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1. Introduction 
 
Several pile load tests on small diameter piles (∅ = 18 cm), which are called HSP micropiles 
with embedment depth of 6.25 m have been supervised by the Institute for Geotechnical 
Engineering and the Institute for Material Testing of Stuttgart University. The test site was in 
Wijchen, the Netherlands. The soil at the site consists of well packed fluvial layers of medium 
fine to coarse sand and gravel, which were deposited during the Pleistocene era (Vermeer and 
Schad, 2005). The tested piles are installed by jacking a steel tube at constant speed, if 
necessary supported by vibration. Once the tube has reached the required depth, the tube is 
withdrawn and high slump concrete is pumped continuously into the cavity. The tube 
withdrawal can only start when a predetermined minimum concrete pressure has been 
reached.  

In order to determine the carrying capacity of the piles, several load tests have been 
performed. Figure 1.1 presents the data from the load-settlement measurements. In the figure, 
the whole measured data are plotted, which include the creep phases, where the initial and end 
settlements at maintained load steps are recorded. 

Due to the growing acceptance of numerical analysis in geotechnical problems, the 
finite element method is being used more and more in piled foundation design, for example 
by El-Mossallamy, 2006. Particularly for displacement piles, the numerical analysis consists 
of two parts: First, the numerical simulation of pile installation and second the simulation of 
pile loading. To simulate a pile penetration properly, one needs an advanced numerical 
analysis which takes into account large strain. Chopra and Dargush (1992) wrote the 
following about  such pile installation:  

Classical finite-element algorithms used in analysing the behaviour of soils assume that 
small strain occurs in the soils due to the applied loads. However, the assumption is no longer 
valid for problems involving the penetration of large scale cylindrical objects such as piles, 
into the soil. The excessive movement of the medium, particularly around the boundaries of 
the pile, during the embedment process causes substantial alterations in the geometry of the 
solution domain.  
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Figure 1.1:  Load-settlements measurement of HSP Micropile load tests (Van der Stoel 

et al., 2005) 
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As a result, strains are no longer linearly related to displacement gradients in such 
regions, and the equilibrium equations must be modified to take into account these changes in 
geometry. Of course, irreversible plastic deformation is also prevalent. 

In addition to that, it might be added that dynamic effects due to pile driving or pile 
vibration also need to be taken into account. Moreover, it may be added that such a large 
strain analysis needs a constitutive model that is advanced on the topic of large deformation 
and density changes. Therefore, large strain numerical analyses have been applied for pile 
penetration by researchers (Henke and Grabe, 2006; Mabsout et al.,1999; Wieckowsky, 
2004). As yet, the results of large strain numerical analyses are still deviating from the 
experimental data (Dijkstra et al., 2006). Furthermore, due to the lack of availability of the 
code for large strain numerical algorithm, the complexity of the analysis and excessive 
computational time-cost, large strain FE-analysis is from the point of view of practical 
engineers not yet popular.  

No doubt that the major effect of a particular pile installation procedure is the resulting 
stress field around the pile. Indeed, bored piles will hardly disturb the initial geostatic stress 
field, but the installation of displacement piles create an increase of the radial stress around 
the pile. One uses the expression  of  (e.g. Lancellotta, 1995), where  is the 

initial effective overburden stress and K is a constant which depends on the soil, the diameter 
of the pile and the installation procedure. If direct empirical data on K is missing, its value 
will be back-analysed from a pile loading test. Even in times of growing computer power and 
advanced numerical modelling, pile loading tests remain of utmost importance as even 
advanced numerical models need field calibration. Hence, it is not believed that numerical 
models will ever be suited for the analysis of pile foundation without field calibration. 

''
vor K σσ ⋅= '

voσ

On having field data on the K-value, it is no longer necessary to simulate the precise 
pile installation process. Instead, the back-analysed K-value can be used to  initialise the 
appropriate stress field around the pile. The simplest procedure would be to use the back-
analysed K-value as a Ko-value, i.e. as a coefficient for the at rest lateral pressure all around 
the soil. However, it will be shown that this gives highly non-realistic stress fields as well as 
inappropriate load-settlement curves for displacement piles. On the other hand, it will be 
shown that realistic stress fields can be obtained by cylindrical cavity expansion up to the 
appropriate K-value. This simplified simulation of pile installation involves a small strain FE-
analyses and it is consequently within the realm of practical engineering. 

Considering cavity expansion, one has the option of using either a stress-controlled 
expansion or a displacement-controlled one. Moreover, one has the option of using various 
different constitutive models in the numerical simulation of a cylindrical cavity expansion. 
Some such possibilities will be investigated in this study. 
This study focuses on tube-installed displacement piles. Such piles (or stone columns) are 
installed by jacking or vibrating a closed-bottom tube into the ground. Upon withdrawal of 
the tube, the cavity is filled with concrete (or stones), so there is no skin friction due to 
installation. The aim of this study is to find methods to account for the effects of installation 
and demonstrate a feasible way of FE-displacement pile analyses for engineering practice.  
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2. Material Properties and Geometry 
 
 
In numerical analysis, material behaviour of the soil and pile are represented by material 
constitutive models. The material behaviour of the pile is considered to be linear elastic with 
parameters as given in Table 2.1. The soil behaviour follows the so-called the Hardening Soil 
model as briefly described in Chapter 2.1. 
 

