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Preface of the Editor

Over the years, the application of numerical analysis in geotechnical engineering has
gained traction, but it is often still limited to small-deformation problems. Simulation
of large deformations necessitates a re-evaluation of the methods employed to simu-
late such cases. Alternatives to the conventional finite element method (FEM), such as
the Coupled Eulerian-Lagrangian (CEL), the Arbitrary Lagrangian-Eulerian (ALE), etc.,
have gained popularity over the years – partly due to their accessibility in commercial
simulation software and the abundance of user-defined soil models available for them.
The opaque “black box” nature of these codes severely restricts the research poten-
tial of these programmes, despite the fact that they provide a straightforward method
of calculating soil and soil-structure interaction. For this reason, Dr.-Ing. Shreyas
Giridharan chose to focus his research on the Convected Particle Domain Interpola-
tion (CPDI) method, which is an enhanced Material Point Method (MPM) scheme and
which was developed and refined at the Institute of Geotechnical Engineering, Univer-
sity of Stuttgart.

The primary objective of Dr. Shreyas Giridharan’s research work was to incorporate
pore-fluid interaction into the CPDI code in order to simulate two-phase material, es-
pecially for fluid-saturated soil systems. In addition, the objective was to implement a
constitutive law, known as the UBCSAND model, an elasto-plastic model that captures
hardening and softening as well as the liquefaction effects in dynamically loaded soil.
To this end, the initial chapters of this work focus on implementing and rigorously
validating the accuracy of the implementation by using analytical solutions and exper-
imental results for example by simulation of a granular column test or a shake table
test, typical benchmark tests used to model liquefaction of granular soils.

The second objective of this study is the application of the developed and validated
CPDI scheme on the numerical simulation of pile installation processes. The investiga-
tions focus on the numerical simulation of offshore monopile installation in saturated
non-cohesive soils as a fully dynamic process and by considering effects like liquefac-
tion and pore-water pressure changes in a physically adequate manner. Even though
offshore installation of wind turbines and their foundations have been extensively stud-
ied and documented, the vibrational installation of mono-piles is a fairly new approach
with the potential to reduce hydrosonic noise and fatigue of the steel pipe in compari-
son to an impact-driven installation while increasing penetration rate significantly.

For this study, Dr. Giridharan chose three simulations with distinct time and length
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scale, beginning with a model scale monopile installation experiment and progress-
ing to a full-scale offshore monopile. The plan was to validate the numerical package
using the small-scale tests against the experimental results made available by the TU
Berlin partners. The validated model was utilised for back-calculating results from the
VibroPile project, and was subsequently utilised for Class-A simulation of vibratory
monopile installations for the VISSKA offshore project in the German Bight. Dr. Girid-
haran’s scientific contributions focus on the application of the two-phase CPDI code
to achieve simulation results of Class-A quality which later prove to be in good agree-
ment to the field data gained during execution. These results demonstrated that the
CPDI code is capable of simulating highly dynamic processes involving soil-structure
interaction and complex boundary conditions. It is worth to highlight that Dr. Giridha-
ran succeeded in simulating the installation process over the whole penetration depth
for real scale conditions as a dynamic process in two-phase soil material what can be
considered as an outstanding scientific achievement.

Dr. Giridharan’s dissertation demonstrates that the CPDI tool developed at the Institute
for Geotechnical Engineering at the University of Stuttgart is a potent and versatile tool
for not only simulation of large deformations, but also investigating the soil structure
interaction during and after dynamic processes.

This research was partially funded by innogy SE as part of the VIBRO CAFÉ (VIBRO III)
project, under grant number 92032410, and the project VISSKA, funded by the German
Federal Ministry of Economic Affairs and Climate Action and coordinated by the Project
Management Jülich (PtJ) under grant number 03EE3034D. Their contributions to the
completion of this project are gratefully acknowledged.

Stuttgart, November 2022
Univ.-Prof. Dr.-Ing. habil. Christian Moormann
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Abstract

Renewable energies are increasingly becoming the energy source of the future, and
offshore wind energy is unquestionably one of the most attractive means of producing
clean energy, owing in part to its adaptability, scalability, durability of operation, and
quick installation time. While the installation method and practise have been well-
established over the past few decades, there are still knowledge gaps regarding the
vibratory installation of offshore monopiles that need to be filled. The raison d’être
of this monograph is to develop and validate a numerical tool that can predict the
installation behaviour of these monopiles with reasonable accuracy.

Large displacements of the structures and large deformations of the soil continuum
cannot be neglected when numerically modelling pile installation. Convected Parti-
cle Domain Interpolation (CPDI), an enhanced version of the Material Point Method
(MPM), is used to address this challenge. MPM is ideally suited for granular material
simulations and geomechanical simulations. CPDI, as a derivative of the MPM method,
avoids spurious stress oscillations, which are inherent to MPM, while simultaneously
capturing domain shear, which is not possible with the conventional formulation. In
addition, this monograph extends the CPDI method to capture the pore fluid within
the soil continuum by applying the Theory of Porous Media (TPM) to the CPDI for-
mulation. Implemented is the UBCSAND constitutive law, an elasto-plastic model that
captures hardening/softening behaviour as well as liquefaction of continuum under
dynamic load. A combined tool that allows simulation of liquefaction and modelling
of the saturated medium offers the best opportunity to replicate and then analyse the
state parameter changes around the region of interest, which in this thesis is the region
surrounding the jacket of the pile.

At each stage, the implemented method is compared to experimental/analytical results.
While the CPDI code is validated using analytical solutions and experimental results,
which was the simulation of granular column collapse in this thesis, the UBCSAND
constitutive law, implemented in-house, is validated using experimental results from a
shake table test, a typical benchmark test used to model liquefaction of sandy soils. The
validated code is utilised to reproduce the outcomes of two experiments: i) a lab-scale
test of monopile vibration and impact hammering, and ii) a full-scale test of monopile
vibration in saturated sand. In the numerical back analysis of the lab-scale test, the
objective was to validate the feasibility of using the CPDI numerical package to model
pile installation simulation with good quality data about pore pressure changes and soil
displacement. In the numerical simulation of the full-scale monopile, however, the focus
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Abstract

was on the ability of the numerical model to accurately capture the pile installation
behaviour with changing dynamic forces. Finally, a Class-A simulation of the monopile
installation behaviour is provided and compared to field measurements to validate the
model developed for this thesis.

The thesis consists of seven chapters. Chapter 1 provides an introduction to monopiles,
the geomechanical aspects to consider, and the stated research objectives. Chapter 2
examines the techniques for capturing liquefaction in soil continuum, the continuum-
based numerical methods for modelling large deformations, and a brief summary of
meshless methods. The MPM formulation for a single-phase continuum and its exten-
sion to CPDI are described in Chapter 3. The contact algorithm implemented in this
work is also briefly discussed. Validity of the current CPDI algorithm is demonstrated
by simulating the collapse of a granular column and comparing the results to those of
experiments. Chapter 4 describes the extension of CPDI to model pore fluid and the
accuracy of its implementation using the well-known Terzaghi’s consolidation. The em-
phasis of Chapter 5 is on the implementation of the UBCSAND model. The constitutive
model is evaluated by comparing the element test and shake table test results to experi-
mental data. More emphasis has been placed on the application of the CPDI code to pile
installation modelling in Chapter 6. The outcomes of two tests, model scale and real
scale, are compared to experimental/field results. In addition, the comparison of Class-
A simulation results to field data is discussed. Despite the model’s homogenisation,
good results are obtained. As a final summary and conclusion, Chapter 7 presents the
key findings of this research along with suggestions for future research in this area.
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Kurzfassung

Erneuerbare Energien werden immer mehr zur Energiequelle der Zukunft und die
Offshore- Windenergie ist zweifellos aufgrund ihrer Anpassungsfähigkeit, Skalierbarkeit,
Langlebigkeit und kurzen Installationszeit eine der attraktivsten Möglichkeiten zur
Erzeugung sauberer Energie. Während sich die Installationsmethodik in den letzten
Jahrzehnten gut etabliert hat, existieren immer noch Wissenslücken in Bezug auf die
Vibration von Offshore-Monopiles, die es zu schließen gilt. Die Ziele dieser Monogra-
phie sind die Entwicklung und Validierung eines numerisches Werkzeugs, mit dem
das Installationsverhalten dieser Monopiles mit angemessener Genauigkeit vorherge-
sagt werden kann.

Bei der numerischen Simulation der Pfahlinstallation können große Verformungen des
Pfahls und des Bodenkontinuums nicht vernachlässigt werden. Die Convected Parti-
cle Domain Interpolation (CPDI), eine verbesserte Version der Material Point Method
(MPM), wird eingesetzt, um diese Herausforderung zu meistern. Die MPM eignet
sich gut zur Simulation granularen Materials und geomechanischer Problemstellun-
gen. Die CPDI hat als Nachfolger der Material Point Method gegenüber dieser zwei
entscheidende Vorteile: Sie vermeidet störende Spannungsschwankungen und erfasst
gleichzeitig die Scherung der sog. Particle Domains. Darüber hinaus wird in dieser
Dissertation die CPDI-Methode um die Theorie der porösen Medien (TPM) erweitert,
indem Porenwasser innerhalb des Bodenkontinuums erfasst wird. Das mechanische
Verhalten des Bodens wird mit dem UBCSAND-Stoffmodell abgebildet. Hierbei han-
delt es sich um ein elasto-plastisches Modell, das sowohl Hardening und Softening Ef-
fekte als auch die Verflüssigung des Bodens unter dynamischer Belastung erfasst. Es
wird also ein numerisches Tool erschaffen, welches erlaubt, das gesättigte Medium
sowie Verflüssigungseffekte bestmöglich abzubilden um somit Änderungen der Zus-
tandsparameter des den Pfahl umgebenden Bodens nachzubilden und anschließend zu
analysieren.

Der CPDI-Code wird in dieser Arbeit analytisch und experimentell mit Hilfe des Gran-
ular-Column-Collapse Versuchs validiert. Weiterhin wird das institutsintern implemen-
tierte UBCSAND-Stoffmodell anhand experimenteller Ergebnisse eines Shake-Table Tests
validiert, einem typischen Referenzversuch zur Verflüssigungsmodellierung von Sand-
böden. Der validierte Code wird verwendet, um die Ergebnisse von zwei Experimenten
zu reproduzieren: i) einen Versuch im Labormaßstab zur Vibration und Rammung von
Monopiles und ii) einen Versuch im Realmaßstab mit vibrierten Monopiles. Ziel der
ersten numerischen Back-Analysis war es die Anwendbarkeit des entwickelten CPDI-
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Codes hinsichtlich der Pfahlinstallation mit qualitativ hochwertigen Daten zu Poren-
wasserdruckänderungen und Bodenverschiebungen zu überprüfen. In der zweiten
Nachrechnung lag der Fokus auf der Eignung des numerischen Modells das Verhal-
ten des Pfahls bei der Installation unter wechselnden dynamischen Kräften genau zu
erfassen. Zuletzt wird eine sog. Class-A-Prognose zum Verhalten des Monopiles bei der
Installation durchgeführt und mit Feldmessungen verglichen, um das für diese Arbeit
entwickelte Modell zu validieren.

Diese Monographie besteht aus sieben Kapiteln. In Kapitel 1 werden die Grundlagen
zu Monopiles, die dazugehörigen geotechnischen Fragestellungen sowie die in dieser
Arbeit festgesetzten Forschun-gsziele erläutert. In Kapitel 2 wird der aktuelle Wis-
sensstand zur Modellierung der Bodenverflüssigung und zu kontinuumsbasierten nu-
merischen Methoden zur Erfassung großer Verformungen erörtert. Die Finite-Elemente-
Methoden Lagrangian und Eulerian sowie netzbasierte Partikelansätze, die ursprünglich
zur Entwicklung der in dieser Studie verwendeten CPDI-Methode führten, werden
vorgestellt.

Kapitel 3 beschreibt den aktuellen Wissensstand zur Material Point Method (MPM) und
zur Convected Particle Domain Interpolation Method (CPDI) sowie deren Implemen-
tierung. Außerdem wird der im CPDI-Code verwendete Penalty-Algorithmus erläutert.
Des Weiteren werden die Simulationen, mit deren Hilfe die Code-Implementierung va-
lidiert wurde, und deren Anwendung für kontinuumsbasierte Problemstellungen mit
großen Verformungen vorgestellt. Die numerische Abbildung der hydraulischen Strö-
mung in granularem Material wird mit experimentellen Ergebnissen verglichen und die
Auswirkungen verschiedener Einflussparameter wie Dämpfung, Partikelanzahl und
Glättungsverfahren werden diskutiert.

Die in Kapitel 3 vorgestellte einphasige CPDI wird in Kapitel 4 um die Porenwasser-
Phase erweitert. Es werden die maßgebenden Gleichungen der zweiphasigen CPDI, der
Lösungsprozess und ein Beispiel zur Validierung der Implementierung diskutiert.

Kapitel 5 enthält die Implementierung des UBCSAND-Modells im CPDI-Code. Die
Implementierung des UBCSAND-Modells wird durch Rückrechnung des zyklischen
DSS-Versuchs und des Rütteltischversuchs validiert. In diesem Kapitel wird auch der
Einfluss des Stoffgesetzes auf die Endergebnisse des Rütteltischversuchs untersucht.

In Kapitel 6 wird die Verwendbarkeit des CPDI-Codes hinsichtlich der Monopile-Install-
ation bewertet. Es werden drei numerische Modelle zur Pfahlinstallation mit zunehmen-
dem Komplexitätsgrad vorgestellt. Zuerst wird die Vibration und die Rammung eines
offenen Stahlrohrpfahls simuliert und der Installationsfortschritt mit experimentellen
Ergebnissen verglichen. Die Bewertung dieser Modelle erfolgt anhand der Änderung
der Bodenzustandsgrößen, der effektiven Spannung und des Porenwasserdrucks. Im
zweiten Beispiel werden mit dem CPDI-Code Feldversuche nachgerechnet, die im Rah-
men des Projekts VibroPile stattfanden. Hier wurde wiederum die Vibration eines
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Monopiles numerisch abgebildet und anhand der Ergebnisse der Vibro-Versuche beurt-
eilt. Zuletzt wird in diesem Kapitel die Vibration eines Monopiles simuliert um die
Ergebnisse eines später durchgeführten Feldversuchs zu prognostizieren und abzuschätzen.

Kapitel 7 enthält die Schlussfolgerungen dieses Forschungsvorhabens und Empfehlun-
gen für zukünftige Forschung in diesem Fachbereich.
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Chapter 1

Introduction

In geomechanical problems, large deformations are prevalent, yet their numerical mod-
elling is challenging and intricate. Modelling landslides, dam failures, and even pile
driving requires a technique that numerically captures large material movement while
converging to a realistic, stable solution. In addition to capturing massive distortions,
it is essential to understand and replicate the physics underlying the events that cause
these material movements. Seismic events are known to be very destructive, not only
because of the dangers posed by man-made structures, but also because of the massive
material shifts induced by auxiliary phenomena like as liquefaction, which can serve as
a trigger for destruction.

To capture massive deformations numerically, we must look beyond the traditional
finite element method. Limitations of the finite element method that produce mesh dis-
tortions make it difficult to achieve a valid solution. Alternative numerical approaches
based on an adaptive meshing scheme, such as the well-known and widely available
Arbitrary Lagrangian-Eulerian scheme, or other “black-box” methods, are required to
represent such issues, notwithstanding the limitations associated with such methods.
Instead, the Material Point Method (MPM) and its extension, the Convected Particle
Domain Interpolation Method (CPDI) is to be explored. Because the problems of in-
terest are dynamic, it is necessary to employ an explicit time-marching technique. In
addition, a multi-phase CPDI can be extended to account for the coupled behaviour of
the soil. Regardless of the computational overhead a coupled formulation imposes on
a calculation, it is necessary to accurately represent the physics behind complex and
dynamic processes.

While it is possible to capture the impacts of highly dynamic processes using a com-
plicated constitutive law, it is not guaranteed to recreate the behaviour of saturated
soil without a finite element formulation that accounts for the soil’s porous nature.
Proper modelling of fully saturated soil is possible with the Theory of Porous Me-
dia, which not only accounts for the deformation of the solid soil matrix, but also the
changes in the pore fluid matrix [58]. In this case, a homogenisation process must be
done to the continuum in order to generate a model with averaged attributes and be-
haviour. The introduction of volume fractions, which is crucial to the description of
fluid-saturated soils, partially mitigates this disregard for microtopology-related infor-
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mation and smearing of the continuum. The difficulty remains in precisely defining the
motion of both fluid and solid elements. In accordance with the notion of volume frac-
tions, the porous soil always represents a control space. Liquid or gaseous pore fluids
can only leave the control space. According to this theory, the pores are considered to
be statistically evaluated for the model and uniformly distributed in the reference state.
It is presumed that an arbitrary elemental volume consists of the volume components of
the actual constituents. The foundation of the formulation of porous media is a model
of the macroscopic body for which neither a geometrical representation nor the precise
location is addressed. The constituents are smeared across the control space, which
consists of the porous solid, after being bonded against one another.

Moreover, it is not only essential that we represent the large mass movements in the
numerical model, but also that we capture the underlying physics underpinning these
movements. In order to accomplish this, an effort has been undertaken to present a
unified numerical package that will represent the massive movements and the funda-
mental physics underlying such mass movements. Certain obstacles must be overcome
in order to construct such an unified solution. First, a simulation tool that can con-
sistently handle large deformations must be developed. Since the soil continuum un-
dergoes significant deformation, conventional finite element approaches reveal severe
deficiencies, which are addressed in this work. In addition, a constitutive law that can
reproduce the behaviour of the soil under dynamic stress is required. Not only must
such a constitutive law be capable of capturing the complicated non-linear behaviour of
the soil, but it must also be able to do it in a reasonable amount of time. The precision
of the constitutive law in simulating reality has a significant impact on the reliability of
the simulations’ outcomes. In this study, a suitable constitutive law and the two-phase
CPDI were used to model reality and their effectiveness was evaluated.
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Figure 1.1: Development of renewable energy in EU 27 and Germany
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Intended application of the method

Today, nations are urgently tasked with substantially expanding their use of renew-
able energy sources. This requirement has prompted a discussion in Europe over the
most effective and efficient support plan. Figure 1.1a demonstrates that the propor-
tion of renewable energy has continuously increased over the years, necessitating a
greater emphasis on phasing out fossil fuels entirely. Wind energy, among others, has
been extensively marketed for greater acceptability due to its relative cleanliness, rapid
implementation, and long-term dependability. Wind power was utilised by windmills
and sailing ships, for water pumping and irrigation, for grinding grain and sawing rice,
among other things. The first record of windmills in Europe comes from the ninth cen-
tury in England, eleventh century in France and on the Polish lands in the thirteenth
century [126]. As seen in Figure 1.1b, the production of wind energy in Germany
has also increased steadily, aided by the renewed drive towards offshore wind energy
projects. While there are various types of foundations for fixed grounded wind turbine
systems, such as monopiles, monopod caissons, and gravity base - for sea levels less
than 30 metres - and jacketed caissons, tripod pile, tripod caisson, etc. - for sea levels
greater than 30 metres, monopiles are becoming the preferred foundations for offshore
wind farms in Germany.

Figure 1.2: Offshore installation of wind turbine [43]

Monopiles (as seen in Figure 1.2) are one of the most prevalent offshore wind turbine
support structures. This is mostly due to its straightforward manufacturing and in-
stallation. The majority of monopiles have been deployed by impact-driving them into
the seafloor. Geotechnically speaking, the penetration of impact-driven and vibratory-
driven monopiles is one of the most complex processes, involving multiple phenomena.
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Considering the interaction between the soil, pore fluid, and the monopile installation
process adds to the complexity. Installation of a monopile causes significant soil dis-
turbances in the surrounding area. These variations affect not just the installation’s
behaviour, but also its axial and lateral bearing capacity. A deeper appreciation of the
pile installation procedure will permit the formulation of optimal installation param-
eters. Developing a model that has been evaluated against model and real scale pile
installation is one approach for enhancing installation behaviour predictions. Develop-
ing such a model is challenging, as it requires taking into account the highly non-linear
response of the soil, capturing and considering the large deformation around the pile,
considering the effect of the dynamic installation on the pore fluid, taking into account
the contact between the pile and soil, and capturing the effect of wave propagation in
both the solid and fluid phases. The installation characteristics, such as pile installa-
tion rate, axial and lateral strength, behaviour against dynamic cycle stresses imposed
by impinging waves, etc., could be predicted by developing a model that combines all
of the aforementioned issues. The offshore monopile planners would benefit from the
development of a numerical method that can predict such a pile installation in advance
by proving their installation parameters beforehand and providing them with granular
information of the pile and soil, which could be used in iterative design.

Any academic work geared toward assisting the industry in comprehending the in-
stallation or behaviour of offshore monopile installations would contribute directly
to achieving carbon neutrality rapidly. This monograph contains efforts towards that
end.

1.1 Contributions

This research aims to address the following questions:

■ Can large granular media deformations be captured by the two-phase Material
Point Method (MPM), and by extension, the Convected Particle Domain Interpo-
lation (CPDI) method, which is based on the Theory of Porous Media?

■ Can the numerical package consistently calculate and reproduce experimental re-
sults?

■ Can a validated method be developed to forecast the behaviour of saturated media
in advance, taking into account their interaction with solid structures?

Validation of the model assesses the performance of the numerical package in modelling
real-world behaviour. The primary technique utilised in this study is a comparison of
numerical results to actual experiments. This would not only aid in detecting the causes
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1.2 Thesis layout

of inaccuracy in the model or its implementation, but it would also enhance the credi-
bility of the numerical model in reproducing the actual or anticipated results. Chapters
3 and 4 detail the CPDI code’s numerical makeup. In both Chapters, analytical and
experimental data and results are used to validate the code. In Chapter 5, the imple-
mentation of the material model is described in depth, and it is demonstrated that the
considered numerical model can replicate the behaviour of fluid-saturated soil under
different dynamic forces. In Chapter 6, field data and numerical data are compared
in order to validate the existing numerical model against a wide variety of dynamic
processes and boundary conditions. If the model passes this test of validation, it is
reasonable to believe that it can also predict the behaviour of continuum in advance for
future projects.

A significant portion of this monograph focuses on integrating the large deformation
CPDI code with two-phase characteristics, which can model both soil and pore fluid,
along with an appropriate constitutive law that can not only model the stress-strain
relation of the soil continuum, but also capture the dynamic behaviour of the saturated
soil, primarily liquefaction. This work demonstrates the tendency of saturated soil to
liquefy under dynamic loads within the CPDI framework. In addition to developing a
CPDI code that is capable of capturing the massive deformation behaviour of porous
fluid saturated soil and structures, this study entails implementing an appropriate and
validated constitutive law to reproduce the behaviour of soil. The CPDI code includes
the UBCSAND model, a constitutive law capable of capturing liquefaction effects. The
numerical package, which comprises of the CPDI code and the constitutive law, is eval-
uated using a benchmark test. The numerical code is then used to model the installation
of open steel pipe piles. Back analysis of model and real scale pile vibration simula-
tion is given careful consideration. The pile installations that were modelled varied in
size from small model piles to an large diameter offshore monopile. Finally, a Class-A
forecast of offshore pile installation is presented and compared to field data.

1.2 Thesis layout

This monograph consists of seven chapters, the introduction being one of them. In
Chapter 2, the current status of liquefaction modelling is discussed, followed by a
comprehensive literature review of the current state of modelling massive deforma-
tions. The Lagrangian and Eulerian finite element methods and its derivatives, as well
as mesh-based particle approaches, which aided in the original creation of the CPDI
method utilised in this study, are introduced.

Chapter 3 describes the current state of the Material Point Method (MPM) and the Con-
vected Particle Domain Interpolation (CPDI) methods, as well as their implementation.
Also discussed is the penalty contact algorithm employed in the CPDI code. Simula-
tions validating the implementation of the code are provided, along with its application
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for modelling continuum subjected to large deformations. The modelling of a granular
flow is compared to experimental results, and the effect of various solution parameters,
including damping, particles per grid, and smoothing techniques, is discussed.

