular highly disturbed point

wedge vs cone (dissipation)

wedge From a ≈ mini embankment Larger volume in a less disturbed zone

Dissipation test in cohesive soils estimate *coefficient consolidation* & *permeability*

wedge vs cone (dissipation)

cone From u(t) in a singular highly disturbed point

wedge From a ≈ mini embankment Larger volume in a less disturbed zone

International Standards

EUROCODE 7 (2007). Standard Test Method, European Committee for Standardization, Part 3: Design Assisted by Field Testing, Section 9: Flat Dilatometer Test (DMT), 9 pp.

ISO (2017). ISO/TS 22476-11, Geotechnical investigation and testing - Field testing Part 11: The Flat Dilatometer Test, 9 pp

ASTM (2016). Standard Test Method D6635-15, American Society for Testing and Materials. Standard test method for performing the Flat Dilatometer Test (DMT), 14 pp.

TC16 / TC102 (2001). "The DMT in soil Investigations", ISSMGE Technical Committee on Ground Property, Characterization from in-situ testing, 41 pp.

NATIONAL STANDARDS:

- Italy: Consiglio Superiore Lavori Pubblici (2009), Protezione Civile (2008)
- Sweden: Swedish Geotechnical Society SGF report (1994)
- France: ISO/TS 22476-11:2005(F)
- China: TB10018 (2003), GB50021 (2003), DGJ08-37 (2012)

SDMT used in over 80 countries (°)

(°) Algeria, Angola, Argentina, Australia, Austria, Bahrain, Bangladesh, Belgium, Bolivia, Bosnia, Brazil, Bulgaria, Canada, Czech Republic, China, Chile, Cyprus, Colombia, Costa Rica, Croatia, Denmark, Ecuador, Egypt, United Arab Emirates, Estonia, Finland, France, Germany, Greece, Guadalupe, Guatemala, Honduras, Hong Kong, Hungary, India, Indonesia, Iran, Ireland, Israel, Italy, Japan, Kazhakstan, Korea, Kosovo, Kuwait, Lithuania, Malaysia, Mauritius, Mexico, Myanmar, Netherland, New Zealand, Norway, Oman, Panama, Peru, Paraguay, Philippines, Poland, Portugal, Romania, Russia, Saudi Arabia, Serbia, Singapore, Slovenia, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Taiwan, Thailand, Tunisia, Turkey, United Kingdom, United States of America, Venezuela, Vietnam.

Main SDMT applications

- Settlements of shallow foundations
- In situ G-γ decay curves
- QA of soil improvement
- Slip surface detection in OC clay
- Liquefaction resistance (CRR)
- Laterally loaded piles (P-y curves)
- Diaphragm walls (springs model)
- FEM input parameters (es. Plaxis)
- Vs for soil sample quality assessment

Settlements Prediction (Modulus)

SETTLEMENTS PREDICTION

<u>1-D approach</u> (classic Terzaghi)

■ Primary settlement at working loads (Fs≈2.5-3 to b.c.)

Many publications & case histories of good agreement between measured and DMTpredicted settlements / moduli:

- Failmezger (2020)
- Godlewski (2018)
- McNulty & Harney (2014)
- Berisavijevic (2013)
- Vargas (2009)
- Bullock (2008)
- Monaco (2006)
- Lehane & Fahey (2004)
- Mayne (2001, 2004)
- Failmezger (1999, 2000, 2001)
- Crapps & Law Engineering (2001)

- Tice & Knott (2000)
- Woodward (1993)
- Iwasaki et al. (1991)
- Hayes (1990)
- Mayne & Frost (1988)
- Schmertmann 1986,1988)
- Steiner (1994)
- Leonards (1988)
- Lacasse and Lunne (1986)
- ..
- ..