Table 2.1: Pile Parameters (Linear Elastic) 
 

Parameters Values 
Unit weight  (γ ) [kN/m3] 23.5 
Poisson’s ratio  (ν ) [   -   ] 0 
Young’s Modulus   (E ) [ MPa ] 15000 

 
 
2.1 Material Model for Soil  
 
The Hardening-Soil model is an elasto-plastic model for simulating the behaviour of both soft 
and stiff soils (Schanz and Vermeer, 1998).  The model accommodates stress-dependent 
stiffness of soil, which is according to a power law. Stiffness equations as applied in the 
model are: 
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where: 

'
1σ  is the effective major principal stress          is the effective minor principal stress '

3σ

 
and the following model parameters are being used 
 
  m  is the power law parameter which value is around 1 for clay and 0.5 for sand 

refE50  is the reference stiffness modulus corresponding to the reference stress . It 

is determined from a triaxial stress-strain-curve for a mobilization of 50% of 
the maximum shear strength q

refp

f (see Figure 2a) 
ref
oedE  is the tangent stiffness for primary oedometer loading at reference stress (see 

Figure 2b) 
ref
urE   is the unloading /reloading stiffness at reference stress (see Figure 2a) 

  pref  is  a reference pressure 
      is the effective cohesion 'c

'ϕ  is the effective internal fiction angle  
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Figure 2.1: Description of stiffness parameters (a) Hyperbolic deviatoric stress-axial 

strain relationship for primary loading for a drained triaxial test with 
constant confining pressure  (b) Characteristic curve of an oedometer 

test 

'
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Input Parameters for the soil used in this study are shown in Table 2.2, where γunsat is the 

unsaturated soil unit weight. The soil unit weight of 17 kN/m3 represents a humid soil. ψ is 
the soil dilatancy angle, νur is the unloading-reloading Poisson’s ratio. The dilatancy cut-off is 
an option to limit the soil dilation, but in most calculations, it is unlimited. Dilatancy cut-off 
will be discussed in more detail in Chapter 6. These soil material parameters are based on a 
preliminary study of the pile load tests results.  
 
 

Table 2.2:  Soil Parameters for the Hardening-Soil model computations 
 

Parameters  Values 
γunsat [kN/m3] 17 

refE50  [ MPa ] 17 
ref
oedE  [ MPa ] 17 
ref
urE  [ MPa ] 51 

m [   -   ] 0.5 
'c  [ kPa ] 1 
'ϕ  [   °   ] 35 

ψ [   °   ] 3 
νur [   -   ] 0.2 

Tensile strength [ kPa ] 0 
Dilatancy cut off [   -   ] Not active 
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2.2 The Mohr-Coulomb Interface Model 
 
Direct soil-pile interaction is modelled by interface elements. The interface elements follow 
Mohr-Coulomb constitutive behaviour as described in Figure 2.2a for a constant normal 
stress. The parameters for the interface Mohr-Coulomb constitutive model are , , ψinc inϕ in, νin 

and Ein, which are the interface cohesion, friction angle, dilatancy angle, Poison’s ratio and 
Elastic stiffness respectively. Another important parameter for the interface element is the 
virtual interface thickness tin. As for the interface stiffness, it can be specified as a linear 
elastic stiffness or non-linear elastic stiffness. If a non linear elastic interface stiffness is used, 
the interface stiffness is stress level dependent following the power law with Ein proportional 
to the effective normal stress  as expressed below: '

inσ
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where is an input parameter. The elastic interface incremental strains can be expressed in 

terms of incremental interface stresses as follows:  

ref
inE
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or in matrix form: 
 

         (4) ⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

in

in

in

oed
in

e
in

e
in

G
E

τ
σ

γ
ε

&

&

&

& '

/10
0/1

 
where  is the elastic interface normal strain, is the elastic interface shear strain and  

denotes the elastic compliance matrix expressed in term of interface oedometer (constrained) 
modulus and interface shear modulus G

e
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The elasto-plastic behaviour follows the Mohr-Coulomb yield function with non associated 
plastic potential as expressed below: 
 
 ,                (6) ininininin cf τϕσ −+= tan'

ininining τψσ −= tan'

 
following the basic equations of elasto-plastic modelling, one can write that: 
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where  is the total interface normal strain, defined as inε in

n
inin ttΔ=ε with  is the interface 

normal displacement and  is the total interface shear strain, which is defined as 

n
intΔ

inγ

ininin ttγγ Δ=  with  is the interface slip displacement. Figure 2.2b shows the deformation 

mechanism of the interface element. The plastic part of the interface strains  and  can be 

expressed in following formulas: 
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where  ís a plastic multiplier. Hence, the total incremental stress-strain formulation can be 
written as follows: 

Λ
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where e

inD is the elastic interface stiffness matrix as follows: 
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In order to solve the plastic multiplier Λ , one needs a consistency equation.  For the case of 
perfect plasticity, it is expressed as below: 
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thus, it yields: 
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which gives the final result for the total stress-strain relationship as follows: 
 

 ininin M εσ && ⋅=    with    e
in

T

in

in

in

ine
in

e
inin DfgD

d
DM

σσ
α

∂
∂

∂
∂

−=     (13) 

 6



Table 2.3: Parameters for the Interface 
 

Parameters  Values 
ref
inE = ref

urE  [ MPa ] 51 

m [   -   ] 0.5 

inc  [ kPa ] 1 

inϕ  [   °   ] 35 

ψin [   °   ] 3 
νin [   -   ] 0.45 
tin [ mm ] 16 

Tensile strength [ kPa ] 0 
Dilatancy cut off [   -   ] Not active 

 
 
where α is equal to 0 in elastic condition and equal to 1 in elasto-plastic condition. Equation 
13 can be written in matrix form as below: 
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When the pile has a rough surface, the shear strength is to be equal to the shear strength 

of the soil. This implies that  and  are equal c′ and ϕ′  respectively. If the interface is not 

entirely rough then the interface shear strength is less than the soil shear strength. For the 
present analysis the interface is entirely rough with parameters listed in Table 2.3. Within the 
Plaxis code ν

inc inϕ

in is preset to be 0.45 and it can not be changed. The Plaxis program offers two 
possibilities of inputting the other interface parameters, i.e. as direct input or indirect input of 
interface properties. Direct input of interface parameters gives flexibility on the input of the 
parameters. This is particularly important for very cohesive soil, as the interface cohesion 
should always be close to zero. The indirect input of the interface properties uses the 
properties of the surrounding soil and the so-called strength reduction interface parameter 
Rinter. It yields: 
 
  

 7



 
 
 
                                                         
 
 
 
 
   

  (a)           (b) 
 

Figure 2.2: (a) Shear stress and shear strain relationship for interface at constant normal stress 
(b) The interface deformation mechanism 
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As for the interface thickness tin, the Plaxis program applies the default value of 0.1 times the 
average element size of the elements along the interface. However, it can be specified 
independently. 
 