To account for the effect of pore fluid, the extension of single-phase CPDI introduced in
Chapter 3 is extended to the two-phases in Chapter 4. The governing equations of the
two-phase CPDI, the solution process, and an example of implementation validation
are discussed.

Chapter 5 discusses the implementation of the UBCSAND model within the CPDI
framework. The implementation of the UBCSAND model is validated by back-calculating
the cyclic direct shear test and shake table test. This chapter also examines the effect of
the constitutive law on the final outcomes of the shake table test.

Chapter 6 examines the use of the CPDI code to simulate the installation of open steel
pipe piles. There are three models of pile installation, with increasing degrees of com-
plexity. Initially, the back-calculation of vibrated model monopile is presented. In this
work, the vertical penetration of the pile is compared to experimental results. Changes
in soil state parameters, effective stress, and pore pressure are examined. In addition,
simulation of a hammered monopile is also shown, and the findings are compared to
those of experiments. The second example of validation offered is the back-calculation
of field tests conducted as part of the VibroPile project. The CPDI code was used to
model the vibratory installation of one monopile. Field data are compared with the
outcomes. Finally, Class-A forecasts are produced for a vibratory offshore monopile
installation, and results compared with field data, which were later obtained and eval-
uated.

Chapter 7 presents the conclusions and recommendations for future research in this
area.
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Chapter 2

Review of the numerical treatment of large
deformations

For an exact solution, it is necessary to satisfy the requirements of equillibrium, compa-
tiability, material behaviour, and boundary conditions, as well as force and displacement.
There are three sorts of analysis methods: i) closed form, ii) simple, and iii) numerical
analysis. In Table 2.1, the ability of the current methods to meet the main theoreti-
cal requirements is presented. This Table is an adaptation of the work of Potts et al.
[181]. This reference also contains additional information on the applicability of these
methods to the analysis of structures such as wall and support stability, base heave,
etc.

The finite element approach has numerous uses in engineering. Although this method
has been widely employed in the field of geotechnical, mechanical and fluid engineering
and is quite well understood, it is of interest to tabulate the major modelling processes
of the finite element method here.

Element discretisation : Here, the geometry of the investigated problem is modelled by a
collection of smaller regions referred to as finite elements.

Primary variable approximation : Selecting a fundamental variable (such as displacement
etc.) and establishing rules for its variation throughout a finite element. This variance
is represented by a nodal value, together with interpolation functions. In geotechnical

Method of Analysis Solution Requirements
Equillibrium Compatiability Constitutive Behaviour

Closed form S S Linear Elastic
Limit equillibrium S NS Rigid, with a failure criterion

Stress field S NS Rigid, with a failure criterion

Limit analysis Lower bound S NS Ideal plasticity with associated flow ruleUpper bound NS S
Beam-Spring approach S S Soil modelled by springs or elastic interaction factors
Full numerical analysis S S Any behaviour can be modelled

Table 2.1: Solution requirements for different numerical methods;
S = Satisfied, NS = Not Satisfied
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applications, displacement is frequently used as the primary variable.

Element equations : The element equations are derived using a suitable variational prin-
ciple (e.g., the principle of minimum potential energy). This usually follows the scheme
[KE]∆dE = ∆RE, where, [KE], ∆dE and ∆RE are the element stiffness matrix, the vec-
tor of incremental element nodal displacements and the vector of incremental element
nodal forces, respectively.

Global equations : Following the scheme, the local elemental equations are merged by
considering compatibility of displacements to generate the global equations, [KG]∆dG =
∆RG, where, [KG], ∆dG and ∆RG are the global stiffness matrix, the vector of global
nodal displacements and the vector of global nodal forces, respectively.

Boundary conditions : The solution’s boundary conditions are applied by modifying the
global equations. It is clear that loading (such as line and point loads, pressure and
body forces) affects the term ∆RG, displacement affects ∆dG.

Solution to the global equations : Constructed global equations consist of a large number
of simultaneous equations. The displacements ∆dG are then obtained by solving these
equations at all the nodes. Secondary quantities such as strains and stresses are then
determined based on these nodal displacements.

Equally as important as quantifying experiments and describing events in detail is nu-
merically reproducing these events. Soil mechanicians adore the so-called ‘Class-A’
predictions most out of all numerical simulations, in which numerical predictions pre-
cede the actual event. Even if we have precise soil characteristics, it is impossible to
obtain the loading pattern, magnitude, and characteristics in advance, unless we are
working with a controlled model test, which are of course referred to as ‘Class-C’ pre-
dictions. These are mistrusted by some in the larger engineering community due to the
fact that the end result can be achieved by adjusment and manual guidance provided
to the model. For the sake of completeness, the intermediate between these two predic-
tion classes would be ‘Class-B’, in which computations are performed concurrently with
model measurement. The purpose of this chapter is to provide an overview of some of
the available numerical methods that have been used to reproduce such events.

2.1 Liquefaction of saturated granular soil

Long ago, liquefaction episodes have been observed during earthquakes. Liquefaction,
which occurs in saturated granular soils following dynamic excitation, is frequently
found in offshore regions or in the proximity of water bodies such as seas, rivers, and
lakes. The term liquefaction was previously referenced in the works of Hazen [89] in
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2.1 Liquefaction of saturated granular soil

relation to the collapse of the Calaveras Dam in the United States. Reference [103]
offers a comprehensive study of liquefaction.

The term liquefaction is commonly used to refer to total liquefaction, or the loss of any
and all effective stress. Excess pore pressure generation has also been used to describe
partial liquefaction, which occurs more frequently in short, dynamic processes. Non-
cohesive soils can be viewed as a collection of grains having water- and/or gas-filled
pores. If there are intergranular connections capable of transmitting shear forces, the
soil skeleton behaves macroscopically as a solid material. Due to this shear strength,
the skeleton is able to withstand additional loads, such as those caused by offshore
structures. Intergranular contact in non-cohesive soils can only transmit shear forces
via friction if normal forces are also transmitted. Normal forces can also be transmitted
through the skeleton and pore water. The two components of total normal stress are,
therefore, normal effective stress and pore pressure. Liquefaction occurs when the
total stress remains constant and the pore pressure rises to the point where the typical
effective stress becomes zero. It also occurs when the pore pressure remains constant
and the total stress decreases to the point where the usual effective stress equals zero.
When the effective normal stress reaches zero, the intergranular forces vanish and the
transferred shear stress reaches zero. At this point, the soil can no longer support any
load other than isotropic pressures, which are typical of fluids.

On the basis of the loading type, partial liquefaction can be divided into two categories: i)
liquefaction owing to monotonic loading, and ii) liquefaction due to dynamic loading.
The liquefaction caused by dynamic loading can be further classified as either instan-
taneous or residual liquefaction. In addition to these principal types of liquefaction phe-
nomena, there are two more excess pore pressure phenomena: i) cyclic mobility, which
is a subset of partial liquefaction and is caused by a mix of immediate and residual
liquefaction, and ii) negative excess pore pressures (suction).

Liquefaction necessitates significant “excess pore pressure”. Excess pore pressure is
defined as the difference between the actual pore pressure and the hydrostatic pressure
for a particular water level. In the vicinity of offshore foundations, liquefaction with
an excess pore pressure sufficient to eliminate soil strength is rare. However, increased
pore pressure frequently causes a major reduction in the shear resistance of a portion
of the soil, which can result in significant deformation or even shear collapse. Even
though the soil retains shear resistance and does not behave like a Newtonian fluid,
the term “liquefaction” is applied to all such situations. De Groot et al. [60] provide in
their work the fundamental physics of the rearrangement of grains on the microscale
level, a crucial factor in understanding the physics of liquefaction, as well as further
information regarding the definition and physics underlying liquefaction.

When a drained granular soil is subjected to monotonic shear, the material exhibits a
distinct behaviour. Depending on the initial bulk densities of the sand sample (dense,
or loose), two possible distinct volumetric strain values are recorded. The applied

9



Chapter 2 Review of the numerical treatment of large deformations

shear stress results in a constant increase in shear strain and two distinct volumetric
strain trends. In the case of loose sand, contraction is observed to be the predominant
behaviour. Medium to dense sand exhibits contraction at low stress ratios and dilation
at higher stress levels. The boundary line between contraction and expansion is known
as the phase transformation line. In the case of undrained sand, however, volumetric
stresses are nearly non-existent. The measured excess pore pressures assumes the role
of parameter of interest. If the soil exhibits contractive behaviour, an increase in pore
pressure is detected, whereas a drop in pore pressure indicates dilative soil behaviour.

A loose granular material’s initial density is less than a critical value. Under shear
stress, the expected drained behaviour is contraction, leading to an increase in pore
pressure under undrained conditions. In this case, failure is possible upon hitting the
critical state line (CSL). Alternately, an increase in mean effective stress beyond the CSL
to a bounding limit causes the state to revert to the CSL and fail. A dense material’s
initial density exceeds a critical value. In the drained condition under deviatoric stress,
the specimen has a tendency to first contract with decreasing void ratio before reaching
a compacted state (contraction). As the void ratio increases, the behaviour transforms
into dilation. In undrained situations, the contractive tendency causes an increase in
pore pressure and a reduction in effective stress. Then, the behaviour changes and the
dilative trend increases the mean effective stress until the state surpasses the CSL, at
which point a critical failure takes place. The reader is referred to reference [145] for a
more comprehensive explanation of this phenomenon.

If the total stress acting in a given direction at any point in the soil is denoted by σ
and the pore pressure is denoted by p, then the effective stress (σ′), which controls
the changes in volume and strength of the soil, is given after von Terzaghi [212], who
experimentally demonstrated the relationship in his work as:

σ′ = σ − p I , (2.1)

static loading dynamic loading

low excess 

pore pressure

high excess 

pore pressure

Figure 2.1: Microstructure of granular grains under static (left) and
dynamic (right) loading [90]
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where, I is an identity tensor. Here, effective stress refers to the intergranular forces act-
ing between the porous material’s particles. As shown in Figure 2.1 (left), under static
load (or, generally, in the absence of dynamic load), each soil particle is in contact with
its neighbouring particles, allowing the solid soil skeleton to carry the majority of the
applied load. As depicted in Figure 2.1 (right), under rapid dynamic loading the excess
pore pressure begins to increase due to the collapse of contact between the loose soil
particles as they move into a denser configuration locally. Once the dynamic loading
subsides, the excess pore pressure dissipates according to the seepage velocity, which
is influenced by the soil’s hydraulic gradient. If the pore fluid is entrapped in the solid
matrix due to low permeability of the soil matrix, the pore fluid carries the majority
of the applied load, resulting in poor grain-to-grain contact. This in turn decreases the
soil’s shear strength of loose cohesionless soils. This is known as liquefaction, and the
effect of reduced soil strength is most evident in the form of building subsidence and
sand boils in areas most susceptible to liquefaction following earthquake loading.

During most significant seismic events, soil liquefaction has been observed. Although
the aftereffects of an earthquake are not limited to liquefaction, the events in Japan
make the destructive effects of earthquake-induced liquefaction all the more apparent.
With a moment magnitude (Mw) of 9.0, the March 11, 2011 Japan earthquake off the
coast of Tohoku was the largest earthquake ever recorded in Japan’s history. This seis-
mic event proved to be a catalyst not only for liquefaction-induced damage, but also for
widespread loss of life and property caused by the subsequent tsunami. In the work
of Bhattacharya et al. [25], a comprehensive account of the seismic event is provided.
Since the purpose of this portion of the work is to describe liquefaction and its mech-
anism, the references that will be presented will be limited to this concept. After the
2011 Japan earthquake, geotechnical field investigation reports around Tokyo Bay noted
widespread liquefaction and its associated effects. Observations were made regarding
the settling of the ground (a classic indicator of ground liquefaction), the elevation of
manholes, the buckling of roadway pavement, etc. Much of the damage caused by
earthquake-induced liquefaction is due to the settlement or tilting of saturated sandy
subsoil caused by liquefaction. Typically, liquefaction manifests itself as i) sand boils
or sand volcanoes, ii) water spouting with sand or mud from cracks in the ground or
wells, iii) excessive settlement of heavy structures on sand, such as buildings, iv) total
destruction of structures, such as earth dam failure, and v) shear failure of underground
installations, such as manhole installations and pipe joints.

2.2 Numerical reproduction of the physics of liquefaction

After examining the microscopic explanation of the physics behind liquefaction, the
goal of the following discussion is to examine the capabilities and performance of meth-
ods and models that can statistically or numerically model and predict liquefaction.
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2.2.1 Energy-based method

Energy-based approaches are founded on the premise that pore-pressure buildup is
directly proportional to the amount of seismic energy dissipated in a unit volume of
soil. This idea is prompted by the microstructural rearrangement of sand particles that
occurs during cyclic shearing and results in the densification of dry or saturated (but
drained) sand and the liquefaction of saturated undrained sand. This idea is predi-
cated on the observation that the desification of sand includes the rearranging of its
grains and, consequently, the expenditure of energy, which increases as the void ratio
approaches its minimum. This minimum value depends on significant aspects such as
grain structure, size distribution, confining pressure, and others. If the saturated sand
is left undrained and subjected to a fixed confining pressure, the trend toward densifi-
cation generated by cyclic shearing leads to an increase in pore water pressure. Thus,
the frictional contact forces at the interface between adjacent sand particles decrease.
Consequently, as pore water pressure increases, the energy required to reduce pore
volume decreases. Taking into account all of these facts, a relationship was proposed
between the energy loss in cyclic shearing and the subsequent change in void ratio for
dry sand, as well as the subsequent increase in pore water pressure in the saturated,
undrained situation. The hypothesised relation, in the form of a differential equation,
was first published in Nemat-Nasser and Shokooh [163]. Existing experimental results
for both the densification and liquefaction phenomena were then back-calculated using
the theory in its “simplest” form.

This assumption was elaborated upon in subsequent publications [99]. The relationship
between the standard penetration value and energy dissipation was found by analysing
historical records of liquefaction generated by earthquakes. After calculating the ex-
pended energy, the increase in pore pressure follows directly. Increase in pore pressure
as a function of earthquake magnitude, distance from epicentre, standard penetration
value, and starting effective overburden stress. The resulting relationship lends itself
well to analyses of seismic liquefaction risk. This strategy was interesting at the time
due to its simplicity and dependence on fundamental earthquake factors, such as mag-
nitude and distance to the centre of energy release, instead of peak ground acceleration.
The entire analysis rested on the premise that pore pressure is solely dependent on dis-
sipated energy, an assumption supported by previous research [163]. The model was
later modified and expanded. In later publications [23, 56], the fundamental assump-
tions of the original model are addressed, and a revised model is offered.

In their work, Green and Mitchell [80] proposed energy-based evaluation and remedial
strategies. The mechanical energy required to densify loose sand using deep dynamic
compaction, vibro-compaction, and explosive compaction was estimated and compared
to the energy required to induce liquefaction during an earthquake. Alavi and Gandomi
[2] evaluated the liquefaction resistance of sandy soils using machine learning (ML),
the multi expression programming (MEP) approach and the linear genetic program-
ming (LGP) method. Kanagalingam [109] presented the theoretical underpinning for
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an energy method that additionally accounted for the frictional energy loss along con-
tacts when assessing the liquefaction potential. Research was also presented to analyse
the liquefaction potential under random seismic loading [128], as opposed to limiting
the energy-based approaches to the reproduction of unit cell testing. In addition, re-
search was done to compare the predictions of energy-based techniques with those of
the standard stress-based technique [116].

2.2.2 Probabilistic methods

Probabilistic methods are developed via logistic regression analysis of field, standard
penetration test (SPT), and cone penetration test (CPT) data, as well as the mapping
function method. On the basis of in-situ tests, simplified methods for evaluating lique-
faction potential have been developed and are widely used by geotechnical engineers.
For evaluating the liquefaction potential of soils, these methods that rely on in-situ tests.
The simplified procedure suggested by Seed and Idriss [192] was based on the number
of blow counts from the SPT. This procedure has been revised and updated since that
time [29]. In addition, other simplified methods based on other in-situ tests, such as
the CPT, have been proposed [221]. In addition to presenting a method that utilises
the small-strain shear wave velocity (Vs), a summary of all previous research was also
provided [222].

Every conducted test includes inherent uncertainties. Since the majority of simplified
methods are based on physical measurements, it is difficult to eliminate these uncertain-
ties. To account for such uncertainties in the data and procedures used to develop these
simplified methods, it is desirable and occasionally necessary to conduct a probabilistic
assessment of liquefaction potential that incorporates these uncertainties. Numerous
scholars have conducted research in this area, focusing on statistical/probabilistic eval-
uations of liquefaction to demonstrate the application of probability and statistics to
deal with uncertainties associated with simplified methods [129, 219, 223]. Employing
statistical regression procedures, models for calculating the probability of liquefaction
as a function of earthquake load and soil resistance parameters have been developed.
However, due to the data limitations, regression models tend to provide conservative
estimates of the likelihood of liquefaction.

In subsequent research, a new method for calculating the probability of liquefaction
was proposed. The method relies on a mapping function that is dependent on a spe-
cific deterministic method. The mapping function is then established in order to “map”
the factor-of-safety calculated by a specific deterministic method to the probability of
liquefaction inferred from field liquefaction performance data. An artificial neural net-
work (ANN) was used to predict the occurrence of liquefaction based on historical field
performance records, to locate data points on the limit state surface, and to approximate
the multi-variable limit state function [104]. Juang and Jiang [105] subsequently devel-
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oped probabilistic methods through logistic regression analyses of field data, the SPT
and CPT data, and those through a newly developed mapping function approach. It
was demonstrated that the curves obtained from CPT-based probability analyses were
in good agreement with those obtained from the logistic regression analysis indepen-
dently conducted at the same time by other researchers. However, the SPT-based curves
did not perform as well. Thus, the associated mapping function can direct the selection
of a suitable factor-of-safety for use with a particular deterministic method. Later, an
evaluation of existing and new probabilistic methods for liquefaction potential evalu-
ation was presented [106]. However, comparisons of the probabilities of liquefaction
calculated using two distinct methods, logistic regression mapping and Bayesian map-
ping, were emphasised. It was demonstrated that the Bayesian mapping method is
preferable to the logistic regression method for estimating the site-specific probability
of liquefaction, despite the fact that both methods produce comparable probabilities.
Later works presented a comprehensive methodology for probabilistic and determinis-
tic assessment of seismic soil liquefaction triggering potential based on the cone pen-
etration test [158]. A new correlation for assessing the risk of soil liquefaction due to
seismic activity was also presented. A large database of high-quality field performance
case histories was utilised in the development of the new correlation. Also presented
was a new normalisation procedure for CPT resistance.

In addition to conventional field techniques such as the SPT, CPT, and the Becker Ham-
mer Test (BHT) that are routinely used to assess soil liquefaction potential, the shear-
wave velocity (Vs) test is the only one that measures a fundamental property of the soil.
However, liquefaction assessment employing in situ penetration tests is more prevalent.
CPT has the advantage of directly correlating with the relative density, which has a sig-
nificant impact on the cyclic behaviour of saturated soil. Compared to CPT and SPT
methods, shear-wave velocity is significantly less sensitive to problems in soil compres-
sion and reduced penetration resistance when soil fines are present. Using shear-wave
velocity measurements, simplified procedures for evaluating the liquefaction resistance
of soil were presented [5]. Using a modified relationship between shear-wave velocity
and cyclic stress ratio for constant average cyclic shear strain, liquefaction resistance
curves were developed. Kayen et al. [110] presents new generalised correlations for
shear-wave-based evaluation of seismically-induced soil liquefaction developments that
further improve this method.

2.2.3 Modelling methods

Constitutive models, one aspect of modelling are “mathematical relations that can de-
scribe the stress-strain relationship at each material point under various loading con-
dition”. Modelling provides a useful method for capturing a comprehensive view of
the event. Not always, but typically, history and practical experience are given greater
weight than prototype testing. By applying case history and experience to modelling,
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we can gain a deeper understanding of the problem and calibrate our results to predict
future events.

A numerical model is a mathematical approximation of a real-world physical event. A
numerical model, which includes a constitutive law or constitutive model, is utilised to
characterise the soil’s stress-strain behaviour and includes: i) equillibrium equation, ii)
constitutive equation, and iii) compatiability and boundary condition considerations.
These laws describe the response of matter to external stimuli. With the increasing use
of numerical analysis methods in geotechnical engineering, a multitude of constitutive
laws have been developed to address the specific problem that is to be solved. How-
ever, these fundamental models must be validated to demonstrate that their implemen-
tation accurately represents the underlying mathematical model and its solution, after
it has been established that the underlying mathematical model is capable of represent-
ing the desired physical process. In order to accomplish this, numerous constitutive
models have been proposed in the field of geotechnical engineering, ranging from sim-
ple models such as linear elastic models to complex models such as the anisotropic
visco-hypoplasticity soil model, which accounts for the effects of density change and
stress-state changes. Since a multitude of constitutive laws are available for represent-
ing the soil, rock, and everything else, several models that can reproduce liquefaction
specifically are described in detail.

The theory of elastoplasticity serves as a framework for the nonlinear and hysteresis-
based behaviour of soil. For elastoplastic soil models within the field of soil mechanics,
there are two possible plasticity theories: associated flow rule and non-associated flow
rule. The associated flow rule has been used to model the behaviour of soils, particu-
larly soils with negative dilatancy, such as when simulating the behaviour of normally
consolidated clays. On the other hand, the non-associated flow rule has been widely
used to model sands with positive-negative dilatancy. A number of constitutive models
have been proposed to model sand while accounting for the cyclic effects that affect the
strength of sands. These models have been applied to design practise with appropriate
numerical methods, such as the finite element method, in order to analyse not only the
static strength of soils, but also to predict the dynamic behaviour of saturated soils.

Select examples of models include:

(a) Finn et al. [67] proposed an effective stress model, in which the pore pressure
increases are coupled to dynamic response solutions, allowing the full time history
of pore pressure increases during an earthquake to be computed. This method
also allows the dynamic response solutions to reflect the effects of soil stiffness
degradation resulting from an increase in pore pressure. Additionally, the effects
of pore pressure redistribution and dissipation can be considered.

(b) Using the theory of generalised plasticity, Pastor and Zienkiewicz [175] developed
a constitutive law in which yield and plastic potential surfaces were not explicitly
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defined. In the case of sand subjected to monotonic and cyclic loading, positive
results were demonstrated.

(c) Constitutive relations for describing the non-linear, inelastic behaviour of sand
during an earthquake were developed [166], by employing a yield function in
terms of effective stress ratio and a plastic potential function derived from the
stress ratio-plastic strain incremental ratio defined as a function of accumulated
volumetric strain.

(d) A multiple-mechanism elasto-plastic model for soils applicable to general three-
dimensional stress states and cyclic loading was developed by Prevost and Keane
[182].

(e) Hashiguchi [88] developed a subloading surface model for cyclic plasticity, which
considered the expansion and contraction of the loading surface.

(f) A cyclic elasto-plastic constitutive model based on a non-linear kinematic hard-
ening rule was developed [169]. In addition to a new flow rule and a cumulative
strain-dependent property of plastic shear modulus, a fading memory property
of the initial anisotropy of the constitutive model was also incorporated.

(g) Reference [127] describes a comprehensive bounding surface sand model de-
scribed within a critical-state framework. The formulation of this model incor-
porates the concept of state-dependent dilatancy, which distinguishes it from its
predecessors. By adopting this formulation, the model was able to simulate, with
a single set of model constants, both the contractive and dilative response of gran-
ular soil across a broad range of stress variations.

(h) Elgamal et al. [63] developed a plasticity model for capturing the characteristics
of cyclic mobility. With the newly developed flow and hardening rule, the model
was created as an extension of an existing multi-surface plasticity formulation.
The new flow rule enabled the reproduction of cyclic shear strain accumulation
and the subsequent dilative phases observed in the response of a liquefied soil.