Observed vs. Predicted Settlements by DMT

Silos on Danube Bank (Belgrade)

Silo founded on mat 100 m x 23 m, with qnet = 160 kPa DMT Settlement prediction: 77 cm Measured Settlement: 63 cm DMT +22%

D. Berisavijevic, 2013

Sunshine Skyway Bridge – Tampa Bay – Florida

M from DMT ≈ 200 MPa (≈ 1000 DMT data points) M from laboratory: M ≈ 50 MPa M from observed settlements: M ≈ 240 MPa \rightarrow DMT good estimation of M in this site

Observed vs. Predicted Settlements by DMT Dormitory Building 13 storeys (Atlanta - USA)

Mayne, 2005

SPT Settlement prediction:	46 mm
DMT Settlement prediction:	250 mm
Observed Settlement:	250 mm
SPT \rightarrow error is large and unsafe	!!!

28 Projects: observed vs. predicted by DMT

"..comparison of settlement values measured at the structures with respect to those obtained by dilatometer data and observations (**28 structures**). It should be added that the given set of buildings was limited to structures with **shallow foundation**.."

Example of SDMT measurements and a 'real time' Settlements Prediction at a demonstration site for a workshop

Bogotà (Colombia - 2015)

Example of SDMT tests in Clay

SDMT Workshop in Colombia (May 2015, Bogotà)

SDMT Escuela Colombiana 9 May 2015

STRESS HISTORY PARAMETERS

Settlements Calculation: Load information

DMT Settlements								
File Settings Info								
Load Area Soil Paramet	ters Calculation Options	Settlements C	alculation	Tables	Graphs	Report		
Loa Shape of	nd Area Type Isola Isola Image: Mult Load Area Square Rectangle Circle	ited iple Loaded A	rea				cross section q = 30 kPa	720
	Rectangular Load Are	88					L = 30.0 m	Za – 2.0 m
	Short Sid	e 15	m		,		TOP VIEW	
	Long Sid	e 30	m					
Unif	ormly Distributed Loa Total Vertical Loa pth of Load Area Bas	d 30 d 13500 e 2	kPa kN m				V = 13500 kN L = 30.0 m	B = 15.0 n

Settlements Calculation: Soil information

DMT Settlements							- • ×	
File Settings Info								
Load Area Soil Parame	eters Calculation Options Settlements Calculation	n Tables	Graphs	Report				
Soil parameters from DMT Uni file Browse			Z	М	Sigma'v		A	
			[m]	[MPa]	[kPa]		=	
		0.20	35.7	3				
			0.40	41.5	7			
Test Name	SDMT 1		0.60	14.5	10			
Firm	CONFERENCIA ESCUELA COLOMBIAN		0.80	4.4	13			
			1.00	11.2	16			
Customer	MARCHETTI		1.20	8.4	19			
Job	UNIVERSIDADE ESCUELA COLOMBIAN		1.40	5.1	23			
			1.60	7.3	26			
Site	BOGOTA' COLOMBIA		1.80	7.1	29			
Remark			2.00	8.2	32			
			2.20	9.0	36			
Date	8 MAG 2015		2.40	9.0	39			
			2.60	7.9	42			
	Clear Values		2.80	8.0	46			
			3 00	77	49		•	

Clear Grid

Info

Settlements Calculation

	Settlements Calculation Point	Settlements [mm]	Z Stop [m]	Δσ/σ'ν
Þ	below the center	225.5	30.80	0.027
	below the corner	79.8	30.80	0.017
	below the median point of short side	121.5	30.80	0.019
	below the median point of long side	144.6	30.80	0.024

Settlements: graph below center of load

Main differences CPT-DMT

1. Flexibility in penetration

CPT – measurements performed at fix penetration rate of 2 cm / sec

 \rightarrow penetrometer required

 \rightarrow penetration rate may influence results

DMT – no requirement on penetration rate.

Measurements when blade is not moving.