 
2.3 Finite Element Mesh and Initial Soil Condition  
 
The numerical analyses are done using finite element method in axisymmetric condition. 
Figure 2.3 shows the finite element mesh used for the analyses. The mesh is refined along the 
shaft and at the bottom of the pile where the stress gradient is expected to be high. The 
elements used are 6 nodes elements with 3 Gaussian integration points per element.     

The initial in-situ soil condition is geostatic stress state with a vertical effective stress of 
σ'v = γunsat • y, where y is the depth below the ground surface. For the corresponding horizontal 
stress, it yields σ'h = Ko • σ'vo. The Ko value is taken according to the Jaky’s formula Ko = 1-sin 
ϕ' for normally consolidated soil. For ϕ' = 35°, this gives Ko = 0.426. 

The ground water table is far below the surface; hence the water table is set at the 
bottom side of the mesh. As for the boundary condition, horizontal displacement is prevented 
everywhere. Vertical displacements are prevented at the bottom of the mesh as shown in 
Figure 2.3. 
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0.5∅ = 9 cm 

6.25 m 

Take care!. The mesh is too 
narrow for a proper pile 
calculation. However, this study 
focuses on pile installation 
procedures rather than the precise 
modelling of the pile loading, in 
which the size of the mesh is not 
that important. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: Geometry and finite element mesh 
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3. K-Pressure Method 
 
The increase of radial stress due to pile installation is a major concern in the analysis of a 
displacement pile. One of the assumptions for the radial stress increase due to pile installation 
is that radial stress σ′r increases according to a constant K-value times the initial vertical 
stress σ'vo, where K is  σ′r/σ'vo. Kulhawy (1984) suggests a range of  0.75≤ K ≤2  for 
analytical calculation of pile shaft capacity. One of the research findings on numerical 
analyses of a jacked pile performed by Henke and Grabe (2006) also shows that the radial 
stress increases almost linearly with depth following a constant K-value after installation. For 
a particular loose sand and a pile diameter of 30 cm, they obtained a K-value of 1.25. The 
increase of radial stress due to pile installation can be created by applying horizontal stresses 
with . This procedure is showed in the following sections. ''

vor K σσ ⋅=

 
3.1 Pile Installation with K-pressure Method 
 
In this study, the pile installation process will be simulated using stress controlled expansion 
of a cylindrical cavity. This process can be described as follows: First in-situ soil conditions 
are set as described in Section 2.3. After that, elements are removed to create a cavity along 
the centre line and subsequently a radial stress is imposed to the cavity wall. This radial stress 
increases with depth according to σ′r = K •  σ'vo, where K is taken to be 3.5 for the present 
calculation. This value is taken based on the results of preliminary pile load calculations being 
not repeated in this study. In addition to the prescribed radial stress, at the bottom of the 
cavity, a vertical stress of Lγσ' unsatv ⋅=  is applied, where L is the pile embedment length. 

After imposing the radial stress, the pile material is placed into the cavity. At the same time, 
the radial stress as well as the vertical stress at the bottom of the cavity are removed. 
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Figure 3.1: Stresses at 4 m depth after imposing K-Pressure with K=3.5 and using the 
Hardening Soil model 
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In the above process, the Hardening Soil model as described in Section 2.1 might 

directly be applied. However, on using the Hardening Soil model, the cavity expansion is 
significantly non-uniform. Moreover, on using the Hardening Soil model for the installation 
process, vertical effective stress in the soil would significantly be decreased in the plastic zone 
around the cavity, as shown in Figure 3.1. However, it is doutbfull that the decrease of 
vertical stress is realistic.  

 
 

3.1.1 Stress-Controlled Cavity Expansion using Elasticity 
 
In order to minimize a disturbance of the vertical stress, the soil stiffness will be taken to 
increase linearly with depth. This gives a reasonably uniform cavity expansion as can be seen 
in Figure 3.2a. As the finite element code used for the analysis does not allow an input of zero 
stiffness. An arbitrary small value of kPa is applied as Young’s modulus at the surface 
(E

8101 −⋅
surface). The Young modulus of the elastic material increases with an arbitrary amount of 

5000 kPa per meter depth. The Poisson’s ratio (ν) of the material is zero, which is chosen 
aiming to have no vertical deformation during the cavity expansion. 

                                            
   (a)                                      (b) 

 
Figure 3.2: (a) Deformed mesh (b) vertical stress shading of elastic material after imposing  

   K-Pressure with K=3.5 
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Figure 3.3: Stresses of elastic material at 4 m depth after imposing K-Pressure with K=3.5 

 
The results of the finite element analysis shows a perfectly constant vertical stress even 

in the region close to the cavity as shown in Figure 3.2b. As for the evolution of vertical, 
radial and hoop stress with distance from the centre-line, these are indicated in Figure 3.3.  

 
3.1.2 Returning Stresses to Mohr-Coulomb Yield Surface. 
 
On using an elastic constitutive model, the stresses due to K-pressure will be violating the 
Mohr-Coulomb failure criterion. This will give problems later when the elastic constitutive 
model for the soil will be replaced by the Hardening Soil model. As an alternative to the 
elasticity model, an elasto-plastic Mohr-Coulomb model with increasing stiffness with depth 
is applied. The data for the Mohr-Coulomb model are presented in Table 3.1. However, the 
decrease of vertical stress still occurs, although it is less pronounced than using directly the 
Hardening Soil model.  

 
Table 3.1: Mohr-Coulomb soil Parameters for installation simulation 

 
Parameters  Values 

γunsat [kN/m3] 17 
γsat [kN/m3] 17 

dE/dy [KN/m2/m] 5000 
Esurface [ kPa ] 8101 −⋅  

'  c [ kPa ] 1 
'ϕ  [   °   ] 35 

ψ [   °   ] 0 
ν [   -   ] 0 

Tensile strength [ kPa ] 0 
Dilatancy cut off [   -   ] Not active 
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Figure 3.4: Vertical stresses from different soil models at 4 m depth after Imposing K-

pressure 
 
The installation process is therefore best simulated by imposing the radial K-pressure on an 
elastic soil and subsequently replacing it with Mohr-Coulomb (MC) material. On using the 
latter procedure only a small disturbance of vertical stress around at a distance of 0.6 m from 
the centre-line is observed as shown in Figure 3.4.  