(i) Dafalias and Manzari [53] developed a stress-ratio-controlled, critical state-compat-
ible sand plasticity model. The model also incorporated a fabric-dilatancy tensor
that accounts for increased contraction upon stress reversal due to fabric changes
during the material’s dilative behaviour.

(j) PM4Sand model was created as a plasticity model for geotechnical earthquake
engineering applications [233]. The model adhered to the fundamental structure
of the stress-ratio-controlled, critical-state-compatible, bounding-surface plasticity
model for sand.
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(k) An earlier model from Dafalias and Manzari [53] was modified and implemented
to enhance its ability to approximate engineering design relationships that are
used to estimate the stress-strain behaviours that are crucial for predicting liquefa-
ction-induced ground deformations during earthquakes.

The UBCSAND model, proposed in the work of Puebla et al. [183] and later imple-
mented in the work of Beaty and Byrne [15], both of which are currently more widely
cited. The UBCSAND model is an elastic-plastic material model developed for sand-
like granular materials that have the potential to liquefy under cyclic loading. It de-
rives its name from the university with which its development was associated, the
University of British Columbia. Mohr-Coulomb formulations have the ability to kine-
matically and isotropically harden through a hyperbolic relationship, which the yield
surface followed. After being incorporated into the commercial software FLAC3D™

and PLAXIS™, the model has been widely utilised through these programmes [15, 177].
The UBCSAND model has been implemented in this work is based on the work of
Naesgaard [159]. Chapter 5 provides comprehensive explanation of the model is pro-
vided.

2.3 Methods to simulate large deformations numerically

It is becoming increasingly apparent that methods capable of numerically modelling
large deformations are required for use in geomechanics. During the past few decades,
a number of numerical methods have been developed in an effort to capture the mate-
rial’s large deformations. In general, the methods can be divided into two categories: i)
mesh-based finite element methods, and ii) mesh-less methods.

2.3.1 Mesh-based methods

The so-called Finite Element Method (FEM) is arguably the most popular and widely
used mesh-based method. FEM is a numerical method for approximating the solution
to a boundary-value problem. The finite element method has been used successfully
to analyse a wide variety of solid and fluid mechanics problems. There are two funda-
mental FEM formulations: Lagrangian and Eulerian. Lagrangian FEM is commonly used
to model problems in solid mechanics, whereas the Eulerian formulation is commonly
used to solve problems in fluid mechanics.

The work of Rayleigh [185] laid the foundations for determining the approximate so-
lution of boundary-value problems using calculus of variations. Using a test or trial
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function that is continuous over the domain and satisfies the imposed boundary con-
ditions, the differential equation was approximated. A finite number of coordinate
functions, each with a constant coefficient, are combined to approximate the test func-
tion. In addition, methods were developed to approximate the solutions of differential
equations using the method of weighted residuals, in which the test function is used
in conjunction with an integral form of the differential equation to minimise the er-
ror in an average sense over the problem’s domain. This method consists of numer-
ous techniques, such as the Collocation method [68], the Subdomain method [26], and
the Galerkin method [71]. The Galerkin method is currently the most widely used
method for finite element formulation. Earlier methods for approximating the solution
to boundary-value problems had a shortcoming. Trial functions that should be valid
for the entire domain will contain a large number of terms, making it difficult to solve
problems with complex geometries and boundary conditions. In reference [51], the
concept of piecewise continuous functions was presented. This can be interpreted as
the initial step in developing the finite element method as we know it today. In 1960,
when triangular and rectangular finite elements were utilised for plane-stress analysis,
Clough [49] coined the term finite element method.

Turner et al. [208] contributed towards the numerical simulation of large deformation
coupled with thermomechanical effects. In their later works, Zienkiewicz et al. [230]
and Zienkiewicz and Cheung [232] made additional advances in the finite element

material finite element

active node inactive node

(a) (b)

Figure 2.2: Initial and deformed configuration using (a) Lagrangian FEM and
(b) Eulerian FEM
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method and its application, with Costantino [50] employing the FEM for dynamic anal-
yses. This method was proposed by Belytschko and Hsieh [17] for small-strain problems
with material non-linearities and transient large-displacement problems. The presented
formulation consisted of triangular elements with constant strain and Euler-Bernoulli
beam elements. Additionally, comparisons were made with the available experiment
data at the time.

Eulerian and Lagrangian FEM

Eulerian and Lagrangian FEM are two fundamental formulations within the framework
of the finite element method, as described previously. As stated previously, the former
is commonly used to solve problems in fluid mechanics, while the latter is primarily
utilised in solid mechanics applications. Figure 2.2 depicts the initial and deformed
configurations of eulerian and lagrangian FEM.

The deformation of a continuum is described from two distinct perspectives: the eu-
lerian description and the lagrangian description. In the eulerian description, spatial
coordinates and time are utilised to track the motion and other physical properties at
fixed points in space as the material passes through in time. It employs the spatial ar-
rangement as its frame of reference. In contrast, the time and material coordinates are
used as independent variables in the lagrangian description to describe the motion and
other physical properties of the material with time. It employs the initial configuration
as the reference frame and is commonly known as the material description. Thus, two
formulations can be described in terms of the finite element method.

The formulation can be referred to as a total lagrangian FEM if the initial material coor-
dinates are used as the reference configuration. If the updated material coordinates are
utilised in the calculation of stresses, the method is referred to as an updated lagrangian
FEM. In their work, Bathe et al. [13] presented the complete and updated lagrangian FE
formulation for modelling large deformation. Belytschko et al. [20] demonstrated in de-
tail that both total and updated lagrangian FEM lead to identical results, and it is merely
a matter of convenience to choose one formulation over the other.

In the past, eulerian meshes were not widely used in soil mechanics. Eulerian meshes
are favoured for problems involving extremely large deformation. In these problems,
the eulerian elements do not deform with the material, which is advantageous. As a
result, eulerian elements retain their original shape regardless of the magnitudes of de-
formation during the process. The nodes are fixed in space and the dependent variables
are functions of the eulerian spatial coordinate and time in the eulerian formulation. In
comparison to the lagrangian formulation, the following four points are significant:

■ The equation for mass conservation is expressed as a partial differential equation.
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Since the particles are followed in the lagrangian method, mass conservation is
automatically satisfied.

■ In the momentum equation, the material time derivative for velocity is expressed in
terms of the spatial time derivative and a transport (advection) term.

■ Constitutive equation is expressed in rate form.

■ Boundary conditions tends to be imposed on fixed spatial points.

Coupled Eulerian-Lagrangian

The Coupled Eulerian Lagrangian (CEL) is a numerical method that attempts to com-
bine the most advantageous aspects of the eulerian and lagrangian approaches. Large
mesh deformations typically result in mesh distortion. By combining the benefits of eu-
lerian and lagrangian formulations, the CEL method aims to mitigate and overcome the
issue of mesh distortion. In the context of classical finite element analysis, a Lagrangian
formulation is frequently applied to solid mechanics problems. The material is con-
sidered to be fixed to a finite element in the lagrangian formulation. The material
moves alongside the mesh nodes during the computational step. In coupled simu-
lations, where solid and pore water are both simulated, fluid can flow through the
mesh, resulting in significant deformations. The surface of the lagrangian mesh pre-
cisely defines the surface of the continuum. In the eulerian formulation, a mesh’s nodes
are spatially fixed. In order to account for occurring deformations, the material flows
through the element mesh. The flow of material through the mesh is monitored by
computing the eulerian volume fraction (EVF). The Eulerian Volume Fraction (EVF) is the
fraction of an eulerian element that is filled with material. A value of zero indicates that
there is no material in the element, while a value of one indicates that the element is
completely filled. Contrary to the lagrangian formulation, the surface of the continuum
does not correspond to the boundaries of the constituent elements. The eulerian and
lagrangian materials are brought into contact by a general contact algorithm based on
the penalty contact method. A general contact algorithm does not require lagrangian and
eulerian elements to make contact. The lagrangian elements can move freely through the
eulerian mesh until they encounter a material-filled eulerian element (EVF ̸= 0).

Conventionally, the CEL method employs an explicit time marching scheme. For the
solution of the nonlinear system of differential equations, the central difference method
is employed. The advantage of this method is that the solution for the current time step
can be obtained directly from the solution of the previous time step, eliminating the
need for iteration. Further advantages include the simplicity of implementing contact
conditions and the option to select any solid constitutive model. It should be noted that
explicit calculations are not always stable. The numerical stability is only guaranteed
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if the time step size used in the calculation is equal to or smaller than the critical time
step size (∆tcrit), which is dependent on parameters such as the characteristic element
length (Le) and the dilatory wave speed (cd) and is calculated using the formula ∆tcrit =
Le/cd. It is possible that the stiffness will change during the simulation, resulting in the
incorrect critical time step being applied to certain elements with a lower critical time
step. To converge to a stable solution, the critical time step size is typically reduced by
a factor of 0.1. References [47, 85, 184] provide a detailed explanation of the use of CEL
for large deformation problems in geotechnical engineering.

Arbitrary Lagrangian-Eulerian

The arbitrary Lagrangian-Eulerian (ALE) method was developed to handle large defor-
mation problems in solid and fluid mechanics with severe mesh distortion. ALE was
first introduced in the work of Noh [167], originally under the name coupled Eulerian-
Lagrangian. The method was implemented using the finite difference scheme to solve
two-dimensional hydrodynamics problems with moving fluid boundary conditions. In
later references [94, 200], the formulation was extended to two and three dimensions,
respectively. Reference [18] incorporated the ALE method into a finite element frame-
work to handle non-linear simulations where fluid-structure interaction issues are en-
countered. The ALE method was used by Nazem et al. [162] to solve large deformation
problems - bearing capacity simulation on cohesive soil. Reference [6] described the
ALE method for pile penetration into sand, wherein good agreement was found be-
tween the experimental investigation and the numerical results. In the multimaterial
arbitrary Lagrangian-Eulerian (MMALE) method, [137] formulation, the grid deforms
similarly to the traditional lagrangian formulation where a new grid with less distor-
tion is generated. The solution variables are then transferred to the new mesh, sim-
ilar to the eulerian formulation. Multiple materials can be considered within a single
MMALE element, which greatly improves the formulation for extremely large deforma-
tions. Typically, a material-free zone or void is defined without mass or strength within
the grid, permitting other materials to flow into these regions of physical space. In addi-
tion, reference [9] presented the multimaterial arbitrary Lagrangian-Eulerian (MMALE)
method, which is an improved ALE method with geotechnical applications. The reader
is referred to reference [7] for a detailed discussion of the method’s theoretical basis.

2.3.2 Mesh-less methods

Meshless methods continuously adjust the nodal connectivity as the continuum de-
forms. This eliminates the mesh distortion issue. Meshless methods may be based on
the moving squares approximation, kernels, or the partition of unity [19]. Smoothed
particle hydrodynamic is one of the oldest meshless methods, according to the cita-
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tion provided by reference [136]. The closed form of the partial differential equations
(PDE) is discretised using collocation methods in particle-based SPH. Calculating spa-
tial derivatives with the SPH method does not require a pre-defined mesh. Refer-
ences Lucy [136], Monaghan [155] offer a more comprehensive description of the SPH
method.

The element-free Galerkin method, in which the trial functions for the weak form are
constructed using the moving least squares interpolation [21], is another relatively re-
cent meshless method. The Particle finite element method (PFEM) is an additional
meshless method that employs meshless finite element interpolation [98, 170]. In PFEM,
the nodal points represent particles, and the computational mesh is created by connect-
ing these nodal points. The governing equations are subsequently solved lagrangian-
style. In order to accommodate the resulting large deformations, frequent remeshing is
required to adjust the connectivity. Reference [131], a comprehensive literature review
of the other meshless methods is presented.

Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) is a meshfree particle method based on the
lagrangian formulation that has been widely applied to a variety of engineering and
scientific disciplines. The SPH method may be regarded as a “truly” meshfree method;
it is a particle method originally conceived for continuum scale applications and may
be considered the earliest modern meshfree particle method. Bui et al. [37] pioneered
the application of SPH to elastoplastic continuum. Since then, the method has found
applications in mechanics, granular flow [152], bearing capacity of foundations [36],
and soil-structure interaction problems [28], among others.

Without the need to define a mesh, the computational discretised by a finite number
of particles (or points). The properties of these particles, which carry all material at-
tributes, are smoothed over their smoothing length by a kernel function. This indicates
that a physical quantity is produced at the location of the particle by adding the contri-
butions of all particles within the range of the kernel. The contribution of each particle
is weighted according to its distance and density. This is governed mathematically by
a kernel function. The Gaussian function and the cubic spline are two frequently used
kernel functions. The reader is referred to reference [100] for a condensed study on the
geotechnical applications of SPH.
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Discrete Element Method

Discrete Element Method (DEM) is a numerical modelling and computer simulation
tool that can be used to simulate soils and other granular materials. In contrast to
previously observed methods, the DEM approach explicitly considers the individual
particles and their interactions in granular materials. When simulating the mechani-
cal behaviour of granular materials, DEM provides an alternative to the conventional
approach, which employs a continuum mechanical framework. The benefit of DEM is
that, while assuming a continuum model, soil is assumed to behave as a single con-
tinuous material and the relative movements and rotations within the particles are not
taken into account. Then, complex constitutive models are required to account for
the complexity of the material’s behaviour. Even if simple numerical models are used
in DEM to simulate the inter-particle contacts and idealised approximate particle ge-
ometries are employed, a number of the soil’s mechanical response characteristics can
be captured. By adopting simple geometries and combining them with fundamental
contact response models, simulation costs can be drastically reduced, allowing for the
simulation of a reasonably large number of particles while simultaneously capturing
the most salient soil response characteristics. In contrast to other classical FE models, in
which the constitutive model used determines the response that can be obtained from
the numerical model, the response characteristics obtained from the numerical model
are largely determined by the contact model selected.

The DEM formulation has found varied applications in the field of geomechanics, but
there have been two primary motivations for using the method in applied boundary
value problems: i) where large-deformations must be simulated when other continuum-
mechanics based analysis tools fail to perform satisfactorily, and ii) as a reliable tool in
basic research, wherein the method can probe the material response at a much more
detailed scale than can be monitored even with experimental techniques. Zhu et al.
[228] presented a study that assessed the DEM method’s prevalence in engineering
and physical sciences between 1985 and 2005. In their work, O’Sullivan [173] evalu-
ated the use of this method in the context of geotechnical engineering by analysing
the publications that employ this method over time. It was observed that while the
method gained popularity over the years, as evidenced by the number of publications,
the number of particles used in the publications also increased steadily, in part due
to the development of computer processing power. Also observed was a gradual shift
from two-dimensional to three-dimensional simulation.
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Particle Finite Element Method

The development of a method for analysing the interaction between water and struc-
tures for large movements of fluid-free surfaces and the presence of fully or partially
saturated submerged structures attracted increased attention. The objective was to sim-
ulate the hydrodynamics of offshore structures, dam spillways, free surface channel
flows, mould filling processes, and so on. Although methods such as ALE formulation
and standard FE formulation could have been used to simulate fluid-structure interac-
tions, a new class of method called the Particle Finite Element Method was developed.
As in the standard FEM, a mesh connects the nodes defining the discretized domain
where the integral-form governing equations are solved. This method treats the mesh
nodes in the fluid and solid domains as particles that can move freely and even sepa-
rate from the main fluid domain, simulating the effect of water droplets, for example.
Nodes are viewed as free-moving particles that can separate from the primary analy-
sis domain. The Particle Finite Element method (PFEM) has been extensively applied
to the analysis of fluid-structure interaction problems. The application of a lagrangian
description to model the motion of nodes in both the fluid and structural domains
is the method’s defining characteristic. The reader is referred to reference [170] for a
comprehensive overview of PFEM.

Material Point Method

The material point method (MPM) is an advanced numerical technique suitable for sim-
ulating large deformation [11, 24, 45, 82, 107]. In MPM, the continuum is represented
by material points or particles, which are lagrangian points. Particles moving through
a fixed eulerian mesh are used to model large deformation. The particles carry all of
the physical properties of the continuum, including mass, momentum, material pa-
rameters, strains, stresses, and external loads, whereas the eulerian mesh and its gauss
points carry no permanent data. Information is transferred from particles to the com-
putational mesh at the start of a time step. The mesh is then used to determine the
lagrangian incremental solution of the governing equations. At the conclusion of each
time step, the solution is mapped back to particles in order to update their information.
MPM combines the most advantageous aspects of lagrangian and eulerian formulations
while avoiding their shortcomings. In fact, numerical diffusion associated with convec-
tive terms in the eulerian method is absent in the MPM solution. In addition, the MPM
framework avoids the mesh distortion problem that an updated lagrangian solution ex-
hibits for large deformation. Eventually, the material point method can be considered
an extension of the particle-in-cell method [86]. In Chapters 3 and 4, respectively, the de-
tailed formulation of MPM and its extension CPDI, the extension to model two-phase
medium, is provided.
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2.4 Concluding remarks

In conclusion, despite the fact that there are numerous methods for capturing the liq-
uefaction of soil and an equal number of methods for capturing the post-liquefaction
large deformations, the Material Point Method was chosen for this study. MPM and its
various enhancements circumvent the majority of the shortcomings of classical eulerian
and lagrangian FE methods. In addition, while other methods to capture large defor-
mations have been implemented, they are done so commercially. This adds complexity
to the process of implementing new features. The closed-source nature impedes the
natural development of the code and forces the user to rely on work-arounds, which ei-
ther simplify the problem or increase the complexity of solution procedure, both being
detrimental. Similarly, while there are a large number of constitutive laws available to
model liquefaction, the vast majority of them are available as dynamic link libraries (dll)
for specific commercial softwares. Although wrappers can be written to exploit these
routines, doing so may violate the licence agreements. Here is a logical justification for
the motivation to invest in the development of an in-house code that models not only
liquefaction but also large deformation. MPM and its improved version, Convected Par-
ticle Domain Interpolation (CPDI), are chosen for this purpose. The UBCSAND model,
which was developed by Naesgaard [159], is implemented in the code. To simulate the
undrained behaviour of saturated soil, two-phase CPDI, based on the Theory of Porous
Media, is also implemented. The aim of this work is to further extend the MPM/CPDI
method so that it can be applied to geomechanical engineering problems encountered
in everyday practise.
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Chapter 3

Formulation of the Material Point Method for
modelling large deformations
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Figure 3.1: Evolution of domains to represent material points in MPM

The material point method (MPM) is an extension of the finite element method (FEM)
in which the continuum is represented by so-called ‘material points’ that are lagrangian
in representation [107, 202, 214, 217]. Continuum deformations are tracked by updating
the lagrangian points that move through a fixed eulerian mesh. The MPM discretisation
representation is depicted in Figure 3.1. Mapping information from particles to grid
points and vice versa requires additional record-keeping. It is assumed that the parti-
cles carry all the physical properties and pertinent information about the continuum,
including mass, momentum, material parameters, stresses, strains, pore pressures, his-
tory variables, and the loads acting on the particles. Eulerian mesh, on the other hand,
carries no permanent information.

This chapter provides an overview of the material point method. The penalty contact
algorithm, used throughout in this work is also briefly introduced in this chapter. In
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addition, the implemented code is compared to experimental results using granular
flow simulation.

3.1 Development of the material point method

The Material Point Method is an expansion of the Particle-in-Cell (PIC) method, which
was developed at Los Alamos National Laboratory in 1964 by Harlow [86]. Nonetheless,
the original PIC displayed considerable energy loss. This disadvantage was eliminated
when reference [34] in their work introduced the Fluid Implicit Particle technique (FLIP).
PIC and FLIP are both primarily utilised in fluid dynamics. Reference [201] adapted
the PIC approach to solid mechanics by computing stress and strain on material points
using a constitutive model, as opposed to solving fluid pressure at the cell centroid
as in PIC and FLIP. Later, reference [202] presented the axisymmetric version of this
method and dubbed it the Material Point Method (MPM) for the first time.

Since then, MPM has been utilised in a variety of applications in the fields of both
mechanics and geotechnics. Due to its capabilities of capturing massive deformations
in the continuum, MPM has become a popular technique in geotechnical engineering.
Reference [24] created a quasi-static MPM formulation and employed it to simulate
CPT testing in undrained soils. In their research, reference [11] developed a two-point,
two-phase MPM code in which the particles for pore water and soil were evaluated
independently, allowing simulation of seepage through porous structures. Later, Kafaji
[107] and Ceccato [45] expanded the MPM formulation to account for pore water within
one particle and utilised it to simulate hammered pile in sand and CPT tests in clays,
respectively. The MPM was utilised to model the dropping of geocontainers, where
the dynamics of the soil continuum, the thin-walled geocontainers, and their interac-
tion with free water were modelled [82]. Reference [220] expanded the MPM formula-
tion to account for partial soil saturation and utilised the three-phase MPM to model
the influence of precipitation on slopes. In their study, Kularathna [118] presented
a solution-splitting method for addressing the incompressibility constraint of the pore
water component. In their study, Nøst [168] developed a dynamic implicit MPM formu-
lation coupled with the finite volume method (FVM) to handle both large deformation
and coupled flow. Since then, references [70, 73, 79, 83, 156] have used the MPM to
successfully model large deformation, i.e., open steel pipe pile installations in saturated
sand.
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3.1.1 Computation algorithm of MPM

As shown in Figure 3.1, the computational domain is spatially discretised into two parts
in MPM. The continuum body is first subdivided into a set of material point. Each ma-
terial point represents a portion of the domain. These material points are assigned a
portion of the mass of the total continuum. One of the most fundamental of MPM is
that the mass of each material point remains strictly constant, which means that mass
conservation is satisfied. The volume of the material point can, however, change, al-
lowing for compression or extension of the continuum. In standard MPM, mass is
regarded as being concentrated at the respective material points. Material points also
initialise and carry additional quantities, including velocities, strains, and stresses. The
second part is the background computational mesh, which corresponds to a standard
finite element mesh. It is designed to encompass the entire problem domain, includ-
ing the empty spaces into which the material points are anticipated to move during
the computation. Typically, the discretised momentum balance equations are solved at
the computational mesh nodes, while mass conservation and constitutive equations are
solved at the material points. The information necessary to solve the balance equations
on the computational mesh at any instance of the analysis is transferred from the ma-
terial points to the nodes of the mesh by means of mapping (shape) functions. After
solving the balance equations with an incremental time integration scheme, the quan-
tities carried by the material points are updated by interpolating the mesh results with
the same shape functions. The data associated with the mesh is not of importance for
the subsequent step of analysis and is discarded to prevent mesh distortion.

The application of engineering boundary conditions is simple. For instance, stresses
and displacements, as well as their rates, can be applied to any boundary mesh node
or directly to the material points. The ability to apply well-known constitutive models
that describe the stress-strain relationship of materials is an additional advantage of the
MPM. As with any FE formulation, MPM’s drawbacks include its mesh dependence, its
computational costs, and stability issues resulting from material points crossing element
boundaries, which will be briefly discussed in this chapter.

Below is the basic algorithm for a single computation step in MPM:
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MPM algorithm for a single computation

■ Relevant information such as mass and momentum are mapped from the
particles to the background eulerian grid at the beginning of the computa-
tional step using relevant shape functions.

■ Solving the field equation on the computational grid in the background
yields the solution.

■ Using relevant mapping functions, nodal accelerations and velocity are
mapped back to particles. Positions of particles are also updated.

■ Once the data has been mapped to particles, the background grid is reset in
preparation for the subsequent computational step.

■ In the case of the USL (Update Stress Last) algorithm, the determined strains
on the particles are used to calculate the stresses acting on the particles by
employing appropriate constitutive laws. When simulating porous media,
fluid component strains are also used to determine pore pressures.

■ The history variables that the constitutive law may need for the next com-
putational step are stored in the particles. At this stage, soil properties such
as porosity and hydraulic conductivity may also be updated.