 \rightarrow penetrometer, drill rig, floating barge, etc

 \rightarrow measurements independent of penetration rate

2. Probe shape and soil distortion

Blade penetration causes less distortion than cone penetration, preserving the original state of the soil \rightarrow less disturbance

3. Sensitivity to σ_h of CPT(SPT) and DMT

Hughes & Robertson (Canadian Journal August 1985)

4) <u>SANDS</u>: Stress History effects ON CPT & DMT

Effect of SH on normalized Q_c (CPT) Effect of SH on K_D (DMT)

Lee 2011, Eng. Geology – CC in sand

K_D sensitive to Stress History

5. DMT (like PMT): Modulus direct measurement

CPT (SPT) measures resistance and correlates to stiffness with a factor ranging significantly: ~ (3 – 27)

6. DMT: direct measurement of modulus in the soil loaded at the strain level for deformation analysis

G-gamma decay curves (in situ)

G_o and M_{DMT} on the G - γ decay curve

G_0 / M_{DMT} may provide an in situ estimate of the G- γ decay curve

Pubblications: Rodriguez et al (2019), Amoroso et al (2012, 2014), Marchetti et al (2008), Lehane & Fahey (2004) Porto ISC-2 – non linear settlement analysis from in situ tests

Tentative estimation of G - γ decay curve

Quality Assessment of Soil Improvement

In the last decades the DMT has been increasingly used in compaction jobs to quantify the gain in soil improvement

Ground Reinforcement

- Stone Columns
- Soil Nails
- Micropiles
- Jet Grouting
- Ground Anchors
- Geosynthetics
- Fibers

• . .

- Lime Columns
- Vibro-Concrete
 Columns

Ground Improvement

- Surface Compaction
- Drainage/Surcharge
- Electro-osmosis
- Compaction grouting
- Blasting
- Dynamic
 - Compaction

•

Ground Treatment

- Soil Cement
- Lime Admixtures
- Flyash
- Dewatering
- Heating/Freezing
- Vitrification
- •

DMT for Compaction Control (case history 1)

Loose sandfill - container terminal in Belgium

Resonant vibrocompaction technique

Van Impe, De Cock, Massarsch, Mengé - New Delhi (1994)

DMT for Compaction Control (case history 2)

Resin Injection

"The DMT tests were performed near the ground improvement and about 15 feet away from the improvement."

Grifton School Project USA (SAND)

"Figure 3 illustrates how well resin injections improved the soil and how well K_D and M detected such improvements" (Failmezger 2017)

DMT for Compaction Control - Palma Jumeirah Dubai E. Sharif (2015)

"..hydraulically filled silty fine calcareous sand dredged from sea bed, underlain by sedimentary rock of very weak sandstone and siltstone.."

Aim of DMT & CPT tests: to confirm OC of vibrocompaction, detected also by very high Vs (400-500 m/s)

DMT for Compaction Control - Palma Jumeirah Dubai

E. Sharif (2015)

Slip surface detection in OC clay slopes

DMT-K_D method → Verify if an <u>OC clay slope</u> contains **active** (or old **quiescent**) slip surfaces

Validation of DMT-K_D method

Landslide "Filippone" (Chieti 1997)

Validation of DMT-K_D method

Landslide 'St. Barbara' (AR)

K_D to detect slip surface

Inspection of K_D profile before and after the landslide

Medusa DMT: Automated Dilatometer

- Battery Power Pack (24h operational)
- Electronic Board
- Hydraulic Motorized Syringe:
 - Electric Engine
 - Piston
 - Cylinder
- Pressure Transducer
- Blade with standard dimensions

Medusa DMT vs. Traditonal DMT

- No gas tank
- No control unit

No pneumatic cable

No operator required for inflation

Medusa DMT: example of test cycle

Dissipation test before membrane expansion

Motorized syringe able to maintain membrane in the A position \rightarrow monitoring σ_h with time

Medusa DMT validation in a Tailing's Dam

(Poland - November 2019)

Zelazny Most Tailings Dam – Poland

Medusa DMT validation in Zelazny Most

Zelazny Most Tailings Dam (Poland) November 2019

Medusa DMT at Zelazny Most – Poland (November 2019)

Medusa DMT at Zelazny Most – Poland (November 2019)

Partially Draining Layers (Niche Silts) Significant dissipation during test execution: → Readings lower than expected → Readings require corrections Medusa enables to detect this behaviour monitoring $\sigma_{\rm h}$ with time prior to standard DMT readings

F. Schnaid Mitchell Lecture for ISC'6 (delayed for COVID19)

Technical Questions Email: diego@marchetti-dmt.it

Documentation website: www.marchetti-dmt.it

Commercial Information

E-shop: www.marchettidilatometershop.com