                         
                    (a)                              (b)  

 
Figure 3.5: (a) The vertical stress, (b) mobilised shear strength shading after MC correction 
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Figure 3.6: Stresses at 4 m depth after MC correction with K=3.5 (Elastic cavity   

expansion with MC-correction) 
 
Figures 3.5a and 3.6 show a hardly disturbed vertical stress after MC correction. The 

radial and hoop stresses at 4 m depth appear to be very similar to the ones obtained from the 
HS model (Figure 3.1). From Figure 3.5b, it is shown that the soil strength in a large zone 
around the pile is fully mobilised due to cavity expansion. 
 

                             
     (a)                 (b) 

Figure 3.7: The principal stress directions after MC correction, (a) Around pile head, (b) 
Around pile bottom 
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     (a) deformed mesh                                     (b) horizontal displacement 
 

Figure 3.8: Displacements after MC-correction 
 

The principal stress directions along the pile shaft shown in Figure 3.7 are not rotated, 
showing that there is no shear at the pile shaft. This is in agreement with the fact that there is 
no shear stress occurs as the tube is withdrawn and the pile material is placed into the cavity. 
This case would be different if the pile is driven. The installation process using elastic 
material and corrected by Mohr-Coulomb computation forms a reasonably uniform horizontal 
displacement along the pile cavity as aimed (Figure 3.8a). 

After elastic cavity expansion followed by MC correction, the pile material is then 
placed into the cavity and the soil elements are switched from the MC model to the Hardening 
Soil model. On removing the imposed K-pressure, the pile will be loaded by the soil and this 
leads to some compression of the pile and a slight reduce of the K-pressure. However, 
because the stiffness of the pile is high, the reduction of the K-pressure is observed to be very 
small; it reduces from K = 3.5 down to K ≈ 3.49.  
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3.2 Pile Loading after K-pressure Method 
 
After pile installation process, the loading is performed using displacement control. The 
displacement is prescribed at the pile head. Referring to test procedures specified in the report 
by Van der Stoel et al. (2005), the pile loading is stopped if the pile head settlement is more 
than 20% of the pile diameter. Based on this, a prescribed pile head settlement is taken as 35 
mm.  The soil model used in this pile loading process is the Hardening Soil model. 

The calculated load-settlements curve is shown in Figure 3.9. It is in good agreement 
with the measured ones, which is not a surprise as the soil parameters used are based on a 
preliminary study of the pile load tests. In Figure 3.9, the measured data are plotted without 
including the data from the creep phases, which is commonly done for plotting load-
settlements curve. The calculated load at 35 mm pile head settlement is 384 kN.  
At 35 mm pile head settlement, the calculated load-settlement curve is still showing an 
increasing trend, meaning that it has not yet reached failure in a mechanical sense. Failure in 
mechanical sense occurs if the derivative (dQ/ds) of the load-displacement curve is zero or 
negative. In Chapter 6, it will be shown that the dilation of interface and soil material causes 
the continuing increase of the pile skin resistance as observed in Figure 3.9. So far, no 
limitation to the maximum amount of dilatancy has been applied and the influence of so-
called Dilatancy-Cut-Off will be discussed later in Chapter 6. Apart from the load-settlement 
curve, it is also important to see the resistance components of the pile, which are the skin 
resistance and the base resistance. As shown in Figure 3.9, up to a load of 200 kN almost 
100% of the load is taken by the skin resistance and at a settlement of 35 mm the load is still 
mainly taken by the skin resistance (about 90%). A pile with this type of behaviour is 
generally known as Skin Friction pile.  
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Figure 3.9: Simulated and measured load-settlement curve (K=3.5) 
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Figure 3.10:  Mobilised shear strength of the soil for s = 35 mm  
 

The mobilised shear strength contours of soil at 35 mm pile head settlement as shown in 
Figure 3.10 are slightly different from the ones after installation process (Figure 3.5b). The 
stresses at 35 mm pile head settlement are shown in Figure 3.11. 

 
 

                                             
 

         (a)                 (b)                      (c) 
     

Figure 3.11:  Principal stresses at three zones of depth after loading (a) upper part, (b) 
middle part, (c) bottom part of pile embedment 
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Figure 3.12: Interface stresses for 35 mm pile head settlement 

 
The distribution of shear stress in the interface as shown in Figure 3.12 have a curved shape 
which is in agreement with the shape of skin friction distribution, as first published by O’Neil 
and Reese (1972) and Vesic (1970). The smooth curves of the shear and radial stresses as 
shown in Figure 3.12 represent polynomial functions that give a least square fit to the 
zigzagging computed stress distributions. The polynomial functions used in this case are of 
fourth order. As for the ultimate skin resistance of a pile, it is calculated according to the 
formula below: 
 

dzKDdzDQ
L

vow

L

rwskin ∫∫ •==
0

'

0

' tantan σδπσδπ     (16) 

 
where 

K  is the ratio of radial stress to the initial vertical stress (σr/σ'vo) 
D  is pile diameter  
δw is the pile-soil interface friction angle 
σ'vo  is the initial vertical stress 
L  is pile embedment length 

 
In practice K is often assumed to be constant with depth, for example as described by 
Lancelota (1995), although Figure 4.2b shows that this is not the case. For such situation, it is 
possible to introduce an average K-value. It can be back calculated as follows: 
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Pile head settlement 

Arching effect 
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Figure 3.13: Description of trap-door effect (a) Terzaghi sand box (b) Pile loading 
 
The integral of the radial stress can be obtained by numerical integration. The integral of 
initial vertical stresses can be evaluated analytically to give . In this analysis 

K

25.0 Lunsat ⋅⋅ γ

average at the end of loading is found to be 2.66. Hence, K drops from K=3.5 after installation 
down to Kaverage = 2.66 for a settlement of s = 35 mm. The significant reduction of the radial 
stresses at around the bottom of the pile is caused by so-called trap-door effects. Terzaghi 
(1936) explained this effect with his experiment on a sand box with a trap-door at the base of 
the box (Figure 3.13a). As long as the downward movement of the trap-door remains very 
small, it merely produce a vertical expansion of the lower part of the body of sand located 
above the trap-door. As a result of this deformation, the sand located on both side of this body 
is allowed to expand laterally, thus reducing the lateral stress in this area.  