■ The total total time is updated, and the solution phase returns to Step 1.

3.1.2 Discretisation

The nodes and integration points serve as the material points in lagrangian FEM, and
this is maintained during the deformation of the continuum. The primary distinction
between the lagrangian FEM and the MPM is that in the latter, the mesh does not rep-
resent the physical property of the continuum, but rather the particles do. In order to
evaluate the solution for the particles when they move through the solution space, it
is necessary to mesh the entire region where the particles could move. Alternatively,
rather than meshing in-situ the fixed background eulerian mesh as and when the parti-
cles move into the location, it is much more common to anticipate the regions in which
the particles may move during the solution phase and define a mesh in those regions
prior to the solution phase.

While current MPM codes are based on regular grids and irregular grids, a regular
background meshing scheme has been utilised in this work. While the majority of
MPM codes permit the definition of a background grid within which a cloud of mate-
rial points is later defined, this work takes a different approach with the locations of
the opposing diagonals being specified. The code then generates a regular background

30



3.1 Development of the material point method

Figure 3.2: Uniform and staggered partitioning of the continuum in MPM

mesh, eliminating the need for them to be entered. The background mesh can now
be refined locally by using a tartan background computational grid approach. While
the background mesh may consist of relatively regular four-noded elements, particle
meshes are anything but. Despite the fact that a 4-noded element has been selected for
the work presented in this thesis due to its advantages, such as freedom from volumet-
ric locking, irregular meshing is permitted so long as the element is four-noded. This
permits local refinement of the mesh in the region of interest. In Chapter 6, where the
case of open steel pipe pile installation is presented, a complex meshing scheme is used
in which both the particles and background grids in the vicinity of the pile are locally
refined. Prior to beginning the solution, either 1, 4, or 9 particles per discretisation
element of the continuum are determined. This allows us to pack more particles into
a computation grid and to vary the number of particles in the solution without resort-
ing to a time-consuming remeshing procedure. Regardless of the number of particles
chosen for the solution, the mass of a continuum is distributed uniformly throughout.
Figure 3.2 presents an example of regular and staggered continuum partitioning used
in this work. Below is a summary of the pre-processing steps in the MPM code used in
this work.
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Procedure for pre-processing in MPM

■ Either regular or irregular, four-noded elements are used to discretise the
continuum.

■ The regions in which multi-body contact is anticipated are defined using
two-noded linear line elements for the penalty contact algorithm imple-
mented in this work, which will be explained in greater detail later. Un-
like particle discretisation, the discretisation of contact elements is one-
dimensional.

■ The computational area’s extremities and the number of elements in the X
and Y directions of the computational mesh are defined.

■ If the region of interest is localised in the computational model, a tartan
background computational grid is created.

■ The problem’s boundary conditions are specified. These are created by
defining either roller boundaries or full-fixities. Additionally, as will be
shown in Chapter 4, it is possible to specify infinite elements, which do not
reflect stress waves. To avoid invalidating the addition of the infinite do-
main, care must be taken to ensure that the Neumann boundary conditions
and infinite domains do not interfere.

■ The explicit solution parameters, such as the total time, incremental time
step, and dynamic time step update rate, as well as global solution variables,
such as the local damping coefficient and strain-smoothening algorithm, are
selected primarily to improve the solution’s quality.

3.1.3 Grid crossing error

The majority of MPM techniques utilise a bilinear shape function of the first order.
As a result, the gradients of these shape functions would be constant. While these
shape functions may be adequate for the majority of finite element procedures, they
occasionally introduce instabilities into the MPM solution. The grid crossing error is
one of the instabilities prevalent in the classical MPM formulation. When a particle
migrates from one computational grid to another, the grid crossing error introduces
spurious stress jumps to the solution. The mathematical justification for this is the
application of linear shape functions, whose gradients are constant. When solving for
the internal energy,

Fint = BT σ , (3.1)
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where Fint represents the internal energy, B represents the strain displacement ma-
trix, and σ represents the stress tensor. If linear shape functions are selected for the
case of one-dimensional background computational grid, it is abundantly clear that
the gradients of the shape functions that populate the strain-displacement matrix will
be constants. These discontinuities in the gradients result in numerical oscillations in
the solution when particles move from one computational grid to another or propa-
gate through the domain. The functions are C0 continuous; therefore, their derivatives
would be constant within the element, but discontinuous at its borders (they change
signs). Extending to two-dimensions, when the material point crosses from one grid
to another, this change in sign causes non-physical instabilities in the internal energy,
degrading the quality of the solution.

Throughout the years, this error inherent and unavoidable to classical MPM has been
identified, and efforts have been made to mitigate these non-physical discontinuities.
Bardenhagen and Kober [12] proposed a particle characteristic function as an alternative
to a dirac delta function; consequently, the mass of the material point can be distributed
along delimited domains as opposed to being concentrated on the points. This tech-
nique was known as the Generalised Interpolation Material Point (GIMP) technique.
This work served as the basis for an entire family of methods in which the mass is dis-
tributed across a domain. Rejecting the assumption that a square domain must remain
square or deform uniformly on two sides, additional extensions were made. Convected
Particle Domain Interpolation (CPDI) methods were able to track domain deforma-
tions with greater precision, particularly for problems involving massive deformations
[188, 189]. While CPDI1 permitted shear along the elemental domain, which GIMP
was incapable of capturing, CPDI2 enabled tracking each node of the element domain
independently. Despite the fact that the latter is more accurate in terms of deformation
representation, the computation and storage costs of calculating these element nodes
must be considered. In their work, Tran et al. [207] identified the shortcomings of
the CPDI domain interpolation scheme in the presence of massive deformations and
proposed a Convected Particle Least Square (CPLS) scheme. Within the framework of
conventional MPM, lower-order shape functions have been replaced by higher-order
B-spline shape functions [206]. While this method has proven to be effective, it is im-
portant to note that solving the momentum equation requires a higher computational
cost than the classical MPM. While all of these methods have performed significantly
better than traditional MPM, the solution process requires more computational time
as the domains spread to neighbouring cells. In addition, the application of boundary
conditions is typically not simple.
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3.1.4 Fluid modelling in MPM

In geomechanical applications, the presence of water, and only water in hydromechan-
ical applications, is a common source of difficulty. Due to its near incompressibility or
incompressibility, the presence of water makes numerical modelling a challenging task.
This medium’s density should therefore be assumed to be constant. In turn, the prop-
erty of incompressibility results in explicit algorithms predicting inaccurate solutions
or not converging at all unless prohibitively small time steps are taken.

The Navier-Stokes equations characterise the viscous fluid flow through conservation
equations. Mass, momentum, and energy are conserved throughout an infinitesimally
small volume of fluid. A fluid is a material that deforms continuously when subjected
to shear stress. This is also true for some solids when the applied shear stress exceeds
a certain threshold, resulting in plastic deformations. When a fluid undergoes defor-
mation, stresses can be separated into spherical and deviatoric subcomponents. The
deviatoric components of a fluid always disappear at rest or during a uniform flow.
Fluid stresses are described by the expression:

σij = −p δij + sijkl ε̇kl , (3.2)

where, σij is the stress tensor, p is the pressure, δij is the Knonecker delta, sijkl is a
symmetric fourth-order tensor comprising of viscous coefficients. Strain rate tensor, ε̇ij
is the given by the relation:

ε̇ij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
, (3.3)

where, xi and vi are the location and the velocity components, respectively. For a linear,
isotropic fluid, Equation 3.2 can be reduced to the Navier-Poisson law for a Newtonian
fluid [143] as:

σij = −p δij + λ ε̇kk δij + 2 µ ε̇ij , (3.4)

where, parameters λ and µ characterise the viscosity of the fluid. The volumetric strain
rate of the fluid is given by ε̇kk. Incorporating a distinction between the spherical and
deviatoric strain rate components, where ε̇ij is given by the relation ε̇ij = ε̇′ij + ε̇kk δij/3,
Equation 3.4 can be represented as:
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σij =
(
−p + κ ε̇kk

)
δij + 2 µ ε̇′ij , (3.5)

where, κ = λ + 2
3 µ is the bulk viscosity term. It is inferred from Equation 3.5 that when

the term κ ε̇kk vanishes, the thermodynamic pressure p equals the spherical component
of the stress tensor, −σkk/3.

3.2 Formulation of dynamic MPM for single phase
problems

In this section, the formulation for the dynamic single-phase MPM is provided. The
strict linearity conformance of linear shape functions is advantageously mitigated by
defining a domain for the interpolation of the masses as opposed to a single infinitesi-
mal point. This section’s formulation is derived from the work of Sulsky et al. [203], in
which only a single phase was considered. While the formulation that will be presented
resembles the formulation of a FE code, it must be noted that there is a significant dif-
ference between the two methods, despite their common ancestry. In the case of FEM,
integration is performed on Gauss points, which can range from 1 to 9 or more for
artisan element definitions, whereas numerical integration in the case of MPM is per-
formed on the material point itself, which moves through space, the former remaining
spatially immobile throughout the solution procedure.

Beginning with the FEM formulation [112], the numerical formulation for MPM begins
with the weak form of momentum balance equation. Momentum balance equation
describes the motion equation of a body and is denoted by:

ρ v̇ = div(σ) + ρ g , (3.6)

where, ρ is the density, g is the gravitational field, u is the displacement field, v is the
velocity field, and σ is the Cauchy stress. Rewriting Equation 3.6 in indices notation,
we get:

ρ
dvi

dt
=

∂σij

∂xj
+ ρ gi . (3.7)

The presented equations are known as the strong form. A weak form is derived for use
in the discretised form. This is accomplished by multiplying the strong form by a test

35



Chapter 3 Formulation of the Material Point Method for modelling large deformations

function, δu, and integrating across the entire domain, Ω. The weak form of Equation
3.7 is denoted as:

∫
Ω

δvi ρ
dvi

dt
dΩ =

∫
Ω

δvi
∂σij

∂xj
dΩ +

∫
Ω

δvi ρ gi dΩ , (3.8)

with,

δvi = 0 on dΩ . (3.9)

By applying integration-by-parts rule on the first part of Equation 3.8, and substituting
it back, we get:

∫
Ω

δvi ρ
dvi

dt
dΩ =

∫
Ω

∂

∂xj
(δviσij) dΩ −

∫
Ω

∂(δvi)

∂xj
σij dΩ +

∫
Ω

δvi ρ gi dΩ . (3.10)

By applying Gauss’s theorem to the first term of Equation 3.10, we get:

∫
Ω

∂

∂xj
(δvi σij) , dΩ =

∫
Γ

δvi σij nj dΓ , (3.11)

with, Γ the boundary of the domain, Ω. Substituting Equation 3.11 in Equation 3.10
yields the weak form of the momentum balance equation:

∫
Ω

δvi ρ
dvi

dt
dΩ =

∫
Ω

δvi ρ gi dΩ −
∫

Ω

∂(δvi)

∂xj
σij dΩ +

∫
Γ

δvi ti dΓ , (3.12)

where, traction ti = σij nj is obtained using Cauchy’s lemma.

The values of a variable contained within an element are determined by the nodal
values and the shape function denoted by Ni. A body is represented by a collection of
particles in the MPM. Interpolating the fields to and from the particles necessitates an
additional step. Here, integrals are approximated as a sum over particles and denoted
as:

∫
Ω

ρ(∗) dΩ ≈ ∑
p

∫
Vp

ρ(∗) dVp ≈ ∑
p

∫
p
(∗)mp ≈ ∑

p
(∗)mp , (3.13)
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where, mp is the mass associated with the material point, p, and Vp is the particle
volume. Using these definitions, the discretised momentum equation is expressed as
follows:

M ä = Fext − F int , (3.14)

where, M is the consistent mass matrix, ä the acceleration vector, and Fext and F int are
external and internal force vectors, respectively. Despite introducing a small amount of
numerical dissipation, the use of a lumped-mass matrix is preferred over a consistent
mass matrix because its diagonal nature greatly simplifies calculation. On the element
level, it is represented as

mi =
np

∑
p=1

mp Ni(xp) , (3.15)

where, np is the number of material point, and xp indicates the location where shape
function, Ni is evaluated and, xp is the location of particle. Referring to Equation 3.14,
the external force vector is given by:

Fext =
np

∑
p=1

mp NT(xp) g +
∫

Γ
NT t dΓ , (3.16)

and, the internal force vector is given by:

F int =
np

∑
p=1

Vp BT(xp)σp , (3.17)

where, B = LN with L being the linear differential operator, and σp is a vector contain-
ing the stress components at material point, p.

The aforementioned equations describe the procedure for solving the unknown quan-
tities at the computational node. When including forces with surface traction, care
must be taken. To accommodate tractions, one approach is to assign the corresponding
forces to the closest material point [107]. After computing the forces and constructing
the mass-matrix, the particle’s state and position are updated by resetting the compu-
tational mesh at the end of each time step.

37



Chapter 3 Formulation of the Material Point Method for modelling large deformations

Time Integration

Given a diagonal mass matrix, it is trivial to integrate the system of equations over time.
Vector of acceleration is given by:

an =
[
Mn

l
]−1

(
Fext − F int

)n
, (3.18)

where a forward-Euler time integration scheme is used to update the nodal velocity
from the nodal accelerations. In practice, however, a modified algorithm proposed by
Sulsky et al. [203] is used. The nodal velocities of the particle is updated according to
the relation:

vn+1
p = vn

p +

ndo f

∑
i=1

∆t Ni(xp) an
i , (3.19)

where, ndo f represents the number of grid degrees of freedom, vn
p and vn+1

p are the
velocities of particle p at the beginning and end of time step ∆t, respectively. Then,
the nodal velocities are mapped from the particles to the nodes, keeping in mind that
momentum must be conserved. It is provided by:

Mn
l vn+1 =

np

∑
p=1

mp NT(xp) vn+1
p , (3.20)

where, vn+1 is the updated nodal velocity. It is then used to obtain incremental nodal
displacement via the relation:

∆u = ∆t vn+1 . (3.21)

Position of the particle is updated via the relation:

vn+1
p = un

p + N(xp)∆u , (3.22)

where, un
p and un+1

p are positions of particle at time tn and tn+1, respectively. Since
the position of a particle is updated using a continuous velocity field with a single
value, particle collisions are avoided. This also enables automatic, non-slip contact
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3.3 Deformation of particle domains

between bodies without the need for a separate algorithm. After obtaining the updated
nodal velocities, strain increment, ∆εp of material point, p is calculated according to the
relation:

εp = B(xp)∆ue , (3.23)

where, ∆ue is vector of incremental nodal displacements of element, e to which the
material point belongs. Given the strain increment, stress increment, ∆σp is updated
at each material point using the constitutive law unique to that material point. Total
stresses are updated via the relation:

σn+1
p = σn

p + ∆σp , (3.24)

where, σn
p and σn+1

p are global stresses at time tn and tn+1, respectively. The reader is
referred to references [11, 45, 107] for a more comprehensive derivation of the single
phase dynamic MPM.

3.3 Deformation of particle domains

MPM

p p p p p

cpGIMPuGIMP CPDI1 CPDI2

r1

r2 r2 r1

Figure 3.3: Evolution of domains to represent the material points

This section provides an overview of the Convected Particle Domain Interpolation
(CPDI) method. Efforts have been made to provide relevant, pertinent information
within the context of this work. The material point method is a particle method based
on a grid that can be used to solve large deformation problems. As depicted in Figure
3.3, the traditional formulation of MPM treats discretised particles as a single mass. The
continuum is discretised by a set of infinitesimally small material points or particles,
and a hybrid Lagrangian-Eulerian solution procedure is employed, where the lagrangian
particles carry history-dependent information such as stress, strain, and displacement,
while the eulerian background computational grid is used to solve the momentum equa-
tions. While the background computational grid is stationary in time and space and un-
dergoes no deformation throughout the simulation, the lagrangian particles are tracked
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Chapter 3 Formulation of the Material Point Method for modelling large deformations

during the deformation. Nonetheless, the classical formulation of MPM is susceptible
to the ‘cell/grid crossing’ error for problems involving massive particle movement.

Earlier versions of the MPM assumed a collocated distribution of material properties
throughout the particle domain. Numerical instability was introduced to the model
whenever particles crossed element boundaries. Earlier research focused on reduc-
ing this artificial oscillation. With the Generalised Interpolation Material Point (GIMP)
Method, the concentrated mass of the material point is distributed over a finite sub-
domain [12]. The classical MPM’s dirac delta function was replaced with a smoother
function. The smoother function is then used to interpolate the data contained in the
material points and evaluate the internal, external, and traction forces. The basis func-
tions in GIMP can be interpreted as the averages of the particle’s entire domain’s basis
functions. GIMP defines a characteristic function for each particle, and when a dirac
delta is selected as the characteristic function, the classical MPM formulation is ob-
tained. In GIMP, particle domains are typically represented as rectangles. Two tracking
strategies for domains have been proposed. In the first, it is assumed that the particle
domains remain unchanged throughout the simulation. This is frequently referred to as
uGIMP or undeformed GIMP. In the alternative method, the domain sizes are allowed
to change over time so that they continue to be regular rectangles. This technique is
known as cpGIMP, which stands for convected particle GIMP. Shear or off-diagonal de-
formation cannot be captured by cpGIMP, but it performs well for simulations where
the deformation is predominantly along the grid direction. Unfortunately, this assump-
tion regarding particle domain deformation is incorrect for problems involving shear
or large rotations.

The GIMP method evaluates the effective averages of the grid basis functions (Nip) and
gradients (∇Nip) are given using the relationship:

Nip =
1

Ωp

∫
Ω

ξ (x − xp) Ni(x) dΩ , (3.25)

and,

∇Nip =
1

Ωp

∫
Ω

ξ (x − xp)∇Ni(x) dΩ , (3.26)

respectively. Here, ξ(x) is the particle characteristic function over domain Ω. A top-hat
function is typically used in GIMP and is given by:

ξ(x) =

{
1, x ∈ Ωpart

0, otherwise
. (3.27)
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3.3 Deformation of particle domains

If x0 and y0 are the initial dimensions of the regular rectangular particle domain in
uGIMP, and the evolution of particle domains in time is ignored, the update relation
for the domain at time t + ∆t can be expressed as follows:

[
xt+∆t

yt+∆t

]
=

[
x0

y0

]
. (3.28)

Since particle domains are permitted to deform in cpGIMP, under the condition that
they always remain rectangular, the update to the domains is given by the relation:

[
xt+∆t

yt+∆t

]
=

[
Ft+∆t

11 0
0 Ft+∆t

22

] [
x0

y0

]
, (3.29)

where F represents the deformation gradient and the subscripts indicate that only the
diagonal terms of F have been utilised. While cpGIMP permits particle deformation
in terms of extension or compression, its performance is less than ideal for problems
involving bending or shear.

It has been demonstrated that the GIMP method is susceptible to instabilities in ex-
tension or large distortions due to its inability to track particle deformation [188, 189].
Alternative methods to reduce particle crossing noise have been proposed. Zhang et al.
[226] proposed a method for eliminating the discontinuity of the gradients of linear
interpolation functions by employing a Dual Domain Material Point (DDMP). DDMP
effectively expands the influence of the material point’s domain without following the
shape of the material point. This procedure modifies the gradients of the shape func-
tion in order to provide a smoother crossing behaviour. By modelling thin structures as

r0
1

r0
2

p

rt+∆t
2

rt+∆t
1

p

initial particle domain updated particle domain

de f ormation

Figure 3.4: Initial and updated particle domain using the CPDI method

41



Chapter 3 Formulation of the Material Point Method for modelling large deformations

finite element membranes that move through a computational mesh, the grid crossing
error is eliminated when simulating them.

3.3.1 Convected Particle Domain Interpolation formulation

Using the uGIMP and cpGIMP formulations, rectangles are used to track domains.
Over the domain of the particle, only extension/compression deformations parallel
to the direction of the grid are permitted, while shear deformations are completely
disregarded. The CPDI method is capable of tracking particle domains more precisely,
even during shear deformations, as shown in Figure 3.4, by employing an alternative
grid function.

Using the fully updated deformation gradient of each particle, the deformations and
rigid body rotations computed at each particle are used to calculate the updated particle
domain at each step of computation. By defining vertices that define the particle’s
domains as r0

1 and r0
2, the update of the vertices is computed using the relation:

rt+∆t
1 = Ft+∆t

p r0
1 ,

rt+∆t
2 = Ft+∆t

p r0
2 ,

(3.30)

where t + ∆t represents the current computation step and Fp represents the computed
deformation gradient at particle p. This update algorithm is illustrated graphically in
Figure 3.4.

The alternative grid basis functions are defined as an interpolation of the standard grid
basis functions at the four corners of each particle domain using the relation:

N∗
i (x) = ∑

p
N p

i (x), where N p
i (x) =

{
∑4

α=1 ϕ
p
α(x) Ni(xp

α) : x ∈ Ωp

0 : x /∈ Ωp
. (3.31)

Here, Ni(x) represents the standard grid shape functions associated with grid nodes, i,
ϕ

p
α(x) is the standard FEM-style interpolating function defined as a four-noded element

on the particle domain. Here, α represents the corner of the particle domain, and
xp

α specifies this corner’s position. N∗
i (x) is an interpolation of Ni(x) to the particle

domain corners. Figure 3.5 is a graphical representation of the grid basis function of
standard MPM and the alternate grid basis functions of CPDI. As depicted in the figure,
when the continuum stretches sufficiently to cause a significant separation of particles,
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3.3 Deformation of particle domains

standard MPM grid basis functions

particle particle domaingrid nodes 1 - 6

alternate grid basis functions

N1 N2 N3 N4 N5 N6

Figure 3.5: Alternate grid basis funtions for a one-dimensional case in CPDI [189]

the CPDI shape functions also stretch, allowing neighbouring particles to interact even
when they are separated by more than one computational grid cell of the background.
Classical MPM and the GIMP method family lack this feature, making them susceptible
to extension instability. The following relations can be used to determine the shape
functions and their gradients:

Nip =
1

Ωp

∫
Ω

N p
i (x) dΩ =

1
Ωp

4

∑
α=1

(∫
Ω

ϕ
p
α(x) dΩ

)
Ni(xp

α) , (3.32)

and,

∇Nip =
1

Ωp

∫
Ω
∇N p

i (x) dΩ =
1

Ωp

4

∑
α=1

(∫
Ω
∇ϕ

p
α(x) dΩ

)
Ni(xp

α) , (3.33)

respectively. The shape functions are calculated analytically according to the relation:
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Nip =
1
4

[
Ni(xp

1) + Ni(xp
2) + Ni(xp

3) + Ni(xp
4)
]

, (3.34)

and, their gradients according to the relation:

∇Nip =
1

2Ωp

(Ni(xp
1)− Ni(xp

3)
) [rn

1y − rn
2y

rn
2x − rn

1x

]
+
(

Ni(xp
2)− Ni(xp

4)
) [ rn

1y + rn
2y

−rn
2x − rn

1x

] .

(3.35)

The components (rn
1x, rn

1y) and (rn
2x, rn

2y) are components of vectors rn
1 and rn

2 at current
computational time step n, respectively. The reader is directed to Sadeghirad et al. [189]
for a comprehensive formulation of CPDI.

3.3.2 Axi-symmetric CPDI formulation extension

Hamad [83] extended the CPDI formula to solve axisymmetric type problems. Girid-
haran et al. [73] and Moormann et al. [156] successfully implemented this method to
simulate open pipe pile installation problems in saturated sand. While the plane-strain
assumption is typically sufficient for geotechnical applications, it can be easily extended
to simulate axisymmetric geometry and loading. Sulsky and Schreyer [202] reformu-
lated the early extension of the material point method to exploit the azimuthal sym-
metry. Nairn and Guilkey [161] extended the corresponding formulation of the GIMP
method by truncating the particle supporting domain at its intersection with the centre
line. Here, an algorithm based on resizing the CPDI parallelogram domains so that
their vertices remain within the valid territory along the axis of symmetry is utilised.

As in the case of the plane-strain problem, shape functions and their gradients are
given via the equations 3.34 and 3.35. The vectors defining the parallelogram of the
particle domain, as depicted in Figure 3.4, are updated utilising the relations depicted
in Equation 3.30. Here, Fp represents the computed deformation gradient at particle, p.
The deformation gradient is continuously updated using the relation:

Ft+∆t
p =

(
I +∇vt+∆t

p ∆t
)

Ft+∆t
p , (3.36)

where, ∆t is the time step increment and I is a second-order identity tensor. For ax-
isymmetric problems, the velocity gradient, ∇vp at location of particle, p is updated via
relation:
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3.4 Comparison of performance between MPM and CPDI

∇vt+∆t
p =

 ∂vx
∂x 0 ∂vx

∂z
0 vx

xp
0

∂vz
∂x 0 ∂vz

∂z

 , (3.37)

where, vx is the nodal velocity along the x-direction, and xp provides the coordinates of
the location of particle, p. The gradient in the hoop direction is interpolated from the
information of grid according to the relation:

vx

xp
=

1
xp

nnodes

∑
i=1

Ni vt+∆t
i . (3.38)

The components corresponding to the x and z directions are given via the relation:

∇vt+∆t
p =

nnodes

∑
i=1

∇Ni vt+∆t
i . (3.39)

The gradients are evaluated according to Equation 3.33 and the nodal velocities, vt+∆t
i

is calculated according to the relation:

vt+∆t
i =

∑p Nip mp vp

mi
+ ai ∆t , (3.40)

where ai is the nodal acceleration in accordance with a typical explicit Euler forward
integration scheme to obtain the velocity.

3.4 Comparison of performance between MPM and CPDI

The Material Point Method allows the particles to move throughout the computational
space when dealing with large deformation problems, which results in the migration
of particles from one computational background grid to another. In the context of clas-
sical MPM, this migration of particles from one computational grid to another presents
significant numerical challenges. In dynamic problems, the equilibrium could fail, with
the computation in extreme cases failing entirely. This issue arises because when par-
ticles cross from one element boundary to another, the crossing causes a significant
imbalance in the computed forces at the nodes.
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The Method of Manufactured Solutions (MMS) is utilised to evaluate the accuracy and
performance of MPM versus CPDI. The MMS provides a general method for generating
an analytical solution for verifying code accuracy. The objective of the procedure is
to produce an exact solution without regard for its physical realism. The work of
Roache [187] offers a more comprehensive overview of the MMS. The performance
of the methods presented here is compared using the MMS for the two-dimensional
problem solved in references [188, 189]. Since the model’s solution is used as an input,
the external force necessary to achieve this solution can be determined analytically.
The resultant numerical solution can then be compared to the calculated analytical
solution by executing the problem with the computed external forces and calculating
the difference between the assumed and actual solutions. This method is typically
employed for the verification of nonlinear codes and algorithms, but in this instance it
is used to compare the MPM and CPDI methods. The method quantifies comparisons
by calculating the error norm given by the relationship:

error =

√
∑Nt

n=1 ∑
Np
n=1

∥∥∥ucalc(xp, ti)− uexact(xp, ti)
∥∥∥2

Nt × Np
, (3.41)

where, Nt and Np are total number of time steps and particles, respectively. ucalc(xp, ti)
and uexact(xp, ti) are the numerically calculated and analytical displacement vectors of
the solution, respectively. In this problem, the time step used is also specified by the
following relation:

∆t = 0.4
∆x
C

, (3.42)

where, ∆x is the cell spacing, C is the wave speed, given by the relation:

C =

√
E
ρ0

, (3.43)

in which, E and ρ0 are the modulus of elasticity and the initial density, respectively. As
assumed in references [188, 189], the Neo-Hooken material model was assumed for the
solid constituent and is represented as follows:

σ =
λ lnJ

J
I +

µ

J
(F FT − I) , (3.44)
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3.4 Comparison of performance between MPM and CPDI

where, I is the identity tensor, F the deformation gradient and J is its determinant. λ
and µ are the first and second Lamé parameters, respectively. This frame-independent
model is adequate for comparing models, even though more complex models have been
implemented within the MPM framework.

A axis-aligned unit square’s displacement is computed. In a unit square, it is assumed
that the displacement field is given by the equations:

ux = A sin (
2 π X

L
) sin (

C π t
L

) ,

uy = A sin (
2 π X

L
) sin (

C π t
L

+ π) ,
(3.45)

where X and Y are the global coordinate system components of the reference configu-
ration. In this calculation, A represents the maximum amplitude of displacement and
is assumed to be 5 cm. t represents time, L is the unit of square length (L = 1 m), and
the wavespeed constant C is defined in Equation 3.43. The body forces necessary to
attain the assumed displacement field are given by the following relations:

bx =
π2 ux

L2

(4 µ

ρ0
− C2 − 4

λ [ln Fx Fy − 1]− µ

ρ0 F2
x

)
,

by =
π2 uy

L2

(4 µ

ρ0
− C2 − 4

λ [ln Fx Fy − 1]− µ

ρ0 F2
y

)
.

(3.46)

Reference [189] contains a detailed derivation of the body forces. Referring to equation
3.46, Fx and Fy are the non-zero components of the deformation gradient tensor F. In
addition, it can be observed that, for the axis-aligned problem, only the diagonal terms
of F are non-zero and can be expressed by the following relations:

Fx = 1 +
2 A π

L
cos
(2 π X

L

)
sin
(C π t

L

)
,

Fy = 1 +
2 A π

L
cos
(2 π Y

L

)
sin
(C π t

L
+ π

)
.

(3.47)

The problem domain is discretised using five different grid resolutions: 8×8, 16×16,
32×32, 64×64 and 128×128. Each grid contains a single particle, although studies with
four and nine particles are also conducted. It is assumed that the modulus of elasticity
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3.5 Formulation of the penalty contact algorithm

(E) is 1 × 104 kPa, Poisson’s ratio is 0.3, and that the initial density (ρ0) is one (g/cm3).
One full period of oscillation is represented by 0.02 seconds in the real-time simulation.
Calculations were conducted for both MPM and CPDI discretisations, and errors were
computed. Figure 3.6a shows the results of the calculation using one particle per grid.
Figure 3.6a demonstrates that the MPM model had a slower convergence rate than the
CPDI model. This enables us to conclude that the alternative grid basis functions pro-
posed by the CPDI method can help us more accurately evaluate the mapping matrix
that couples grid values to particle values ϕip and its gradients, ∇ϕip.

Figures 3.6b and 3.6c depict the results of repeated calculations in which the cell was
populated with four and nine particles, respectively. A similar trend emerges compared
to when only one particle was used. As a result of using nine particles per grid as
opposed to one, the error standard is reduced by a factor at the expense of increased
computational expense. Increasing the number of particles per grid while keeping the
grid size constant reduces the error approximately linearly. Figure 3.6d compares the
MPM and CPDI error norms for the cases of one, four, and nine particles per grid.
For problems in which the region of interest is already determined, either by design or
by experience, a non-uniform particle distribution meshing scheme can be used that is
computationally less expensive than a global particle density refinement. In the work of
Hamad [83], this localisation was utilised within the context of CPDI. This information
is utilised in Chapter 6 when simulating open steel pipe piles. The performance of
MPM, GIMP and CPDI is analysed in greater detail in Appendix A.

3.5 Formulation of the penalty contact algorithm

As the displacement constraints are unknown in advance, the treatment of the contact
problem using the constrained optimisation method is a difficult task. Consequently, it
is frequently transformed into a series of unconstrained optimisation problems by em-
ploying the Lagrange multiplier method or the penalty method. Although the penalty
method yields approximations, it is widely used due to its ease of use in weakly satisfy-
ing kinematic constraints. Using a penalty function P, the potential energy is penalised
proportionally to the amount of constraint violation in a region Γc where contact viola-
tion exists. The penalty function is expressed as:

P =
1
2

ωn

∫
Γc

g2
n dΓc +

1
2

ωt

∫
Γc

g2
t dΓc , (3.48)

where, ω is the penalty parameter, g is the gap function, and the subscripts n and
t refer to the normal and tangential direction, respectively. This equation is added
to the total potential energy to transform the constrained minimization problem into
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Chapter 3 Formulation of the Material Point Method for modelling large deformations

an unconstrained minimization problem. From the variation of Equation 3.48, which
yields the contact variational form, the contact variational form is derived, and is given
by:

δP (u, δu) = ωn

∫
Γc

gn δgn dΓc + ωt

∫
Γc

gt δgt dΓc , (3.49)

in which, δ denotes the variation of a quantity, and u in the displacement vector. The
gap functions are defined using the relations:

gn = (xs − xs̄) eT
n and gt = ∥t0∥

(
ξ s̄ − ξ0

s̄

)
, (3.50)

with, xs is the position vector of the slave node s, s̄ being the projection of s on the
master segment, and en is the unit vector in the normal direction. The superscript 0 in
Equation 3.50 denotes the values at previous time step, t is the tangential vector, and ξ
is the natural coordinate defined as:

ξ =
1
∥t∥ (xs − x1)

T et and 0 ≤ ξ ≤ 1 , (3.51)

where, x1 is the position vector of one of the master segment ends, and et is the unit
vector in the tangential direction. Taking the variation of Equation 3.50 and substituting
it back into Equation 3.49 yields the following result:

δP (u, δu) = ωn

∫
Γc

gn eT
n (δus − δus̄) dΓc

+ ωt

∫
Γc

gt ∥t0∥
(
∥t∥ eT

t (δus − δus̄) + gn eT
n δus̄,ξ

∥t∥2 − gn eT
n xs̄,ξξ

)
dΓc ,

(3.52)

which is discretised to the form:

δP(u, δu) ≈
ns

∑
i=1

δûT (ωn gn Cn + ωt gt Ct
)

i , (3.53)

where û is the nodal displacement, ns is the number of the slave nodes that penetrate
into the master segments. Cn and Ct in Equation 3.53 read [113, 178]
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3.5 Formulation of the penalty contact algorithm

Cn = N − gn

l
Q , and Ct = T +

gn

l
P , (3.54)

where,

u =

us
u1
u2

 N =

 en
−(1 − ξ) en

−ξ en
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 et
−(1 − ξ) et

−ξ et

 P =

 0
−en
en

 Q =

 0
−et
et

 ,

(3.55)

where u1 and u2 represent the displacement of the two ends of the master element, with
lenght l. The formula for the final frictional force expressed on the slave and master
nodes is:

f intr =
ns

∑
i=1

(
ωn gn Cn + ωt gt Ct

)
, (3.56)

in which f intr is the assembly of the interaction forces. The reader is directed to ref-
erence [84] for additional information about the contact algorithm and its implementa-
tion.

3.5.1 Detection of a contact pair

For the majority of dynamic impact algorithms implemented in explicit schemes, the
majority of computational time is consumed by the search for the contact pair. To reduce
the number of required iterations, commercial FE software frequently employs a bucket-
sorting algorithm, which is also implemented for a coupling between FEM and MPM
[48]. The detection of contact pairs in the present work is accomplished in three steps,
which has proven to be quite efficient and accurate. The initial step is to determine if
the momenta of various interface discretisations contribute to the same computational
node. Elements attached to this node are then marked as belonging to a zone containing
a surface node that may be in contact. Therefore, the next iteration will be performed
on the surface nodes that are contained within the tagged elements, which is typically
a significantly smaller number than the total number of surface nodes. In the second
step of the search algorithm, it is determined whether the distance between a node of
an entity and a node of a different entity is less than a minimum search size. For the
adopted explicit procedure, in which the propagating wave is constrained by the grid
size during a time step, the minimum search size is the computational grid spacing.
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To complete the definition of a node-segment pair, the following conditions must be
met:

gn < 0 and 0 ≤ ξ ≤ 1 , (3.57)

where, the first condition ensures that the slave node penetrates the master segment,
while the second condition verifies that the slave node is within the master element’s
space.

3.5.2 Calculation of the contact forces

When a pair of a slave node and a master segment is established, the resisting forces to
oppose the penetration is calculated using Equation 3.56. After assembling the global
vectors, a predictor-corrector procedure can be carried out to enhance the resolution
of the nodal forces. Nevertheless, it is assumed that the force estimation error is small
when explicit time step is considered, so no iteration procedure is performed in this pa-
per. To couple the surface mesh with the MPM solution, the contact forces are mapped
from the one-dimensional boundary mesh to the four-node computational mesh using
the following relation:

f cont
i =

nc

∑
j=1

N j
i f intr

j , (3.58)

in which nc is the total number of the contact nodes, N j
i is the shape function of the

computational node i being evaluated at the location of the boundary node j, f cont is
the contact forces expressed at the computational grid. The interaction of the bodies
will contribute to the momentum equation of an entity through the relation:

mi ai = f int
i + f ext

i + f cont
i , (3.59)

with mi is the lumped mass at grid node i, a is the nodal acceleration, and f int and
f ext are the internal and external force vectors, respectively. Validation examples of the
contact algorithm are provided in Appendix B.
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3.6 Validation of CPDI : Granular column collapse simulation

3.6 Validation of CPDI : Granular column collapse
simulation

This chapter aimed to present the fundamental formulations of CPDI for numerically
addressing large deformations. Therefore, it is essential to validate the method’s im-
plementation. The collapse of a granular column is reproduced numerically for this
purpose. Simulating granular material is essential not only in geotechnical engineering,
but also in production engineering, particularly in the powder metallurgical industry,
where the compaction of metal powders in dies must be simulated. Geotechnical engi-
neering is particularly interested in simulating granular material. Applications such as
debris flow, avalanches, failure of slopes, and landslides, among others, would benefit
from the simulation of granular material. Large scale models of avalanches [72, 149]
and landslides [4, 132, 195] have been created; however, extensive limitations in simu-
lating large-scale models have led to the simulation of experiments involving smaller
prototypes.

3.6.1 Review of previous numerical simulations

The granular column experiment involves the sudden release of a granular column
that was initially contained due to gravity. Lifting the restraining container swiftly
or swinging open the gate have previously been employed [10, 134]. Cylindrically
confined [123, 135] or two-dimensional sample columns[10, 61, 133] have also been
employed. Previous research examined the relationship between the final run-out and
the initial geometry, or aspect ratio, of the column. The relation between the run-
out distance and the normalised initial height [123] varied for axisymmetric and two-
dimensional columns followed a power law. For columns with high aspect ratios, an
initial acceleration stage is identified, followed by a stage of constant velocity. Here,
aspect ratio is defined as the proportion of the column’s height to its width. A high
aspect ratio would indicate that the column is much taller than it is wide. Only during
the final stages of deceleration and stopping does the coefficient of friction become a
factor in determining run-out, as demonstrated by Lube et al. [133].

Numerous numerical simulations of granular column collapse have been exhaustively
performed. Naturally, the discrete element method (DEM) has been utilised to simu-
late such problems [111, 209, 225]. In the work of Kumar et al. [119], the mechanics
of granular column collapse under the influence of a fluid medium surrounding it
have been analysed. Continuum models have also been used successfully to simulate
granular flow in references [3, 135, 148]. According to numerical studies, continuum
models overestimate the run-out distance relative to granular models (such as DEM)
for columns with aspect ratios greater than 0.70 [144]. Continuum models overestimate
the driving force behind the collapse compared to granular models. Similar conclu-
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sions were reached in the case of the material point method, in which a greater-than-
anticipated run-off was observed for aspect ratios greater than 2.0 [120]. For columns
with high aspect ratios, artificial damping should be added to mitigate this error [196].
However, the amount of damping to be added to the system is unclear. In this section,
efforts have been made to measure the effect of damping on the final runoff, as well as
the effect of volumetric/deviatoric smoothing on the system, in addition to studying
the effect of particle number on the system.

3.6.2 Problem Description

As stated previously, the purpose of this simulation is to validate the code by compar-
ing the results to those of experiments described in Lube et al. [134], for different i)
number of particles, ii) damping coefficients, and iii) smoothening schemes are used
in a parameter study to determine whether the numerical simulation can reproduce
the experiment with a high degree of accuracy. The purpose of the experiment is to
examine inertial granular flows caused by the instantaneous release of a granular col-
umn. While various aspect ratios for the column were investigated, only one is selected
for this simulation, allowing for a more concentrated parameter study. Experiments
are conducted to examine a two-dimensional granular flow formed by the collapse of
a rectangular sand column into a wide horizontal channel. The column width is 9.05
centimetres, and the aspect ratios ranged from 3 to 9.5. In this study, an aspect ratio of
7 was chosen, resulting in a column height of 63.35 cm. For this purpose, a wide variety
of granular materials were evaluated. Cohesion effects were found to be negligible. The
granular material utilised in the experiment was 1.4 ± 0.4 mm quartz sand of industrial
quality. Regarding the characteristics of the sand, the original authors provided scant
details. The following properties were recorded for the quartz sand: solid density of
2,650 kg/m3 and an angle of repose of 31◦ [133]. Glass walls were used to observe the
resulting deformation and the free surface after the removal of the frontal gates.

The entire collapse of the sand column is modelled using CPDI. Similar simulations
were conducted using GIMP [196], with MPM and GIMP being subsequently compared
[82]. This simulation employs two-dimensional regular elements with a dimension of
0.67 mm. In different simulations, the elements were populated with 1, 4, and 9 par-
ticles, respectively. To model sand, an elastic-plastic Mohr-Columb failure criterion is
selected. The modulus of elasticity is 840 kPa, and the ratio of possession is 0.3. As-
signing the angle of repose as the friction angle and selecting a small dilatancy angle of
1◦ is performed here in this study. A non-slip condition between the granular material
and the ground is assigned, as used in reference [133]. Various numerical damping
coefficients were selected to examine the effects on the final runoff. One drawback with
the numerical concept presented in reference [196] does not adequately describe the
effects of damping.
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To avoid introducing too many variables into the calculation, it is determined that the
size of the background grid will remain constant at 0.67 mm. For this simulation, a
frictionless side wall is used. Calculating the column’s initial stresses involves assigning
roller boundaries to both sides of the column. In lieu of simulating the lifting of the gate
to remove the confining side boundaries, the CPDI code eliminates the roller support
to the right of the model instantaneously. This methodology has been utilised in prior
research and can be deemed accurate [82, 196]. In the numerical model, removing the
supporting gate requires 0.0417 seconds less time. This is subtracted from the duration
of the experiment. It is assumed that the acceleration due to gravity in the vertical
direction is 10 m/s2. Simulations were conducted with a total of 9,108, 34,433, and
81,972 particles for 1, 4, and 9 particles per grid mesh, respectively.

63.35

9.05

g

fixed

ro
lle

r

Figure 3.7: CPDI model for granular column, dimensions in cm

The initial mesh setup for the numerical model is depicted in Figure 3.7, with the back-
ground computational grid and particles (in blue). Results from the work of reference
Hamad [82] is used to digitise experimental data. The numerical simulation results are
compared to the contour plot from the CPDI simulations. Three different aspects of
numerical modelling were investigated: i) the effect of number of particles per grid,
ii) the effect of numerical damping, and iii) the effect of strain smoothening on the
final runout. Incorporating the lessons learned from the parameter study, one simu-
lation with the optimal number of particles, damping, and smoothing parameters is
performed and compared to the experiment. This enabled us to answer the question
regarding the optimal damping parameter range that must be considered when simu-
lating dynamic simulation of granular material using CPDI to achieve a better fit with
experiments.
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3.6.3 Results and discussions

Herein are presented the findings of the parameters study.

Figure 3.8: Effects of number of particles per grid on the final run-off

Effect of number of particles

Regardless of the number of simulated particles, the final run-off was overestimated by
the numerical model, as Figure 3.8. This phenomenon is by no means unexpected, as it
was previously been observed in numerical studies employing a continuum model as
opposed to a granular setup [144]. Not only was the run-off overpredicted in the case
of 1 particle per grid, but the final height of the column was also underestimated. For
the 4 and 9 particle systems, an overprediction of run-off to the same magnitude was
observed, whereas the final height of the column for the 1 particle system is closer to
the experiment, despite its magnitude being smaller. In all cases, the run-off is in the
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range of 1000 mm, whereas the experimental run-off was limited to approximately 800
mm.

Fern et al. [66] conducted a similar study in which the effect of particle number on the
dynamic system was investigated. Reportedly, the mesh dependence disappears as the
mesh is refined from a coarse mesh to a medium-fine or fine mesh. There should be
a distinction between that work and the current study. In the work of reference [66],
the number of particles was altered alongside the number of computational grids in
the background. In this study, however, the size of the computational grid in the back-
ground remains constant, while the number of particles in the system changes. In spite
of this modification to the study’s methodology, a similar result was observed: the dif-
ference in final results between the 4- and 9-particle systems is found to be negligible.

Although computationally efficient, the 1-particle system tends to be numerically inef-
ficient, regardless of the size of the background computational grid. In line with what
has been proposed in reference [66], the results of this study support a recommenda-
tion to use either the 4- or 9-particle system. The 9 particle system will be used moving
forward in this section. The computation time for the parallelised code on a 4-Core
Intel i5-4590 CPU was 6 hours for a 9-particle system, 2.5 hours for a 4-particle system,
and approximately 35 minutes for a 1-particle system.

Effect of local damping

Subsequently, the effect of numerical damping was studied for the 9 particle system.
The outcomes of any numerical simulation can be influenced by energy dissipation
mechanisms such as surface contact and/or numerical damping, among others. Nu-
merical damping is utilised to rapidly dissipate the system’s kinetic energy and achieve
a steady-state for the entire system. In the context of MPM/CPDI, a small damping
coefficient also contributes to the overall numerical stability of the system. The physical
justification, however, for employing this force is to simulate the energy loss caused by
plastic particle contacts.

The numerical damping was utilised by reference [197] to not only improve the conver-
gence of the overall MPM solution, but also to approximate the loss of energy of grain
upon movement without strain change. This occurs primarily in the form of particle
friction. Reference [227] chose not to implement numerical damping in their work due
to the difficulty of accurately estimating the magnitude of energy dissipated. In the
code, numerical damping was implemented by the following equation:

at+1
n = at+1

n − cd vt+1
n , (3.60)
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Figure 3.10: Kinetic and Potential energies of the system for different
damping coefficients (cd)

where, n refers to the nodal value, t+ 1 to the updated values of a and v, the acceleration
and velocities, respectively. Damping coefficient cd in Equation 3.60 varies between 0
and 1 (0 - 100%). The study is carried out for 6 different damping parameters: 0, 1, 5,
7.5, 10 and 25%. All simulations employ 9 particles per grid, as stated earlier.

Figure 3.9 illustrates the effect of damping parameter on the column’s final run-off. The
location of the final run-off and its height are displayed. The results of the simulation
with no damping and the simulation with 1% damping are qualitatively identical. Each
of these simulations results in a final run-off of approximately 1000 mm. The final
height of the sand mound is, as expected, less than what was observed during the
experiment. Compared to the case with 1% damping, the simulation results with 5%
damping begin to approach the experimental result. Not only is the final run-off shorter,
but the final sand mound height is also greater. As the damping coefficient is increased
to 25%, the results match the experiment precisely, despite the fact that this level of
damping may be considered excessive. While the results of 7.5% and 10% damping do
not match the experimental data, these values may be regarded as typical in terms of
contact-induced energy loss.

Figure 3.10 shows the kinetic and potential energies of the system. As the damping
coefficient is increased from 0 to 25%, the system’s kinetic energies decrease while the
potential energies remain relatively constant, with the minor deviations being attributed
to the explicit numerical integration solver. Reference [209] conducted 3D-DEM simu-
lations of the collapse of granular columns, including analyses of energy dissipation.
According to the results, the majority of the column’s energy was dissipated by in-
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terparticle frictions. From DEM simulations in the reference [199], similar conclusions
were drawn. Experiments from reference [75] also suggest comparable outcomes for
the specified aspect ratio.