A similar effect also occurs to the pile loading as first introduced by Vesic (1963) and 
Touma and Reese (1974). The pile base settlement drags down the soil at the side of the pile. 
The vertical stretching of soil at the pile side just above the base causes the reduction of 
vertical stress. The radial stress also reduces as this soil is in a failure state with Mohr-stress 
cirlce moving to the apex. The soil below the pile base displaces to the side of the pile, which 
then forms a kind of arching effect around the pile base as described in Figure 3.13b.  

In addition to that, the reduction is also induced by the reorientation of principal stress 
directions due to the developed shear stress (skin friction) along the pile shaft. This reduction 
of radial stress is particularly shown at around the middle part of the pile as shown in Figure 
3.12. The evolution of radial stresses with respect to shear stresses at the soil next to the 
interface at 2.4 m and 3.4 m depth as presented in Figure 3.14. The figure shows that radial 
stresses reduce due to the mobilised shear stresses. After some decrease, the radial stress starts 
to increase again due to interface and soil dilatancy. 

Figure 3.15 shows the deformed mesh after pile loading up to s = 35 mm. It can be seen 
that along the pile-soil interface, the nodes of pile elements and the nodes of soil element 
nodes are not in the same position showing that some slip along the interface occurs. 
Moreover, the soil elements next to the interface are significantly distorted due to shear 
deformation in the soil. The width of the significantly distorted zone implies a numerical 
shear band of the finite element mesh. 
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Figure 3.14: Evolution of radial stress at a point next to interface at  2.4 m and 3.4 m depth 
 
 
 
 

 
 

Figure 3.15: Deformed mesh at s = 35 mm 
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4. Displacement-Controlled Cavity Expansion Method 
 
Another method for simulating pile installation is using displacement-controlled cavity 
expansion. This is done by prescribing a uniform horizontal displacement on a cavity wall. 
This method has been used by Debats et al. (2003) for simulating the installation of stone 
column and by Dijkstra et al (2006) for simulating a driven pile installation.  
 
 
4.1 Pile Installation with Displacement-Controlled Cavity Expansion  
 
This pile installation procedure can be described as follows: the process is started with setting 
the initial conditions as explained in Section 2.3. After that, pile elements are removed to 
create a cavity along the centre line and subsequently the cavity wall is expanded uniformly 
by prescribing a horizontal displacement. In addition to that, a vertical stress ( Lγσ' unsatv ⋅= ) is 

applied at the bottom of the cavity, where L is the pile embedment length. 
After the displacement-controlled cavity expansion process, the pile material is placed 

into the cavity. On doing so, the prescribed horizontal displacement as well as the vertical 
stress at the bottom of the cavity are removed. In this process, the Hardening Soil model is 
directly applied during the installation process. This is done because this is the simplest 
installation procedure and the cavity expansion is enforced to be uniform. Furthermore, it is 
also aimed to compare results from simplest installation procedure with the previous accurate 
procedure.  

Figures 4.1a and b show block failure mechanism of the surrounding soil due to the 
uniform expansion of cavity with a usual mesh and a widened mesh respectively. The 
corresponding load-displacement curves are shown in Figure 4.1c. The forces were obtained 
from the calculation in kN per radian and they have been multiplied by 2π to obtain the total 
forces acting inside the whole cavity. The displacement-controlled cavity expansion applied 
for the pile installation simulations is very small.  
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         Figure 4.2: (a) Interface radial stresses and (b) K-values 
 

A prescribed horizontal displacement of 1.1 cm, which corresponds to about 25% volumetric 
strain, is taken for the present calculations. This value is based on a preliminary study on the 
pile loading tests. 

As can be seen in Figure 4.2a, the interface radial stress differs quite noticeably from 
the ones by a K-pressure method. The developed radial stress due to displacement-controlled 
cavity expansion is not increasing linearly with depth as in K-pressure. The radial stress is 
higher at the top part of pile embedment and the K-values are not constant with depth. The K 
values, which are in accordance to the developed radial stresses, are significantly higher at the 
top part of pile embedment and decreasing to a relatively constant value with depth at the 
bottom part of pile embedment. As in the previous chapter, the curves in 4.2 are obtained 
from the best-fit polynomial functions. In this study the polynomial function curves of the 
fourth order are used for representing the stress distributions and the third order for Figure 
4.2b particularly. In practice, K-value is often assumed to be constant. On assuming a 
constant value of K with depth, Kaverage can be calculated using Equation 16 in Section 3.2 to 
find 3.69.  

Figures 4.3a and b show the comparison between the vertical stress shading after 
displacement-controlled cavity expansion and after elastic expansion with MC-correction in 
the K-pressure method.  

After displacement-controlled cavity expansion process, the pile material is then placed 
into the cavity and the prescribed displacement as well as the vertical stress at the bottom are 
removed. On doing so, the pile is compressed by the soil. However, since the stiffness of the 
pile is high, the compression gives only an extremely small effect to the stress condition of 
the soil. 
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         (a)          (b) 

         
Figure 4.3: (a) Vertical stress shading after displacement-controlled cavity expansion 

with the Hardening Soil model,  (b) Vertical stress shading after MC-
correction from K-pressure method. 

 
 

4.2 Pile Loading after Displacement-Controlled Cavity Expansion  
 

After the installation process, pile loading is performed. Similarly to the K-pressure method, 
the loading is conducted using displacement control, i.e. by prescribing a vertical 
displacement at the pile head.  

On using the material properties as listed in Table 1 the calculated load-settlement curve 
is in good agreement with measured data as shown in Figure 4.4. This is no surprise, since the 
properties and the expansion are based on the results of a previous preliminary study.  
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      Figure 4.5: Interface stresses at s = 35 mm after displacement-controlled cavity expansion 
 
The calculated load at 35 mm pile head settlement is found to be about 385 kN. The 
corresponding resistance components show practically the same evolution as the ones found 
in K-pressure method. Again, up to the load of about 320 kN, the load is almost fully taken by 
the skin resistance. 

Figure 4.5 shows that the shear stress increases upon pile loading whereas the radial 
stress decrease, especially at the lower part of the pile. The decrease of the radial stresses 
relates both to the trap-door effect and the rotation of principal stress directions as explained 
in Section 3.2.  
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Figure 4.6: Comparison of radial stresses after loading from K-pressure and    
displacement-controlled cavity expansion at s = 35 mm 
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Similarly to K-pressure method, K-value can be back calculated and is found in this case to 
decrease from K = 3.69 to K = 2.68. With K-pressure method the K-value was found to 
decrease from 3.5 down to 2.66. Similar K-value has also been found by Aboutaha et al. 
(1993). From their experimental study of a load test on a jacked pile in medium dense sand, 
K-value of about 2.6 to 2.7 was observed. 

As shown is Figure 4.6, the radial stress distribution after loading with displacement-
controlled cavity expansion in the installation process is slightly different from the curve with 
installation process using K-pressure. The radial stress from displacement-controlled cavity 
expansion is higher around pile top and lower around pile tip. However, the integral of radial 
stresses at 35 mm settlement after both installation processes give almost the same value. The 
curves representing the stress distributions in Figures 4.5 and 4.6 are polynomial curves of the 
fourth order. 
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5. Increased Ko Method 
 
The easiest method for simulating the radial stress increase due pile installation is the use of 
an increased Ko value as for instance used by Russo (2004). However, it should be realized 
that if Ko is increased, not only the radial stress is increased but also the hoop stress. This does 
not represent an expansion of a cavity due to pile jacking as obtained the K-pressure method 
and the displacement controlled cavity expansion. As for the other methods of pile 
installation, the value of the increased Ko should be taken carefully. In this study, several 
calculation results for different increased Ko values will be presented.  

 
 
5.1 Pile Installation 
 
The installation process begins with setting the initial conditions of the soil as motioned in 
Chapter 2 except for the Ko value. The Ko value of the soil down to the depth of pile 
embedment is increased to a certain value to obtain higher horizontal stress. Below the pile 
embedment depth, the Ko value of the soil is set according Jaky’s formula, Ko = 1-sin ϕ' for 
normally consolidated soil. After that, the pile is installed.  

Due to increased Ko, the horizontal stresses, which include radial and hoop stresses are 
increased to the same value. The increase covers the whole area where increased Ko is 
applied. As mentioned before, this is not the case in the true installation process, which 
follows cavity expansion behaviour. In a cavity expansion, hoop stress should decrease at the 
same amount as the radial stress increase in the elastic region and then increases differently 
with radial stress in the plastic region. Moreover, the stresses change only to some distance 
surrounding the pile due to the cavity expansion. In spite of those drawbacks in the 
installation process, it is of beneficial to observe the results of load-settlement behaviour after 
loading the pile and to compare them to the previous results. 

 
 

5.2 Pile Loading 
 

The loading is done using displacement control by prescribing a vertical displacement at the 
pile head. Similarly to the previous methods, a prescribed vertical displacement of 35 mm is 
applied. In the loading the soil model used is the Hardening Soil model as described in 
Section 2.1.  

It can be seen from Figure 5.1 that the shapes of the computed load-settlement curves 
differ significantly from the measured ones. Load-settlement curves from increased Ko equal 
1 and 2 match the measured curves in the very beginning, but not further. For the increased Ko 
= 3, the curve differs from the measured ones by far. The use dilatancy cut-off would improve 
the computed load-settlement curve significantly as will be shown in Section 6.5. 
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Figure 5.1: Load-settlement curves for different values of increased Ko

 
 

Figure 5.2 shows a load-settlement curve from increased Ko equal 1.5, which gives 
almost the same load at s = 35 mm as the measured one. However, for smaller settlement, the 
skin friction is not high enough to fully take the applied load compared to the skin frictions 
from the previous methods shown in Figure 3.7 and 4.4.  
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Figure 5.3: Interface stresses at 35 mm settlement with increased Ko = 1.5 
 

The deformed mesh (Figure 5.4a) seems relatively similar to the results from the 
previous methods. However, the interface stresses and the mobilised shear strength are 
significantly different. Instead of decreasing, the radial stress increases due to the pile loading 
compared to the one from K-pressure method as shown in Figure 5.3. During the loading of 
the pile, the radial stress can only increase due to the dilatancy. Soil dilatancy seems to play a 
major role in the increased Ko method. Therefore, the influence of dilatancy as will be 
described in detail in Chapter 6 should become an important consideration. The mobilised 
shear strength region around the pile bottom as presented in Figure 5.4b is larger than the 
ones from the previous methods. 

 

                                 
(a) (b) 
 

Figure 5.4: (a) Deformed mesh, (b) Mobilised shear strength shading at s = 35 mm after 
loading from Ko = 1.5 
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(a) (b) 
 

Figure 5.5: Principal stress at 35 mm settlement, (a) Around pile top, (b) Around pile 
bottom 

 
Figure 5.5 shows the principal stresses, which are relatively similar along the interface 

region to the ones from K-pressure method. However, the increased radial stresses for the 
whole soil in this method are completely different from the previous methods. Based on the 
above mentioned considerations, in general, it can be seen that the increased Ko method does 
not seem to be able to simulate such a cavity expansion at the pile installation process. 
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6. Influence of Dilatancy Cut-off 
 
After extensive shearing, dilating materials arrive in a state of critical density where dilatancy 
has become fully mobilised. This phenomenon of soil behaviour is included in the Hardening-
Soil model, which is implemented in Plaxis finite element code by means of a so-called 
Dilatancy Cut-off.  
 