Effect of smoothing

The effect of strain smoothing is investigated next. Three simulations are conducted:
i) no smoothening; ii) deviatoric strain smoothening; and iii) pressure smoothening
is applied. To aid in the numerical stability, the strains are smoothened during each
computational step via the relation:

ε̄ =
∑e ε Mp Si

∑e Mp Si
(3.61)

where, ε̄, ε, Mp and Si are the smoothened strains, computed strains, particle mass and

Figure 3.11: Effects of smoothing the final run-off
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grid basis functions, respectively. During each computation step, either the deviatoric,
the volumetric, or both components can be smoothed. Prior to using this algorithm,
it was necessary to analyse their impact on the continuum during massive material
movements.

Figure 3.11 shows the results of this research. Results from simulations in which
smoothing is not applied are identical to those presented thus far. In this instance, the
simulation was conducted assuming a numerical damping of 7.5%, which can be con-
sidered realistic. In this instance, the damping is applied to account for the intergranu-
lar friction. While the results of deviatoric smoothening do not differ significantly, the
results of pressure strain smoothening demonstrate fluid-like behaviour. This method
was previously used to model dam failure in reference [78]. Because the purpose of
this simulation is not to simulate a fluid-like behaviour and the bulk modulus is not as
high as water, which would necessitate pressure smoothing, only the deviatoric portion
of the strains need to be smoothed, saving valuable computational time.

Figure 3.12: Granular Column Collapse: Evolution of shape of column at
different snapshots in time (dimensions in mm)
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Figure 3.13: Granular Column Collapse using recommended parameters

Recommendation for parameters

A parameter recommendation for the granular collapse using CPDI is provided based
on the findings of the parameter study conducted thus far. While the same nine-
particle-per-grid system is considered, numerical damping is set to 10%, which was
determined to be the most practical value for this type of simulation. At every step of
the calculation, deviatoric strain smoothing was performed. In this case, the gradual
collapse of the column is compared to the experimental results at various points in
time.

Figure 3.12 depicts the simulation results at various time intervals in comparison to
the experiment. Here, there are two distinct regimes: i) the spreading phase, and ii)
the final avalanche phase. The advancing soil layer moves as a deforming and dense
bulk flow during the spreading phase. As the simulation advances to the avalanche
phase, the particles acquire greater momentum, which slows as they reach a state of
lower energy, and eventually stops. When the flow overtakes the flow front, particles
at the free surface layer remain or are incorporated into a thin layer. Due to the high
aspect ratio, the bulk of the soil column is moving downwards with negligible lateral
movement. This can be observed at 0.17 seconds. Currently, material movement is
marginally slower than in the experiment. At this stage, a distinct triangle of stationary
material is already visible.

Presented in Figure 3.13 are the outcomes of the deviatoric smoothing model. In this
simulation, 10% local damping was incorporated into the calculation procedure. Since
the damping algorithm involves artificially reducing the system’s kinetic energy, the
less damping is applied, the more plausible can the results be.

In their simulation, Hamad [82] reported good convergence at 0.17 seconds. At 0.25
seconds, the column’s flow catches up to the experiment. While reference [82] already
reported a discrepancy with the experiment due to a lack of energy dissipation cor-
responding to the grains’ rolling, this discrepancy is due to the lack of dissipation in
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Figure 3.14: Kinetic, Potential and Strain energies of the system

the experiment. The triangular region in the lower left corner hardly moves, indicating
a region with no flow, whereas the upper right portion deforms. From 0.33 to 0.50
seconds, the deformation closely resembles the experiment, as seen in Figure 3.12. The
subsequent phase of the collapse is the final avalanche phase, during which the particles
flow along the free surface as a thin moving layer and a central deposit. Slow particles
form thin avalanches that alter the free surface until they cease. After 0.50 seconds, the
soil column begins to decelerate and eventually comes to rest at the conclusion of the
simulation. Based on Figure 3.13, the experimental and numerical model outcomes are
comparable.

Through this analysis, it can be concluded that a simple constitutive law such as Mohr-
Coulomb, coupled with the CPDI method, incorporating numerical enhancements such
as smoothening, and accounting for physical phenomena such as energy loss by means
of numerical damping, can simulate complex dynamic processes such as the collapse
of granular column collapse with good agreement to experiment. Complex constitutive
models can undoubtedly enhance the outcomes. Consideration of pressure dependency
in alternative failure criterions such as Matsuoka-Nakai or Drucker-Prager does not
significantly improve the final height of column or maximum run-off, but rather alters
the final shape of the soil mound [147]. The system’s energies are depicted in Figure
3.14. As depicted in Figure 3.10, the outcomes match expectations.

Alternately, the Mohr-Coulomb model’s parameters could have been calibrated to better
match the final results. The so-called ‘Inverse Analysis’ entails calibrating the input
parameters until the computed results of the model match the observed behaviour of
the system [42]. Nonetheless, the purpose of this study was to determine the impact
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of smoothing and damping on the final results. The plan was to also account for the
energy loss caused by granular friction, which was accounted for by artificial damping,
and to eliminate spurious numerical locking, which was mitigated by strain smoothing.
Although this was a scientia ac labore, the results of the simulation using recommended
parameters, which are quite similar to the experimental results, provide a foundation
for future research into the dynamics of granular columns.

3.6.4 Concluding remarks

Owing to the CPDI’s ability to capture large deformations, these issues can be mod-
elled more accurately. The findings of this study, namely the effects of the number of
particles per grid, the effect of the smoothing algorithm, and the effect of damping are
crucial for this method to be applied to dynamic real-world problems. As a result of this
study, the selection of parameters can direct the simulation to the desired solution. Al-
though these parameters are essential for ensuring the stability of the solution process,
their role must be limited to assisting in the convergence to a stable solution and not
in the solution’s production. In subsequent chapters, a highly dynamic soil-structure
interaction problem will be presented, noting the findings of this study.
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Chapter 4

Modelling Saturated Media using Material
Point Method

In geotechnical engineering, it is not uncommon to encounter problems involving the
coupling of the solid and fluid phases, despite the fact that solving problems involving
only solid- or fluid-phase constituents may be straightforward and simple at times.
This chapter focuses on the extension of the dynamic material point method, and by
extension CPDI, introduced in Chapter 3 to fully saturated two-phase problems. The
gaseous phase is not considered in this work.

4.1 Saturated porous media mechanics

In this study, a biphasic porous medium with a solid skeleton and an interstitial fluid
is considered. Individual components of a heterogeneously composed porous medium
exist in an ideal state of disarrangement. The theoretical framework of the macro-
scopic structure is provided by the theory of porous media (TPM), in which biphasic
porous media is considered de-facto immiscible and composed of two constituents, solid
and fluid aggregates. Each constituent is statistically homogeneously distributed over
a Representative Volume Element (RVE) of the overall aggregate. By homogenising
the RVE, we obtain a continuum, φ with overlapping, interacting, and statistically dis-
tributed solid and fluid aggregates, φα where, α=F for fluid phase, and α=S for solid.
The following definition should hold true for every macroscopic subspace:

φ =
⋃
α

φα = φS ∪ φF . (4.1)

Separate mathematical field functions, defined over the entire aggregate, φ characterise
the geometrical and physical properties of each constituent. Through a volumetric ho-
mogenisation procedure, the effective values of the constituents are dispersed through-
out the RVE. The homogenisation method is depicted schematically in Figure 4.1. The
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RVE of the microstructure homogenisation

dvF

dvS

φ = φS ∪ φF

dv

Figure 4.1: RVE of fluid-saturated sand and the macroscopic approximation
of the model obtained through volumetric homogenisation

local volumetric ratios of the partial volume element, dvα with respect to the bulk vol-
ume element, dv capture the microstructural composition of the mixture, as seen from
Equation 4.1. Here, the concept of volume fractions is explained. Over the REV, the
volume fraction, nα of a constituent, ϕα is defined as:

nα =
dvα

dv
, (4.2)

where, dvα and dv are the partial and total volume elements, respectively. The following
constraint holds if the element is completely saturated:

∑
α

= nF + nS = 1 , (4.3)

where, n is the porosity. In addition, a further implicit constraint is imposed, with nα

ranging between 0 and 1, with 0 denoting the complete absence of the constituent and
1 denoting the complete absence of its complementary constituents. Realistically, in the
current treatment of multiphasic materials, it is always assumed that 0 < nα < 1, i.e.,
the case under study is not restricted to a pure solid or liquid, but rather a saturated
mixture.

Implementing the hydro-mechanical forces that capture the interaction between pore
water (i.e., the liquid phase) and the solid skeleton is necessary for numerically simulat-
ing saturated soils. Various coupled theories have been proposed to solve the problem
of saturated media. The Biot theory was one of the earliest theories. According to Biot’s
theory, the soil is assumed to be a porous, water-filled skeleton. The skeleton’s material
is incompressible, but it is assumed to be elastic [27]. Terzaghi et al. [205] also proposed
theories to address such issues. The hypothesis that the soil’s grains or particles are
more or less held together by certain molecular forces and constitute a porous, elastic
material. Comparable to a sponge soaked in water, the voids of the elastic skeleton are
filled with water. Depending on the rate at which water is being squeezed out, the load
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applied to this system will produce a gradual settlement. In a one-dimensional sense,
this concept was applied to the analysis of soil settlement for a variety of soil types. The
following basic properties of the soil are assumed regardless of the theory: i) isotropy
of the material, ii) reversibility of stress-strain relations, iii) linearity of stress-strain re-
lations, iv) small strains, v) water contained within the pores is incompressible, and vi)
water flows through the porous skeleton according to Darcy’s law.

4.2 Formulation of two-phase MPM

The purpose of this section is to define the essential quantities for the mathematical
model of porous media. We begin by examining the phase relationship of porous media.
The subsequent subsections then examine the concept of effective stress.

4.2.1 Phase relation on porous media

V

gas

water

solid

Vg

Vw

Vs

Vv

(a) (b)

Figure 4.2: a) Soil element with gaseous, fluid and solid phases and its
b) representative volume diagram

As is common knowledge, soil consists of three phases: solid, liquid, and gas. Consider
the element of soil depicted in Figure 4.2. The entire soil element has a volume V. This
volume consists of three phases: solid, fluid, and gas, with respective volumes Vs, Vf
and Vg. Additionally, the volumes of fluid and gaseous phases can be combined to
create void volume, Vv. Thus, the relationship:
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V = Vs + Vv = Vs + Vf + Vg . (4.4)

From the phase relationship presented above, the soil properties void ratio (e) and
porosity (n) can be defined as follows:

e =
Vv

Vs
and n =

Vv

V
, (4.5)

these two quantities are related in that:

e =
n

1 − n
. (4.6)

In this work, one of two values for saturation ratio (Sr) is chosen, with Sr =
Vf
VV

× 100%
, with Sr = 0 for soil that is assumed to be completely dry and Sr = 100% for soil that
is completely saturated. In other words, this research will be limited to situations in
which the soil is completely dry or completely saturated. Soil that is partially saturated
is outside the scope of this study. When analysing saturated soils, various densities can
be defined. The formula for dry density (ρd) is as follows:

ρd = (1 − n) ρs , (4.7)

where ρs represents the grain density of the solid phase, which can be expressed as the
ratio of solid grain mass to solid grain volume. On the other hand, saturated density
(ρsat) can be expressed by the relation:

ρsat = (1 − n) ρs + n ρw = ρd + n ρw , (4.8)

where, ρw is the water density. Submerged density (ρ′), is defined via the relation:

ρ′ = ρsat − ρw . (4.9)
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4.2.2 Concept of effective stress

The term effective stress was coined by von Terzaghi [212] in 1923. This idea was pro-
posed as a solution to the one-dimensional problem of consolidation in a column of
completely saturated soil. The reader is referred to the works of De Boer [57] and
De Boer and Ehlers [59] for a more comprehensive overview of the continued devel-
opment of the effective stress concept in relation to the theory of porous media. In
accordance with the concept of effective stress for saturated soils, the total stress (σij)
component can be decomposed as follows:

σij = σ′
ij + p δij , (4.10)

where σ′
ij represents the effective strain and p represents the pore pressure. δij is a

tensor of unity in the relation. σ and p assume positive values in this study under
tension and suction, respectively.

4.2.3 Incremental time step estimation in saturated media

There are two types of waves in saturated media: i) undrained, and ii) rigid solid matrix
waves after reference [211]. In the case of undrained waves, one can imagine fluids and
solids moving together. This can be considered in situations where the permeability (n)
is extremely low. The speed of undrained waves is given by the relationship:

cu =

√
Ec

u
ρsat

, (4.11)

where, Ec
u is the undrained constrained modulus of the soil. It follows from the rela-

tionship:

Ec
u = Ec +

Kw

n
, (4.12)

where, Kw is the bulk modulus of water and Ec is the confined modulus of solid grains.
In the second type of wave, the rigid solid matrix wave, it is assumed that solid and
liquid particles move in opposite directions. Owing to the interaction of solid and fluid
particles, these waves exhibit significant damping. This phenomenon is observed when
the solid matrix is extremely rigid, as in the case of a very rigid porous rock or in
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the vicinity of the loading source. These waves travel with the velocity given by the
equation:

crm =

√√√√ n Ec

Kw

1 − n + n Ec

Kw

cw , (4.13)

where, speed of compression wave propagating through pure water, cw =
√

Kw
ρw

. The
wave speed of the rigid solid matrix is less that cw, as the term preceeding cw is less
than 1.

4.3 Governing equation of the coupled MPM

The section presents the governing equations required to describe the coupled, dy-
namic, two-phase model. References [211, 231] explain the physics of two-phase ma-
terials. Using u,w, and p and simplified u, p relations, Zienkiewicz et al. [231] provide
a formulation for a fully saturated behaviour with a single pore fluid. In their work,
Zienkiewicz and Shiomi [229] discuss the fundamental equations of motion for porous
media and the available alternate forms, as well as the relative efficiency of solution in
a numerical context. Reference [107] elaborates on the formulation to which the read-
ership is directed. In the interest of completeness, only the most relevant equations
describing two-phase media have been presented.

4.3.1 Conservation of mass

Solid phase mass conservation is described by the equation:

d
dt
[
(1 − n) ρs

]
+

∂

∂xj

[
(1 − n) ρs v̂j

]
= 0 , (4.14)

where, v̂j is the velocity vector of the solid phase. The mass conservation relationship
for the water phase is as follows:

d
dt
[
(n ρw)

]
+

∂

∂xj

[
n ρw ŵj

]
= 0 , (4.15)
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where, ŵj is the vector of true velocity of the water phase. Two reasonable assumptions
will be made moving forward: i) the grains will be considered incompressible, and ii)
the spatial variation in porosity and density of the control mass will be disregarded. As
a result of the first assumption, we can reach the conclusion in Equation 4.14, dρs

dt = 0.
Moreover, as a result of the second assumption, in Equations 4.14 and 4.15, the terms
∂n
∂xj

, ∂ρs
∂xj

and ∂ρw
∂xj

all equate to 0 and drop out. Hence, Equation 4.14 and Equation 4.15
simplifies to the form:

−dn
dt

+ (1 − n)
∂v̂j

∂xj
= 0 , (4.16)

and,

n
dρw

dt
+ ρw

dn
dt

+ n ρw
∂ŵj

∂xj
= 0 , (4.17)

respectively. Substituting Equation 4.16 into 4.17 eliminates the rate of change in poros-
ity with time and produces the relationship:

n
ρw

dρw

dt
+ (1 − n)

∂v̂j

∂xj
+ n

∂ŵj

∂xj
= 0 . (4.18)

Assuming water is linearly compressible based on the relationship:

∂ρw

∂p
= −∂ρw

Kw
, (4.19)

rearranging the equation yields the relationship between the change in pore pressure
and time as:

dρw

dt
= − ρw

Kw

dp
dt

. (4.20)

Substituting Equation 4.20 time into Equation 4.18 yields the storage equation, or the
constitutive relation for pore fluid as follows:
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dp
dt

=
Kw

n

[
(1 − n)

∂v̂j

∂xj
+ n

∂ŵj

∂xj

]
. (4.21)

4.3.2 Conservation of momentum

Momentum conservation in solid and liquid phases can be expressed by the following
equations:

(1 − n) ρs
dv̂j

dt
−

∂σ′
ij

∂xi
− (1 − n)

∂p
∂xj

− (1 − n) ρsgj −
n2 ρw g

k
(ŵj − v̂j) = 0 , (4.22)

and,

n ρw
dŵj

dt
− n

∂p
∂xi

− n ρw gj −
n2 ρw g

k
(ŵj − v̂j) = 0 . (4.23)

Here, k is the hydraulic conductivity of the soil. The term n(ŵj − v̂j), represents the
specific discharge, often denoted by the term q. By adding the momentum of solid
phase (Equation 4.22) and fluid phase (Equation 4.23), the momentum of the mixture,
which represents the saturated soil, can be expressed as:

(1 − n) ρs
dv̂j

dt
+ n ρw

dŵj

dt
=

∂σij

∂xj
+ ((1 − n) ρs + nρw)gj . (4.24)

4.3.3 Initial and boundary conditions

The following condition must be met for the formulation of two-phase problems:

∂ Ω = ∂ Ωu ∪ ∂ Ωτ = ∂ Ωw + ∂ Ωp , (4.25)

where, ∂Ω is the boundary of domain Ω. Here, Ωu and Ωτ are the prescribed displace-
ment (velocity) and prescribed total stress boundaries, respectively. Ωw and Ωp are the
prescribed velocity and pressure boundaries of the fluid phase. The condition indicated
by the following relation must subsequently be met at the boundary:
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∂ Ωu ∩ ∂ Ωτ = ∅, and ∂ Ωw ∩ ∂ Ωp = ∅. (4.26)

The displacement boundary conditions for the solid and liquid phases can be deter-
mined using the following relations:

v̂i(x, t) = V̂i(t) on ∂Ωu(t) (4.27)

and,

ŵi(x, t) = Ŵi(t) on ∂Ωw(t) , (4.28)

respectively.

We define the prescribed total traction as τi(x, t) = τ̃i(x) T (t) and the prescribed pres-
sures as p̄i(x, t) = p̃(x) ni T (t). The total traction and pressure limits are therefore
expressed as:

σij(x, t) nj = τi(x, t) on ∂Ωτ(t) , (4.29)

τ̃i τ̃′
i

v̂i = 0

p̃ni

ŵn

saturated soil solid phase fluid phase

Figure 4.3: Boundary conditions for saturated soil and solid and liquid constituents
[107]
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and,

p(x, t) ni = p̄i(x, t) on ∂Ωp(t) , (4.30)

respectively. Here, ni denotes the unit outward normal vector to the ∂Ω boundary.
Figure 4.3 depicts the boundary condition for the saturated soil, the solid and the fluid
phases. The distinction between τ̃i and τ̃i

′ is made for the sake of completeness, where
the latter is the effective traction. The term ŵn represents the normal component of the
fluid velocity. Considered are the initial conditions for the solid and fluid velocities:

v̂i(x, t0) = V̂0i and ŵi(x, t0) = Ŵ0i , (4.31)

respectively. Initial total stress and pore pressure are derived from the following rela-
tionships:

σij(x, t0) = σ0,ij and p(x, t0) = p0 , (4.32)

respectively.

4.3.4 Weak formulation of momentum and traction

Momentum conservation is a fundamental principle of continuum mechanics. The so-
called strong form must be transformed into its weak form or the virtual work equation
in order to discretise the equation. The momentum equations introduced in Equations
4.23 and 4.24 are multiplied by a test function, δt̂j, also known as a virtual velocity, and
integrated over the continuum’s current domain Ω, the relationship between fluid and
mixture reads:

∫
Ω

δt̂j ρw
dŵj

dt
dΩ =

∫
Ω

δt̂j
∂p
∂xi

dΩ +
∫

Ω
δt̂j ρw gj dΩ −

∫
Ω

δt̂j
n ρw g

k
(ŵj − v̂j) dΩ ,

(4.33)

and,
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∫
Ω

δt̂j (1 − n) ρs
dv̂j

dt
dΩ = −

∫
Ω

δt̂j n ρw
dŵj

dt
dΩ +

∫
Ω

δt̂j
∂σij

∂σi
dΩ +

∫
Ω

δt̂j ρsat gj dΩ ,

(4.34)

respectively. Applying Gauss’ theorem, also known as the divergence theorem, to Equations
4.33 and 4.34, the relations follow:

∫
Ω

δt̂j ρw
dŵj

dt
dΩ =

∫
∂Ωp

δt̂j p̄j dS −
∫

Ω

∂δt̂j

∂xj
pdΩ +

∫
Ω

δt̂j ρw gj dΩ

−
∫

Ω
δt̂j

n ρw g
k

(ŵj − v̂j) dΩ ,
(4.35)

and,

∫
Ω

δt̂j (1 − n) ρs
dv̂j

dt
dΩ = −

∫
Ω

δt̂j n ρw
dŵj

dt
dΩ +

∫
∂Ωτ

δt̂j τj dS

−
∫

Ω

∂δt̂j

∂xi
σij dΩ +

∫
Ω

δt̂j ρsat gj dΩ ,
(4.36)

respectively, are obtained for the fluid and mixture relations.

4.3.5 Spatial and temporal discretisation

Next, the spatial discretisation of momentum equations will be discussed. In the finite
element method, the discrete form is obtained by approximating the accelerations (a),
velocities (v), and displacements (u) in accordance with the corresponding relations.

â(x, t) = N̄(x) a(t) , v̂(x, t) = N̄(x) v(t) , û(x, t) = N̄(x) u(t) . (4.37)

Similarly, corresponding virtual quantities are approximated; for example, δv̂ ≈ N̄ δv̂.
The shape functions or the interpolation function matrix has the form:

N̄(x) =
[

N̄1(x) N̄2(x) N̄3(x) N̄4(x) ... N̄nT (x)
]

, (4.38)
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where, the bar atop the shape function (N̄) indicates that it was written using a global
coordinate system, nT denotes the total number of nodes in the mesh and N̄i(x) is
denoted by the relation:

N̄i(x) =


N̄i(x) 0 0 0

0 N̄i(x) 0 0
0 0 N̄i(x) 0
0 0 0 N̄i(x)

 (4.39)

The acceleration, velocity, and displacement vectors can then be expressed as:

aθ(t) =
[

a1x a1y a2x a2y · · · anT −1x anT −1y anT x anT y

]T
,

vθ(t) =
[
v1x v1y v2x v2y · · · vnT −1x vnT −1y vnT x vnT y

]T
, and

uθ(t) =
[
u1x u1y u2x u2y · · · unT −1x unT −1y unT x unT y

]T
.

(4.40)

Here, a2x represents the acceleration at node 2 in the x-direction, and θ can refer to
either the solid component (s) or the fluid component (w). The relation provides the
kinematic relation:

ε̇(x, t) = B(x) v(t) , (4.41)

where, B is the strain-displacement matrix and is expressed by the relation:

Bi(x) =

N1,x N2,x N3,x N4,x 0 0 0 0
0 0 0 0 N1,y N2,y N3,y N4,y

N1,y N2,y N3,y N4,y N1,x N2,x N3,x N4,x

 , (4.42)

where, the term N1,α is the shorthand of ∂N1(x)
∂α , and α is either x or y. Thus, the Equation

4.41 for one four-noded element would be written as:
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ε̇(x, t) =


N1,x N2,x N3,x N4,x 0 0 0 0

0 0 0 0 N1,y N2,y N3,y N4,y

N1,y N2,y N3,y N4,y N1,x N2,x N3,x N4,x





v1x
v2x
v3x
v4x
v1y
v2y
v3y
v4y


. (4.43)

In the case of two-phase problems, the result of substituting the previously discussed
approximation into Equations 4.35 and 4.34 is:

∫
Ω

N̄T ρw N̄ aw dΩ =
∫

∂Ωp
N̄T p̄ dS −

∫
Ω

BT p I dΩ

+
∫

Ω
N̄T ρw g dΩ −

∫
Ω

N̄T n ρw g
k

N̄ (w − v) dΩ ,
(4.44)

and,

∫
Ω

N̄T (1 − n) ρs N̄ as dΩ = −
∫

Ω
N̄T n ρw N̄ aw dΩ +

∫
∂Ωτ

N̄T τ dS

−
∫

Ω
BT σ dΩ +

∫
Ω

N̄T ρsat g dΩ ,
(4.45)

respectively. The vector aw contains the nodal acceleration of the fluid phase, p̄ refers
to a vector of prescribed water pressure and the symbol I refers to a unity tensor

represented by I =
[
1 1 1 0 0 0

]T
.