 
6.1 Preliminary Considerations 
 
In order to specify this behaviour, the initial void e0, the minimum void ratio emin, and the 
maximum void ratio emax, of the material are required. As soon as the volume change results 
in a state of maximum void, the mobilised dilatancy angle ψm, is automatically set back to 
zero, as indicated in Figure 6.1 (Brinkgreve et al., 2002) 

 
 

Figure 6.1: Resulting strain curve for a standard drained triaxial test including dilatancy cut-
off 

 
The limitation of dilatancy follows the criteria: 
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where  is the mobilised friction angle and mΨ csϕ  is the critical state friction angle. On using 

the logarithmic strain measure, the void ratio is related to the volumetric strain εvol, by the 
relationship  
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where compression is considered positive. 
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For small strains, it yields Δe/(1+e0) < 0.1 and one obtains the usual small strain definition,  
 

01 e
e

vol +
Δ−

≈ε           (20) 

 
 
6.2 Parameters for Dilatancy Cut-off in Interface 
 
The piles as considered in this study have a very rough interface with the surrounding soils. 
This implies the occurrence of a more or less usual shear band around the pile. Soil shear 
bands have a thickness of about 10-12 times d50, where d50 is the average grain size of the 
soil. Unfortunately, no grain size distribution is available. However, for a medium fine to 
coarse sand, it can be assumed that the d50 is around 0.4 mm. Thus, the shear band thickness is 
found to be about 4 mm. It is further assume that the void ratios of the sand are as follows:  
 

400min .e = ,  emax = 0.90 ,  eo = 0.65  
    
This sand can therefore dilate no more than 25065090 ...Δe =−= . For a shear band this 
implies: 
 

150
1

maxmax .
e

Δeε
o

vol =
+

−
=  

 
For a shear band thickness of t = 4 mm, this implies that  
 

mm.εtΔt vol 60max
max =⋅=          (21) 

 
The finite element mesh being used involves an interface thickness of  tin = 16 mm, which is 
beyond the real interface thickness of 4 mm. The thick FE-interface may dilate up to 

. In order to achieve that, the volumetric interface strain has to be restricted to 

the low value of 

mm.Δtin 60max =
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  In order to realize this dilatancy cut-off, the following emax will be input in the model. 
 

710060650max0max ...Δeee =+=+=  
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Thus, the input parameters for the dilatancy cut-off in the FE-interface are  
400min .e = ,  and . 

 

710max .e = 650.eo =

 
6.3 Parameters for Dilatancy Cut-off in Surrounding Soil 
 
The dilatancy cut-off parameters for the surrounding soil are calculated in similar way to the 
previous section. Hence we have  and mmtreal 4= mm.Δt 60max = . The finite element mesh 

being used involves a numerical soil elements shear band as shown in Figure 6.2, which is 
observed from the thickness of distorted mesh region along the pile, of  tnumeric = 30 mm. This 
numerical shear band is beyond the real interface thickness of 4 mm. As for the thin real shear 
band, the thick numerical shear band may dilate up to . In order to achieve 

that, the volumetric strain of the numerical shear band has to be restricted to the low value of 

mm.Δtnumeric 60max =
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Δtε
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vol ===  

    
In order to realize this dilatancy cut-off, the following emax will be input in the model for the 
surrounding soil. 
 

70680030650max0max ....Δeee ≈=+=+=  

 
Thus, the input parameters for the dilatancy cut-off in the model for the surrounding soil are 

,  and . 40.0min =e 70max .e = 650.eo =

 
 

 

tnumeric

Numerical 
shear band 

 
         Figure 6.2: Numerical shear band 

 
 
 
 
 

 32



6.4 Pile Load Test Simulation which includes Dilatancy Cut-off 
 
 
The load test simulation follows the K-pressure procedure described in Chapter 3. The 
dilatancy cut-off is only applied at the pile loading. The Hardening Soil model is used in this 
calculation. Figure 6.3 presents load-displacement curves for a non-dilating soil with ψ = 0 
and dilatant soil with ψ  = 3o. 
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Figure  6.3: Effects of dilatancy and dilatancy cut-off on load-settlement curve 
 

Load-settlement curve from soil without dilatancy drops suddenly after the load of 300 kN, 
which implies that the skin friction has been fully mobilised. The very small increase of loads 
with settlements after the sudden drop is due to some increase of base resistance.  
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The effect of dilatancy cut-off is also significant as shown in Figure 6.3. If the dilatancy cut-
off is applied, the load-settlement curve after the sudden drop at around 320 kN does not 
continuously increase as without applying the dilatancy cut-off. There is another drop at a 
load around 380 kN, after that part the soil around the pile is not dilating anymore. The small 
increase of the load after this part relates to the increase of base resistance.  

As shown in Figure 6.4, the shear stress distributions between the soil with and without 
dilatancy cut-off show only a very small difference at s = 35mm. On the other hand the 
difference between dilating and non-dilating soils is quite significant showing that dilatancy 
plays a major role in the resistance of a pile. 

 
 

6.5 Increased Ko with Dilatancy Cut-off 
 
 
In Section 5.2, it has been shown that dilatancy plays a significant role in pile loading after 
increased Ko. Figure 6.5 show the load-settlement curve from increased Ko = 2.9 with 
dilatancy cut-off. The dilatancy cut-off parameters for the interface and soil used for the 
calculation are as specified in Section 6.2 and 6.3. It can be seen that the dilatancy cut-off 
improve significantly the fitting of the measured data. 
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Figure 6.5: Load-settlement curve from Ko = 2.9 with dilatancy cut-off 
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7. Influence of Small Strain Stiffness 
 
The behaviour of soil at small strains has been studied by many researchers for example Seed 
and Idriss (1970), Burland (1989), Atkinson (2000), Benz (2006) and found to be an 
important phenomenon in geotechnical engineering problems. At small strain levels most 
soils exhibit a higher stiffness than at engineering strain levels, this stiffness varying non-
linearly with strain. The soil stiffness decays as the strain increases. The importance of the 
high stiffness at small strains and its use in geotechnical engineering has also been shown by 
Benz (2006). His work has lead to the development of Hardening Soil Small (HS-Small) 
model. The HS-Small model is a small strain stiffness extension of Hardening Soil model that 
accounts for higher stiffness of soils at small strains. The maximum soil stiffness at small 
strain implemented in HS-Small model is the initial soil stiffness Eo as shown in Figure 7.1. 
As for the limit lower value of stiffness for small strain, it is taken as equal to the unloading-
reloading stiffness modulus as observed in classical laboratory testing. Since then the model 
returns back to the original Hardening Soil model. 
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Figure  7.1:  Stiffness moduli in triaxial stress-strain curve 

 
 