In the finite element method, the integrals in Equations 4.44 and 4.44 are computed on
each element when the mesh is looped over. After sweeping through all the elements,
the resulting elemental matrices are assembled into a global matrix using the assembly
procedure. The Equations 4.44 and 4.45 are described by the relation:
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(
nelm

∆
e=1

∫
Ωe

NT ρw N dΩ

)
aw =

npelm

∆
e=1

∫
∂Ωpe

NT p̄e dS +
nelm

∆
e=1

∫
Ωe

NT ρw g dΩ

−
nelm

∆
e=1

∫
Ωe

BT p I dΩ −
(

nelm

∆
e=1

∫
Ωe

NT n ρw g
k

N dΩ

)
(w − v) ,

(4.46)

and,

(
nelm

∆
e=1

∫
Ωe

NT (1 − n) ρs N dΩ

)
as = −

(
nelm

∆
e=1

∫
∂Ωe

NT n ρw N dΩ

)
aw +

nτelm

∆
e=1

∫
∂Ωτe

NT τe dS

+
nelm

∆
e=1

∫
Ωe

NT ρsat g dΩ −
nelm

∆
e=1

∫
Ωe

BT σ dΩ ,

(4.47)

respectively. Here ∆ is the assembly operator, e ranges between 1 and total number
of elements. npelm and nτelm refer to the number of surface elements for which water
pressure and traction are specified, respectively.

4.3.6 Numerical space integration

Obtaining a solution to a closed-form integration for Equations such as 4.46 and 4.47 can
be challenging or impossible at times. For such problems, an alternative would be to
employ numerical integration. Numerical integration or quadrature involves approximating
the value of a definite integral through the use of numerical methods. By defining the
number of gaussian quadrature in an element e as ngp, the gaussian quadrature can be
represented for the Equations 4.46 and 4.47 as:
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nelm

∆
e=1

ngp

∑
q=1

wq NT(ξq) ρw(x(ξq)) N(ξq)
∣∣∣J(ξq)

∣∣∣


︸ ︷︷ ︸
Mw

aw =

Ftrac
w︷ ︸︸ ︷

npelm

∆
e=1

∫
∂Ωpe

NT(ξ) p̄e (x(ξ), t) dS

+
nelm

∆
e=1

∫
Ωe

wq NT(ξq) ρw(x(ξq)) g
∣∣∣J(ξq)

∣∣∣︸ ︷︷ ︸
Fgrav

w

−
nelm

∆
e=1

∫
Ωe

wqBT(ξq) p I (ξq, t)
∣∣∣J(ξq)

∣∣∣︸ ︷︷ ︸
Fint

w

−
(

nelm

∆
e=1

∫
Ωe

wq NT (ξq)
n ρw (x(ξq)) g

k
N(ξq)

∣∣∣J(ξq)
∣∣∣) ·

(
w(x(ξq))− v(x(ξq))

)
︸ ︷︷ ︸

Fdrag
w

, (4.48)

and,

nelm

∆
e=1

ngp

∑
q=1

wq NT(ξq) (1 − n) ρs (x(ξq)) b N(ξq)
∣∣∣J(ξq)

∣∣∣


︸ ︷︷ ︸
Ms

as =

−

nelm

∆
e=1

ngp

∑
q=1

wq NT(ξq) n ρw (x(ξq)) N(ξq)
∣∣∣J(ξq)

∣∣∣


︸ ︷︷ ︸
M̄w

aw +
nτelem

∆
e=1

∫
∂Ωτe

NT(ξ) τe(x(ξ), t) dS︸ ︷︷ ︸
Ftrac

m

+
nelm

∆
e=1

∫
Ωe

wq NT(ξq) ρsat(x(ξq)) g
∣∣∣J(ξq)

∣∣∣︸ ︷︷ ︸
Fgrav

m

−
nelm

∆
e=1

∫
Ωe

wq BT(ξq)σ(ξq, t)
∣∣∣J(ξq)

∣∣∣︸ ︷︷ ︸
Fint

m

, (4.49)

respectively. Here,
∣∣∣J∣∣∣ represents the determinant of the Jacobian matrix, ξ represents

the coordinate of quadrature point, and w the integration weight of the quadrature
point. The discrete system of equations can be represented as:

Mw aw = Ftrac
w + Fgrav

w − F int
w − Fdrag

w , (4.50)

79



Chapter 4 Modelling Saturated Media using Material Point Method

and,

Ms as = −M̄w aw + Ftrac
m + Fgrav

m − F int
m , (4.51)

for Equations 4.48 and 4.49, respectively.The subscripts f , s and m represent fluid, solid,
and mixture quantities, respectively. The bar on top of the mass matrix M̄w represents
the porosity scaling of water particle mass. The superscripts trac, grav, int and drag
represent the traction, gravitational, internal, and drag forces, respectively. All matrices
are lumped in the preceding equations.

4.3.7 Time marching and solution procedure

To advance in time, the Explicit Euler or Forward Euler scheme is adopted. The velocity is
explicitly updated, and the displacement increment is calculated based on the updated
velocity. As described by Equation 4.50:

Mw
dw
dt

= Ftrac
w + Fgrav

w − F int
w − Q (w − v) , (4.52)

where, Q is the lumped matrix for the initial component of the drag force term. The
result of integrating the preceding equation with limits [t, t + ∆t] yields:

∫ t+∆t

t
Mw dw =

∫ t+∆t

t

[
Ftrac

w + Fgrav
w − F int

w − Q (w − v)
]

dt . (4.53)

Explicit integration of the preceding relation yields:

Mw

(
wt+∆t − wt

)
≈
[

Ftrac,t
w + Fgrav,t

w − F int,t
w − Q (wt − vt)

]
∆t , (4.54)

and by rearranging the terms, the velocity of fluid at time t + ∆t can be expressed as:

wt+∆t ≈ wt + M−1
w

[
Ftrac,t

w + Fgrav,t
w − F int,t

w − Q (wt − vt)
]

∆t . (4.55)

The same method may be applied to the mixture. From Equation 4.51,
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vt+∆t ≈ vt + M−1
s

[
M̄−1

w at
w + Ftrac,t

m + Fgrav,t
m − F int,t

m

]
∆t , (4.56)

where, at
w = wt+∆t−wt

∆t .

Once the velocity of the solid at the current time step (vt+∆t) is calculated, the strain
increment of the solid at gauss point, q and element, e is computed using the relation:

∆εt+∆t
q = Bq vt+∆t

e ∆t , (4.57)

where, ve is the velocity vector of element e. The global velocity vector, v is assembled
using these elemental vectors. By integrating the storage equation (Equation 4.21), pore
pressure is obtained, and is given by the relation:

pt+∆t
q ≈ pt

q + ∆t
Kw

n
IT
[
(1 − n) Bq vt+∆t

e + n Bq wt+∆t
e

]
. (4.58)

Calculating the effective stress at the current time step requires a constitutive law that
accepts the effective stress at the previous time step and the updated strain tensor.

{
σ′, state variables

}t constitutive law−−−−−−−−→
∆εt+∆t

{
σ′, state variables

}t+∆t .

The total stress is updated based on the relationship:

σt+∆t
q = σ

′t+∆t
q + pt+∆t

q I . (4.59)

4.3.8 Extension of Kelvin-Voigt elements for saturated media

When dealing with an unbounded saturated domain, there is always the possibility of
stress and pressure waves bouncing off the boundaries, which could lead to incorrect
results if not dampened adequately. Moreover, these wave reflections are not indicative
of a natural unbounded domain. In the past, various methods for dealing with wave
reflections have been proposed [76, 121, 130]. The method proposed by Lysmer and
Kuhlemeyer [138] to reduce these spurious wave reflections has been utilised in this
work. It is not the intention of this work to cover this topic exhaustively, but rather
to introduce the equations used in its implementation. This work implements viscous
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Ω

∂Ω

=

boundary of domain

ûi = 0

Ω + Ω

τ̃i

displacement boundary

spring

dashpot

traction boundary

Kelvin-Voigt Element

∂Ωu

∂Ωτ

∂Ωvb

Figure 4.4: Kelvin-Voigt elements at the boundary of continuum

damping forces with the aid of dashpots. Kafaji [107] observed that a boundary sup-
ported only by dashpots has a propensity to creep continuously when loaded. As
shown in Figure 4.4, dashpot elements were substituted with Kelvin-Voigt elements to
mitigate this issue.

To account for the presence of saturated soil, it is necessary to define two sets of Kelvin-
Voigt elements, one for the solid phase and the other for the fluid phase. The relation
provides the element’s reaction.

pvb = − kw ûw︸ ︷︷ ︸
spring

−
dashpot︷ ︸︸ ︷
ηw ŵ , (4.60)

and for the solid phase given by the relation:

τvb = − ks ûs︸︷︷︸
spring

−
dashpot︷︸︸︷
ηs v̂ . (4.61)

In Equations 4.60 and 4.61, k and η are the spring and dashpot constants, respectively.
The matrices for ηw and kw can be provided by the relations:
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ηw =

a ρw cw 0 0
0 0 0
0 0 0

 and kw =

 ρw c2
w

δ 0 0
0 0 0
0 0 0

 , (4.62)

and, for ηs and ks by the relations:

ηs =

a ρs cp 0 0
0 b ρs cs 0
0 0 b ρs cs

 and ks =

kp 0 0
0 ks 0
0 0 ks

 . (4.63)

In the preceding equations, cw, cp and cs represent the velocity of pure waves in fluid,
primary waves in solid, and secondary waves in solid, respectively. The parameters, a
and b are dimensionless parameters chosen based on the incidence angle of the wave
in order to maximise absorption. In their paper, Lysmer and Kuhlemeyer [138] demon-
strate that the absorption cannot be perfect over the entire range of incidence angles,
regardless of the values of a and b. As a result of a series of numerical tests, the recom-
mended values for a and b were determined to be 1 for both primary and secondary
waves. The coefficients kp and ks are chosen so as to produce a viscous layer that
extends beyond the mesh’s boundaries. The relation provides the stiffness:

kp =
Ec

δ
and ks =

G
δ

, (4.64)

where, Ec = ρs c2
p and G = ρs c2

s . The term δ is the thickness of the virtual viscous layer,
and the has range 0 ≤ δ ≤ ∞. As δ → 0, the element reduces to a rigid boundary,
whereas as δ → ∞, it reduces to a pure dashpot boundary. δ must be excluded from
the critical time step size restriction for any given problem. In this regard, δ should be
chosen based on the relationship:

δ ≥ max
[

hmin

2a
,

hmin

2b

]
,

where, hmin is the characteristic length of the finite element mesh. The velocity vectors
ŵ and v̂, and displacement vectors ûw and ûs are defined as
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ŵ =
[
ŵn ŵt1 ŵt2

]
and ûw =

[
ûwn ûwt1 ûwt2

]
,

v̂ =
[
v̂n v̂t1 v̂t2

]
and ûs =

[
ûsn ûst1 ûst2

]
,

(4.65)

where, the first component of the vectors represents the normal component (n) and the
second and third components (t1, t2) represent the tangential components. Accounting
for the boundary term as an additional traction term, Equation 4.44 can be recast as:

∫
Ω

N̄T ρw N̄ aw dΩ =
∫

∂Ωp
N̄T p̄ dS −

∫
∂Ωpvb

N̄T ηw N̄ w dS −
∫

∂Ωpvb

N̄T kw N̄ uw dS

−
∫

Ω
BT p I dΩ +

∫
Ω

N̄T ρw g dΩ −
∫

Ω
N̄T n ρw g

k
N̄ (w − v) dΩ , (4.66)

and, Equation 4.45 can be recast as:

∫
Ω

N̄T (1 − n) ρs N̄ as dΩ =−
∫

Ω
N̄T n ρw N̄ aw dΩ +

∫
∂Ωτ

N̄T τ dS

−
∫

∂Ω
τvb

N̄T ηs N̄ v dS −
∫

∂Ω
τvb

N̄T ks N̄ us dS

−
∫

∂Ωpvb

N̄T ηw N̄ w dS −
∫

∂Ωpvb

N̄T kw N̄ uw dS

−
∫

Ω
BT σ dΩ +

∫
Ω

N̄T ρsat g dΩ .

(4.67)

The momentum equations now takes the form:

Mw aw = Ftrac
w − Fvb

w + Fgrav
w − F int

w − Fdrag
w , (4.68)

and,

Ms as = −M̄waw + Ftrac
m − Fvb

w − Fvb
s + Fgrav

m − F int
m . (4.69)

The newly introduced viscous boundary terms in the above equations are defined as:
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Fvb
w = Cw w + Kw uw, and Fvb

s = Cs v + Ks us . (4.70)

Individually, the relations that define the spring and dashpot matrices are as follows:

Cw =
∫

∂Ωpvb

N̄T ηw N̄ dS ,

Kw =
∫

∂Ωpvb

N̄T kw N̄ dS ,

Cs =
∫

∂Ωpvb

N̄T ηs N̄ dS ,

Ks =
∫

∂Ωpvb

N̄T ks N̄ dS .

(4.71)

After integrating and summing the preceding matrices, the forces for fluid and solid
in their incremental form are accumulated over time and are given by the following
relations:

Fvb,t
w = Fvb,t−∆t

w + ∆Fvb,t
w , and

Fvb,t
s = Fvb,t−∆t

s + ∆Fvb,t
s ,

(4.72)

where,

∆Fvb,t
w = Ct

w ∆wt + Kt
w ∆ut

w , and

∆Fvb,t
s = Ct

s ∆vt + Kt
s ∆ut

s .
(4.73)

4.4 Extension of discretisation from FE to MPM

In the previous section, coupled hydromechanical formulation differential equations
and finite element discretisation were presented. In this section, the formulation is
extended to MPM and the solution for a single time step is provided. While every
effort has been made to present only the most important aspects of the formulation,
readers are encouraged to refer to Ceccato [45] and Kafaji [107] for a comprehensive
treatment of the formulation of the hydromechanical dynamic coupled model in the
context of the Material Point Method.
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4.4.1 Particle discretisation and initialisation

The underlying assumption of this formulation is that the solid and fluid phases share
the same particle. As a result, no distinction is made between solid and liquid particles.
The continuum is discretised into discrete particles that possess the characteristics of
both the solid and liquid phases. In this instance, the position of the particle is up-
dated based solely on the solid constituent’s displacement. Next, the initialisation of
the particles with the computational mesh background is considered. This includes the
assignment of mass, body forces, tractions, and other continuum properties to parti-
cles. Since each particle is initially positioned at a predetermined location within the
discretised element of the continuum, the local position vector, ξ p is initialised for any
particle, p. Initializing the global position vector is the relation:

x(ξ p) ≈
nen

∑
i=1

Ni(ξ p) xi , (4.74)

where, nen represents the number of nodes per element, which in this case is 4, and
Ni(ξ p) represents the shape function of node i evaluated at the local position of par-
ticle p. Using the particle’s local and global positions, the volume associated with the
particle, Ωp is calculated using the relationship:

Ωp =
1

nep

∫
∂Ωe

dΩ ≈ 1
nep

neq

∑
q=1

wq

∣∣∣J(ξq)
∣∣∣ . (4.75)

It is evident from the above relationship that the volumes are calculated such that all
particles within the element have the same volume. neq represents the number of gauss
points, nep represents the number of particles per element, wq represents the local in-
tegration weight associated with gauss point, q and J is the Jacobian matrix. In this
context, the volume under consideration is the total volume, which consists of the vol-
umes of the solid and fluid phases. The particles are then assigned quantities such as
bulk modulus, density, porosity, and hydraulic conductivity. Using the relationship, the
mass quantities of the particle are calculated:

ms,p = ρs,p Ωp , mw,p = ρw,p Ωp , and mp = ρsat,p Ωp . (4.76)

These masses are then utilised to integrate the necessary mass matrices for solving the
momentum equations. The body forces associated with each particle are computed
based on their masses using the relationship:
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f grav
s,p = ms,p g , f grav

w,p = mw,p g , and f grav
p = mp g . (4.77)

The prescribed traction in an element is integrated using conventional FEM techniques.
The relation for traction force in an element is:

F̃trac
e =

∫
Se

NT(ξ) τ̃e(x) dS

≈
ngpe

∑
q=1

wq NT (ξq)

(
nnodes

∑
i=1

Ni(ξ) τ̃e(x)

)
Se .

(4.78)

τ̃e(x) represents the traction vector at node, i of surface element, e. Se represents the
surface area of an element, while ngpe and nnodes represent the number of gauss points
per element and the number of nodes, respectively. The terms wq and ξq, which were
introduced in previous sections, represent the local integration weight and local co-
ordinate vector of gauss point, q respectively. After integrating Equation 4.78 for a 4-
noded quadrilateral element, the traction forces vector has 8 components, with each
pair corresponding to a node of the 4-noded element. Each node’s traction vector can
be represented as:

F̃trac
e =

[
f̃ trac
1 f̃ trac

2 f̃ trac
3 f̃ trac

4

]
. (4.79)

Each f̃ consists of two components, one each for the x− and y− directions. The trac-
tion vector, τ̃e is interpolated from the element’s nodes to the boundary particles in
the element’s vicinity. Traction at any boundary particle can be calculated using the
formula:

τ̃e(xp) ≈
nnodes

∑
i=1

Ni(ξ p) τ̃e(xi) , (4.80)

where Ni is the shape function of the node, i of the quadrilateral element and ξ p are the
boundary particle’s coordinates. The coordinates represent the location of the particle
within the element where traction forces are being applied. The relation for the traction
force vector, f̃ trac

p of a boundary particle is:
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f̃ trac
p = τ̃e (ξ p)

Se

nebtp
,

=
Se

nebtp

nnodes

∑
i=1

Ni(ξ p) τ̃e(xi) ,
(4.81)

where, nebtp represents the number of border traction particles located on the element’s
loaded face. Considering only uniform tractions and the fact that the particles are
initially uniformly distributed with respect to the loaded face by design, the equation
simplifies to the form:

f̃ trac
p = τ̃e

Se

nebtp
=

1
nebtp

nnodes

∑
i=1

f̃ trac
i . (4.82)

The total traction force vector corresponding to prescribed pressure for particle, p is
calculated as:

f̃ trac
w,p = p̃e

Se

nebtp
, (4.83)

where, p̃e represents the prescribed boundary pressure vector. Pressure is a scalar
quantity and follows the notation p̃ = p̃n = p̃ni, where p̃ is the prescribed pressure on
the boundary and n is the unit normal vector on the boundary.

During the initialisation phase, particles are assigned all relevant continuum proper-
ties, including initial conditions, material parameters, state parameters, and constitutive
variable. Other pertinent bookkeeping parameters are also assigned.

4.4.2 Solution procedure involving a single time increment

By mapping the state of the continuum onto the nodes of the particles and obtaining
a solution on the nodes, we will now concentrate on the solution of the momentum
equation. On the particles, properties of the continuum such as strain, pressure, and
stresses are calculated, and variables such as velocity and displacement are mapped
from the nodes to the particles using the collocation function. Here, a description of
this procedure is discussed.

As it is widely known, the application of the consistent mass matrix adds a level of
numerical complexity to the solution procedure. A large system of algebraic equations
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must be solved, which can consume considerable of computational time. The use of
a lumped mass matrix would be a practical alternative. As demonstrated by Burgess
et al. [38], although this method is computationally more efficient and requires less
storage space, it suffers from numerical dissipation of energy. There are numerous ways
to create a lumped mass matrix. The work of Hughes [96] provides a comprehensive
analysis of the various methods. In this monograph, the mass matrix is derived from
the consistent mass matrix. Entries of the lumped mass matrix correspond to the sum
of the rows of its consistent matrix counterpart. The global mass matrix is given the
relations:

MG =
nelm

∆
e=1

MG
e , (4.84)

where, MG and MG
e are the global and element lumped mass matrix, respectively. The

element mass matrix is given by the form:

MG
e =


m1 0 · · · 0
0 m2 · · · 0
...

... . . . · · ·
0 0 · · · men

 . (4.85)

Each sub-matrix mi can be given by the relation

mi =

[
m1 0
0 m2

]
, (4.86)

where,

mi ≈
ngp

∑
q

wqNi(ξq) ρs (x(ξq))
∣∣∣J(ξq)

∣∣∣ ≈
nep

∑
p=1

mp Ni (ξ
t
p) . (4.87)

The submatrix, 0 is simply a matrix containing only zeros. It should be noted that
the mass matrix is not simply the row sum of its corresponding consistent mass matrix;
rather, it is constructed using direct lumping. Due to the effectiveness of this method,
it is possible to rapidly construct the mass matrix at each time step as particles move
through the computational mesh in the background. Reference [107] provides the proof
that this method is equivalent to the row sum method of construction. At the start
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of each time step, the mass matrices in Equations 4.50 and 4.51 must be integrated.
Equation 4.87 can therefore be formulated for mass matrices, and given as:

mt
w,i ≈

nep

∑
p=1

mw,p Ni (ξ
t
p) ,

m̄t
w,i ≈

nep

∑
p=1

nt
p mw,p Ni(ξ

t
p) ,

mt
s,i ≈

nep

∑
p=1

(1 − nt
p)ms,p Ni(ξ

t
p) ,

(4.88)

corresponding to the matrices Mw, M̄w, and Ms, respectively. Next, the velocities of
particles in both solid and fluid phases are mapped to the nodes. This is achieved
through the relation:

M̄t
w wt = Pt

w ,

Mt
s vt = Pt

s ,
(4.89)

where, the vectors containing mapped momentum from particle,s Pt
w and Pt

m are as-
sembled and given by the relations:

Pt
w ≈

nelm

∆
e=1

nep

∑
p=1

nt
p mw,p NTξt

p) ŵt
p ,

Pt
s ≈

nelm

∆
e=1

nep

∑
p=1

(1 − nt
p)ms,p NT(ξt

p) v̂t
p ,

(4.90)

respectively. Using the relations, the nodal force vector that corresponds to the pre-
scribed tractions is constructed as:

F̃trac,t
w ≈

npelm

∆
e=1

nebp

∑
p=1

NT(ξt
p) f̃ trac

w,p ,

F̃trac,t
m ≈

nτelm

∆
e=1

nebp

∑
p=1

NT(ξt
p) f̃ trac

p ,

(4.91)

for the prescribed pressure and tractions, respectively. Here, nebp refers to the boundary

90



4.4 Extension of discretisation from FE to MPM

particles where traction is prescribed. Applying the time function T (t) as a multiplier,
the prescribed traction vectors can be written as:

Ftrac,t
w = F̃trac,t

w T (t) ,

Ftrac,t
m = F̃trac,t

m T (t) ,
(4.92)

respectively. Gravitational body forces for the fluid and solid phases can be integrated
by the relations:

Fgrav,t
w ≈

nelm

∆
e=1

nep

∑
n=1

NT(ξt
p) f grav

w,p ,

Fgrav,t
m ≈

nelm

∆
e=1

nep

∑
n=1

NT(ξt
p) f grav

p ,

(4.93)

respectively. Internal forces due to pore pressure and total stress are given by the
relations:

F int,t
w ≈

nelm

∆
e=1

nep

∑
n=1

BT(ξt
p) pt

p I Ωt
p ,

Fgrav,t
m ≈

nelm

∆
e=1

nep

∑
n=1

BT(ξt
p)σt

p Ωt
p ,

(4.94)

respectively. The nodal vector of interaction forces or the drag force is calculated using
the relation:

Fdrag,t
w = Qt (wt − vt) , (4.95)

where, Q is a lumped matrix, whose individual constituents, qi are integrated using the
relation:

qi ≈
nep

∑
p=1

nt
p mw,p g

kt
p

N(ξt
p) . (4.96)

The discrete momentum equations can hence be written as:
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Mt
w at

w = Ftrac,t
w + Fgrav,t

w − F int,t
w − Fdrag,t

w , (4.97)

and,

Mt
s at

s = −M̄t
w at

w + Ftrac,t
m + Fgrav,t

m − F int,t
m , (4.98)

for the fluid and solid phases, respectively. The Equation 4.97 above is solved for nodal
accelerations of the fluid phase, at

w by the relation:

at
w = Mt,−1

w

[
Ftrac,t

w + Fgrav,t
w − F int,t

w − Fdrag,t
w

]
. (4.99)

Once at
w is calculated, it is subsequently used to calculate the nodal acceleration vector

of solid phase, at
s by the relation:

at
s = Mt,−1

s

[
−M̄t

w at
w + Ftrac,t

m + Fgrav,t
m − F int,t

m

]
. (4.100)

Nodal velocities for the fluid and solid phases are calculated as:

M̄t
w wt+∆t =

nelm

∆
e=1

nep

∑
p=1

nt
p mw,p NT(ξt

p) ŵt+∆t
p , (4.101)

and,

M̄t
s vt+∆t =

nelm

∆
e=1

nep

∑
p=1

(1 − nt
p)ms,p NT(ξt

p) v̂t+∆t
p , (4.102)

where, the updated particle velocities based on the nodal accelerations are given by the
following equations:

ŵt+∆t
p = ŵt

p +
nnodes

∑
i=1

∆t Ni(ξ
t
p) at

w,i ,

v̂t+∆t
p = v̂t

p +
nnodes

∑
i=1

∆t Ni(ξ
t
p) at

s,i ,

(4.103)
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respectively, for the fluid and solid accelerations. Using the relationship, incremental
nodal displacements are calculated only for the solid phase by:

∆ut+∆t = ∆vt+∆t ∆t . (4.104)

Strains in the solid phase are computed using the relation:

εt+∆t
p = B(ξt

p)∆ut+∆t
e , (4.105)

where, ∆ut+∆t
e has the following components:

∆ut+∆t
e =

[
∆u11 ∆u12 · · · ∆unen1 ∆unen2

]T
. (4.106)

While effective stress, σ
′t+∆t
p is calculated on the particles using a constitutive model of

choice, and the pore pressure is updated on the particle via relation:

pt+∆t
p ≈ pt

p + ∆t
Kw,p

nt
p

[
(1 − nt

p) B(ξt
p) vt+∆t

e + nt
p B(ξt

p)wt+∆t
e

]
I . (4.107)

Total particle stress can now be updated using the relation:

σt+∆t
p = σ

′t+∆t
p + pt+∆t

p I . (4.108)

The particle volumes are updated using the relation:

Ωt+∆t
p =

(
1 + tr(εt+∆t

p )
)

Ωt
p, where, tr(εt+∆t

p ) = ∆ε11 + ∆ε22 + ∆ε33 . (4.109)

Using the updated incremental particle displacement, the new position of the particle
is calculated using the relation:

xt+∆t
p = xt

p +
nnodes

∑
i=1

Ni(ξ
t
p)∆ut+∆t

i . (4.110)
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With this, it is implied that the current time step has concluded. The bookkeeping for
the particles is updated, the grid is reset, and the computation is advanced to the next
step.