7.1 Parameters for HS-Small Model 
 
As the HS model is an extension of Hardening Soil model to incorporate the small strain 
stiffness behaviour, only two additional material parameters are needed from the parameters 
for the Hardening Soil model. The additional material parameters are  and γref

oG 0.7, where 

is the maximum small strain shear modulus at a particular reference pressure. γref
oG 0.7 denotes 

the shear strain, at which the shear modulus G is decayed to 70 percent of its initial Go- value. 
Since these two new parameters can not be obtained from standard geotechnical laboratory 
testing, Benz (2006) presents in his work several correlations for the small strain parameters. 
Based on that, the small strain properties for this case study are obtained. For a medium dense 
sand, the initial Young’s modulus Eo may for instance be assumed to be about 3 times the 
unloading-reloading modulus Eur. For Eur = 51 MPa, this gives MPa153513 =⋅=oE . Go is 

equal to Eo
 /2(1+ν) which gives Go = 153/2(1+0.2) = 63.75 MPa. For sand at a reference 
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pressure of 100 kPa, γ0.7 tends to be in the range between to . For the present 
calculation a value of is used which gives better fit load-settlement curve to the 

measured data. Therefore, = 63.75 MPa and γ

4101 −⋅ 4102 −⋅
4101 −⋅

ref
oG 0.7 = are used as the additional input 

parameters in the HS-Small model. 

4101 −⋅

 
  

7.2 Pile Load Test Simulation with HS-Small Model 
 
The Pile installation follows the K-pressure method described in Chapter 3. However, instead 
of Hardening Soil model, the Hardening Soil Small model is applied. 

As can be seen in Figure 7.2, the additional small strain stiffness causes the load-
settlement curve to be slightly higher than the one using the Hardening Soil model which is as 
expected. Up to a load of 300 kN the HS-Small model gives a more curvature to the load-
settlement curve. Computational results on deformed mesh and mobilised shear strength as 
well as principal stress directions appeared to be very similar to those from the HS-
computations. Therefore such data are not presented again. 

The difference between the HS-Small model and the Hardening Soil model can also be 
seen in the case of unloading-reloading. Figures 7.2a and b also show unloading-reloading 
curves from the Hardening Soil and the HS-Small model respectively. In contrast to the HS 
model, the HS-Small model gives some hysteresis.  

The load reversal due to unloading causes the irregular directions of the principal 
stresses along the interface as shown in Figure 7.3 which is due to isotropic state of stresses. 
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Figure  7.2: Load-settlement curves with unloading-reloading (a) HS model (b) HS-

Small model 
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       (a)           (b)                 (c) 

 
Figure 7.3: Principal stress direction at several parts of pile embedment after 

unloading (a) upper part (b) middle part (c) bottom part 
 

The change of stresses along the pile shaft due to unloading and reloading is presented in 
Figure 7.4. Due to unloading the shear stress reduces to a total value of zero and increases 
again to its maximum distribution after reloading. Radial stress along the interface changes 
due to unloading reloading. After the unloading, the radial stress decreases and due to the 
reloading the radial stress increases again to the same amount as in the previous loading 
phase. 
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8. Sensitivity Analyses (Not yet ready) 
 
 
8.1 Parametric Studies on the Stiffness Parameters of the Hardening Soil Model. 
 
8.1.1 The Influence of on the Load-Settlement Curve refE50

 
8.1.2 The Influence of  on the Load-Settlement Curve ref

oedE
 
8.1.3 The Influence of ref

urE  on the Load-Settlement Curve 
 
8.2 Parametric Study on the Small Strain Stiffness Parameters  
 
8.3 Influence of mesh 
 
 
 
9. Best-fit Parameter Set (Not yet ready) 
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10. Conclusions 
 
The major effect of a displacement pile installation in sand is the increase of the radial stress 
around the pile, which later increases the pile capacity. This study is aimed to find methods to 
account for effects of installation process of a tube-installed displacement pile i.e. the increase 
of radial stress with zero skin friction between the pile and soil after installation.  

Three methods of simulating the increase of radial stress in the surrounding soil by 
FEM have been considered: The K-pressure method, displacement controlled cavity 
expansion method and increased Ko method. The first two methods would seem to be 
reasonably appropriate methods for simulating displacement pile installation whereas the 
increased Ko method was found to be a less appropriate method. Increased Ko method 
generates a non-realistic stress field around the pile after the installation process. 

On using K- pressure method radial stress along the pile side, it yields , where K 

is a constant. The K value is back calculated from a the measured load-settlement curves. 
Hence, a pile load test is needed to calibrate the K-pressure method. This method gives 
reasonable stress fields. 

'
voK σ⋅

On using the displacement-controlled cavity expansion, the increase of radial stress is 
induced by applying a prescribed horizontal displacement on a cavity wall. The horizontal 
displacement is back-calculated from a measured load-settlement curves. The K value 
resulting from this method is not constant. However an average K value can be back 
calculated. Realistic stress fields after cavity expansion and pile loading are obtained, 
although they are sligthly different from the results of K-pressure method. 

Although both methods give reasonable results for a displacement pile analysis the K-
pressure method is more favourable. This is because the increase of radial stress with a 
constant K value, which is often assume in common practice is directly back-calculated from 
the pile load test measurement.  

The interface elements are even more important when the soil is very cohesive as the 
interface cohesion should be close to zero. Moreover, the interface elements are highly 
important when considering prefabricated displacement piles. 

This study also includes the effect of small strain stiffness to pile loading calculations. 
For this, the HS-Small model has been used. The HS-Small model which is the extension of 
the Hardening soil model, requires two extra parameters which are Eo and γ0.7. It was found 
that small strain stiffness parameters give better curvature of the load-settlement curve. 
Moreover, hysteresis due to unloading-reloading cycle is more obvious on using the HS-
Small model. In addition to that, on using the HS-Small model the sensitivity on chosing the 
boundary conditions is less when compared to other model without small strain stiffness. 
Hence, the use of the HS-Small model is recommended.  
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Appendices 
 
 
 

 
(a) Loading to settlement of 30mm     (b) Unloading        (c) Reloading to settlement of 35mm 

 
Figure  i: Shear stress distribution along the interface at different loading phases 

 
 
 
 

 
    (a) 30mm                          (b)  Unloading                            (c) 35mm 

 
Figure  ii: Radial stress distribution along the interface at different loading phases 
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