4.5 One-dimensional consolidation example in CPDI

Parameter Value
Young’s Modulus [kPa] 10,000
Poisson’s ratio [-] 0
Bulk Modulus of Water [GPa] 2.1
Porosity [-] 0.3
Permeability [m/s] 1 × 10−3

Number of Particles 400, 1,600, 3,600

Table 4.1: Simulation parameters for one-dimensional consolidation problem

The well-known one-dimensional consolidation simulation, based on the one-dimensio-
nal consolidation theory after Terzaghi [204], is simulated to verify the implementation
of the two-phase CPDI code. Owing to the availability of a closed-form solution, the
numerical model’s performance can be compared to the expected outcomes. A 1 m tall
column of saturated soil is meshed with 400, 1,600, and 3,600 particles, which corre-
sponds to 1, 4, and 9 particles per computational grid background, respectively. For
this numerical calculation, a linear elastic model was used. The soil continuum param-
eters are tabulated in Table 4.1. In the simulation, the full value of the Bulk Modulus of
water is assumed. The model’s base is completely fixed, while the lateral surfaces are
assigned roller boundaries.

A constant stress of 10 kPa is applied to both the soil and pore water portions until
the soil reaches its steady state. Since the load is also applied to the pore water con-
tinuum, the entire load is carried by the water as the system reaches equilibrium. The
pressure applied to the pore water portion of the model is eliminated while the soil
stress remains unchanged. This allows water to flow out of the column’s head, thereby
decreasing pore pressure.

The consolidation coefficient describes the procedure:

cv =
k

ρw g (1/E)
, (4.111)

where, k is the permeability of the soil, ρw is the density of water, g is the acceleration
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Figure 4.5: Comparison of pore pressure profiles for the Terzaghi’s one-dimensional
consolidation test, 1 particle per grid (top), 4 particles per grid (middle), and
9 particles per grid (bottom)
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due to gravity, and E is the Young’s modulus of soil. The non-dimensional time factor
Tv is given by the relation:

Tv =
cv t
h2 , (4.112)

where, h is the drainage length.

Figure 4.5 depicts the evolution of pore pressure over time. The outcomes are com-
pared to the analytical solution. It can be seen that, for all models, the coupled CPDI
tool provides results that are nearly identical to those of the analytical result. To de-
termine whether the number of particles per grid has a significant effect on the results,
a parameter study was conducted by varying the number of particles per grid. Fig-
ure 4.5a demonstrates that while the pore pressure versus column depth exhibits some
oscillation in the case of one particle per grid (top), this decreases when the number
of particles per grid is increased to four, as seen in Figure 4.5b. Figure 4.5c displays
a very smooth pore pressure versus depth response when nine particles per grid are
considered.

4.6 Concluding remarks

This chapter presented a two-phase one-point MPM formulation capable of modelling
fully coupled hydromechanical problems, as well as the numerical treatment of the
coupled formulation. This formulation was implemented as an extension to the MP-
M/CPDI code introduced in Chapter 3. This formulation is required for simulating
saturated media in a code that has already demonstrated its ability to capture large
deformation. No special treatment is required for the contact elements, as the previ-
ously introduced and implemented penalty contact algorithm was found to be capable
of handling contact between two saturated continuums or a saturated and dry contin-
uum. Additionally, the absorbent boundaries have been implemented to reduce the
number of spurious waves that rebound from the boundaries. Through the simulation
of the one-dimensional consolidation problem, a validation of the coupled formulation
is presented. This will later be utilised in simulations conducted in Chapter 6. This
provides one of the components for the simulation of a saturated continuum applicable
to real-world issues.
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Chapter 5

Constitutive Modelling

5.1 The UBCSAND Model

The UBCSAND model was developed at the University of British Columbia in order
to simulate soil liquefaction during dynamic processes such as earthquake shaking. In
this work, the UBCSAND model and the two-phase CPDI code are used to represent
the saturated soil continuum. UBCSAND is an effective stress model that simulates the
elasto-plastic mechanical behaviour of the sand skeleton. In references [14, 15, 40], the
model has previously been used to simulate the behaviour of saturated soil; i.e., sand
skeleton and pore water fluid. The plastic shear modifies the soil skeleton volume and,
as a result, alters the pore fluid pressure. The changes in pore pressure changes the
soil’s effective stress.

The model employs a yield surface related to the continuum’s stress ratio and a non-
associative flow rule. The flow rule models contractive soil behaviour when the stress
ratio is less than the angle of phase transformation friction, and dilatant soil behaviour
when the stress ratio is greater than the angle of phase transformation friction. The
stress ratio η, is proportional to the shear stress on the plane of maximum shear, τ
divided by the mean effective stress, (σ′

m) as τ/σ′
m, where the σ′

m is given by the relation

σ′
m =

σ′
x+σ′

y
2 . When the stress ratio increases, the soil is loaded, and it decreases when

it is unloaded. A change from loading to unloading or vice versa occurs when the
sign of the shear stress on the horizontal plane, τxy reverses. The model’s behaviour
under unloading and reloading represents pure elastic behaviour. The bulk modulus
and shear modulus are functions of the mean effective stress. Yield surface, dη depends
on the plastic shear modulus (Gp/σ′) and the hardening parameter, dγp.

The UBCSAND model can be calibrated using triaxial and simple shear laboratory tests.
It can simulate both the drained and undrained behaviours of loose sandy soils. In the
case of drained soil, contractive behaviour is modelled when the continuum is sheared
below the phase transformation angle, ϕcv and dilatant behaviour is modelled when the
continuum is sheared above ϕcv, and Modelling the excess pore pressure build-up and
soil liquefaction can be modelled in the case of undrained soils. The elastic and plastic
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response of the model is briefly described below, but readers are referred to the work
of Naesgaard [159], from which the UBCSAND model implemented in this work was
adapted.

Elastic Response

It is assumed that the model’s elastic response is linear, incremental, and isotropic.
The behaviour is specified by Hooke’s law of elasticity. In this model, the unloading-
reloading process follows an elastic path, with the elastic isotropic shear and bulk mod-
ulus being functions of the mean effective stress, σ′ and atmospheric pressure, Pa, usu-
ally taken as 100 kPa. The relationships between elastic moduli are as follows:

Ge = Ke
G · Pa ·

(
σ′

Pa

)n

,

Ke = Ke
K · Pa ·

(
σ′

Pa

)m

,

(5.1)

where, Ge and Ke are the elastic shear and bulk modulii. Exponents m and n are the
elastic bulk and shear modulus exponents, respectively and are taken to be around

0.5. Mean effective normal stress, σ′ is given by the relation σ′ =
σ′

x+σ′
y

2 . The shear
modulus number, Ke

G is a function of relative density. It can be estimated using the
relation Ke

G = 21.7 · A ·
(

N160

)0.33, with N160 being the Standard Penetration Test (SPT)
blowcount standardised to 60% energy and corrected for overburden. Here, A is a
factor ranging between 15 to 20. Where the shear wave velocity (Vs) data is available,
the correlation Ke

G = ρ V2
s /Pa · (σ′/Pa)n can be used, in which, ρ is the soil density.

Plastic Response

Plastic volumetric (ϵp
v ) and shear (γp

s ) strains are generated when the stress state is on
the yield surface. Below the phase transformation angle, the plastic volumetric strains
are contractive and above, they are dilatant. The flow rule is specified by the following
relation:

dϵ
p
v

dγ
p
s
= −tan(ψ) , (5.2)
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5.1 The UBCSAND Model

where, −sin(ψ) = (sin(ϕcv)− η), the dilation angle is given by ψ, η corresponds to the
developed stress ratio with η ≤ sin(ϕ f ), where ϕ f is the peak friction angle. Raising the
yield surface (dη) is carried out through the plastic shear modulus (Gp) and the plastic
shear strain increment (dγ

p
s ) via the relation:

dη =
dγ

p
s · Gp

σ′ . (5.3)

The plastic shear modulus is defined by a hyperbolic relationship and is a function of
the developed stress ratio (η) and failure stress ratio (η f ). In references [62, 117, 150],
hyperbolic relations have been used successfully to capture the shear stress - shear
strain response of granular soils. The sign of the stress ratio is determined by the sign
of the horizontal shear stress. Positive and negative values are recorded independently.
As a result, the plastic hardening is characterised by kinematic rather than isotropic
behaviour. For initial loading (or virgin loading), the following relation is adopted:

Gp = Gp
i ·
(

1 − η

η f
· R f

)2

, (5.4)

where, Gp
i is the plastic shear modulus at η = 0 and R f is a constant that is used to

truncate the hyperbolic curve to prevent the overprediction of strength at failure. It
varies between 0.7 and 1.0.

Plastic strain rates are governed by yield loci, which are assumed to be radial lines
emanating from the origin of stress space. For initial loading, the yield locus is deter-
mined by the soil’s current stress state. As the shear stress increases, so does the stress
ratio, activating the primary yield surface in accordance with an isotropic hardening
rule given by the relationship:

ηd =
γ

p
s[(

σ′
Ge

)
+

(
γ

p
s R f
η

)] .
(5.5)

Consequently, the yield surface is dragged to the new location, expanding the model’s
elastic zone. In this model, the ultimate strength and stress state are assumed to be
determined by a Mohr-Coulomb type failure criterion, i.e.,

f f = σ′
1 − σ′

3 Nϕ f + 2 c
√

Nϕ f , (5.6)
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Figure 5.1: Flowchart for one computational step using the UBCSAND Model in
CPDI, adapted from [159]
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5.2 Verification of constitutive law

with σ′
1 and σ′

3 being the effective major and minor principal stresses, respectively. The
parameter c is the cohesion, and Nϕ f is given by the relation:

Nϕ f =
1 + sin(ϕ f )

1 − sin(ϕ f )
, (5.7)

in which, ϕ f is the peak friction angle. In addition to the physical parameters, param-
eters h f ac1 through h f ac6 are introduced to control plasticity hardening and hysteresis
loop details. These hardening factors affect the following: number of cycles required to
initiate liquefaction; shape of pore pressure rise with the number of cycles; dilatation
characteristics to control the post-trigger response; secondary dilatation characteristics
after triggering failure; and failure envelope pull-down below ϕcv upon unloading.

Figure 5.1 depicts the flowchart for a single computational step utilising the UBCSAND
model. For a detailed description of the model, please see references [14, 15, 40, 159,
183].

5.2 Verification of constitutive law

Reference [159] provides the FLAC’s FISH implementation of the UBCSAND model
(UBCSAND1v02). While the code can be utilised within the commercial geotechnical
software FLAC (Fast Lagrangian Analysis of Continua), a direct and clean implementa-
tion within the CPDI code is not possible. To achieve this, the FISH code was translated
into FORTRAN. This allowed for a CPDI-compliant implementation that was optimised.
This in-house implementation route allowed for the utilisation of the existing Mohr-
Coulomb failure criterion with the implementation of the UBCSAND as an add-on.

Implementing the constitutive law in the CPDI numerical package necessitates rigor-
ous testing of the code. This serves two purposes: i) to confirm the veracity of the
implementation of the constitutive law, and ii) to ascertain whether the constitutive law
functions as expected within the framework of the two-phase CPDI code.

Element test

In order to test the implementation of the constitutive law, a 1 gauss point finite ele-
ment code was developed and the UBCSAND constitutive law was implemented. In
their work, Makra [142] validated the UBC3D-PLM Constitutive law, an advanced ver-
sion of the UBCSAND model implemented in PLAXIS™, a commercial finite element
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N160[−] me[−] ne[−] np[−] Ke
G[−] Ke

B[−]
7.4 0.5 0.5 0.4 845.2 591.6
Kp

G[−] ϕpt[◦] ϕ f [
◦] c[kPa] Pa[kPa] σt[kPa]

238.8 33 33.7 0 100 0
h f ac1[−] h f ac2[−] h f ac3[−] h f ac4[−] h f ac5[−] h f ac6[−]
0.45 0.1 1.0 0.6 1.0 0.95

Table 5.1: UBCSAND model parameters for Nevada Sand

widely used in geotechnical engineering. Fraser River sand, and its corresponding pa-
rameters, was used to test the implementation of the constitutive law. Reference [142]
provided the calibrated parameters for the loose sand. Both the PLAXIS™ implemen-
tation and the CPDI implementation utilise nearly identical parameter sets. Therefore,
the provided parameters were utilised. The relative density, Dr of the loose sand was
40%. The K0 value was set to 0.46, and the test’s cyclic stress ratio (CSR) was set to 0.08.
The element test parameters are tabulated in Table 5.1.

Experiment 

Figure 5.2: Cyclic undrained Direct Simple Shear (DSS) test for UBCSAND Numerical
model and Laboratory test; Id = 40%, CSR = 0.08, K0 = 0.46
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Figure 5.2 shows the results of the element test that was conducted. When compared
to the experiment, it is evident that the questioned model is capable of capturing the
completed liquefaction of the soil and the excess pore pressure ratio within a reason-
able range. The results shown in Figure 5.2 from reference [142] are comparable to
those depicted in this figure. Due to the two models’ implementations of hardening
factors being different, it is not reasonable to expect that the results of the element test
conducted here will be exactly comparable to the results reported in the reference [142].
After confirming that the implementation for an element test was accurate, additional
dynamic problems are selected and evaluated to validate the implementation of the
constitutive models. The objective was to ensure that the element test implementation
was correct, and could be considered fulfilled.

5.3 Shake Table Test

The classic shake table benchmark test was simulated using the UBCSAND model after
performing the element test. To alleviate concerns regarding the liquefaction suscep-
tibility of large embankment dams, centrifuge tests were commissioned to investigate
the behaviour of saturated soils under the high confining stresses encountered in deep
deposits [77]. One of the most important factors contributing to the earthquake resis-
tance of embankment dams is liquefaction. Despite the fact that there have been no
historical observations of liquefaction at greater depths (i.e., greater than 30 m [222],
which suggests that there would be no significant excess pore pressure response under
dynamic loads), corrective measures would be required if this were not the case.

There have been numerous centrifuge tests conducted to examine the development of
soil liquefaction, including both homogeneous and multi-layered samples. However,
the majority of these tests simulated shallow deposits (between 6 and 15 m). Prior

Figure 5.3: Diagram depicting the Shake Table Test
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N160[−] me[−] ne[−] np[−] Ke
G[−] Ke

B[−]
10.7 0.5 0.5 0.5 800 1100
Kp

G[−] ϕpt[◦] ϕ f [
◦] c[kPa] Pa[kPa] σt[kPa]

500 31 32 0 100 0
h f ac1[−] h f ac2[−] h f ac3[−] h f ac4[−] h f ac5[−] h f ac6[−]
0.3 0.85 1.0 0.6 1.0 0.95

Table 5.2: UBCSAND model parameters for Nevada Sand

to the work described in reference [77], either field or laboratory tests provided scant
information on the development of liquefaction under greater confining stresses. As
they are 1 g tests, laboratory model tests conducted under controlled conditions are
not representative of field conditions. Due to the high dependence of soil behaviour
on stress, these miniature models cannot adequately represent reality. In contrast, cen-
trifuges utilise a high acceleration field that preserves the stress-strain response of the
prototype soils and can provide a more accurate representation of the field behaviour.
When such models are subjected to a controlled base motion, validation of numerical
approaches can be accomplished. In order to accomplish this, the shake table tests
described in reference [77] were simulated.

Byrne and colleagues [40] performed the numerical modelling of the shake table de-
picted in Figure 5.3 by combining FLAC and UBCSAND. The column was subjected to
a vertical centrifugal acceleration of 120 g as well as a horizontal cyclical load of 0.2 g at
a frequency of 1.5 Hz. Figure 5.3 also depicts the numerical model corresponding to the
1 g prototype that was used for this study. It was comprised of 0.33 metres of uniform,
saturated Nevada sand with an assumed initial relative density of Dr = 55%, which cor-
responded to an effective height of 38 metres under the centrifuge’s acceleration. The
centrifuge study’s horizontal loading scheme was adopted for the numerical model as
well. Table 5.2 summarises the simulation parameters. While the first two rows of pa-
rameters were previously defined in terms of well-established properties, the third row
contains calibration parameters that fine-tune the stress-strain details. The viscosity of
the experiment’s fluid was sixty times that of water. The water table is at the surface
of the model, and no surface surcharge was applied. At the base, the maximum initial
effective stress corresponded to 380 kPa.

The prototype CPDI models contained 468 background grid elements and 3,429 parti-
cles. The purpose of this simulation was to determine whether or not a one-dimensional
representation could accurately represent the experiment. To enforce simple shear and,
by extension, uniform pressure and effective stresses along each horizontal layer of
particles, the particles on the left and right boundaries were “tied together”. Verti-
cal strains were the only cause of volumetric strains. Secondary response modes such
as rocking were omitted. The centrifuge’s spin-up was modelled by progressively in-
creasing gravitational forces. This gradually established the initial stresses and pore
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Figure 5.4: Mean Effective Stress throughout the column at various simulation stages

pressures over the course of 20 seconds and ensured that the continuum did not fail
due to gravitational loading and that any stress waves that may have been generated
were given sufficient time to dissipate. Similar to the experimental model, the water
table in the computational model was located at the model’s surface. Initial saturation,
Sr was not measured for the experimental models, and in this work, one hundred per-
cent (Sr = 100%) has been assumed. Reference [40] however suggests that assumed
saturation values of 98.5% before spin-up were found to provide the best agreement
with Rensselaer Polytechnic Institute (RPI) model measurements.

The particles were subjected to the acceleration effects via d’Alembert’s principle. The
momentum equations were integrated using a forward-Euler time-stepping algorithm
with a nominal 1 percent Particle-in-Cell damping [160] applied when calculating the
particle velocities of both phases. In contrast to reference [40], interface elements were
not implemented to account for potential silo effects caused by soil interaction with the
walls of the container.

Figure 5.4 depicts the predicted effective stress variation with depth, which demon-
strates the decrease in mean effective stress at different times. Since effective stresses
were not recorded during the experiment, the simulation results provide insight into the
development of effective stresses in the column during simulation. It should be noted
that the numerical model captured the experimentally observed decrease in recorded
stress rate at different heights of the column [40, 77]. The trend of top-down liquefac-
tion reported by Gonzalez et al. [77] was also predicted by the CPDI model. Near the
conclusion of the simulation, when the effective stresses were close to zero, numerical
instabilities arose at the column’s top. Because the increase in pore pressures was di-
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5.3 Shake Table Test

rectly proportional to the decrease in effective stresses, it is reasonable to conclude that
the predictions were consistent with the experimental findings.

Comparing the experimental results presented in reference [40] to the predicted excess
pore pressure evolution plotted in Figure 5.5 at different heights reveals the CPDI’s
ability to reproduce the rate of liquefaction. In general, Figure 5.5 demonstrates that
the maximum excess pore pressure predicted by the numerical solution is lower than
what was observed in the experiment. This is consistent with the fact that the effec-
tive stresses in these regions did not reach zero. This discrepancy can probably be
eliminated by calibrating the parameters to better match the experimental values.

Figure 5.5c demonstrates, for instance, that the simulated rate of generation of excess
pore pressure corresponding to a height of 13.2 m is initially close to what had been
measured experimentally until 2.5 seconds. The rate of generation of excess pore pres-
sures deviates from the experiment thereafter, resulting in a lower final excess pore
pressure than measured. In addition to the different predicted excess pore pressures,
the predicted times at which the excess pore pressures remained constant tended to
vary. At a height of 1 m, as depicted in Figure 5.5a, the predictions indicated a more
rapid increase to a constant pore pressure than was actually observed. The minute fluc-
tuations in pore pressure suggest that the effective stresses were not zero. The rationale
for this is that pore pressures were calculated as a contribution of fluid strains and mix-
ture strains, i.e., changes in mixture strains resulted from the variation in pore pressures
and effective stress. Despite differences, the comparisons in this section demonstrate
that the two-phase CPDI method incorporating the UBCSAND model were able to cap-
ture the liquefaction phenomenon with a reasonable degree of accuracy.

Figure 5.5d demonstrates that the excess pore pressure generation rate corresponds
to the experiment for the first few seconds, but then begins to deviate. As shown in
Figure 5.5c, the predicted final pore pressures are also lower. Notably, the CPDI model
is able to capture the different rate of excess pore pressure generation, depending on
the depth of measurement, with a higher rate observed at the top of the model, where
the stress state is considerably lower, than in the lower portions, where the stress state is
significantly higher. Figure 5.5b demonstrates that for the first 10 seconds of simulation,
the rate of excess pore pressure generation from the CPDI model and the experiment
are comparable. As observed at other depths, the predicted final excess pore pressure
is less than the measured value.
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Effect of hydraulic conductivity on liquefaction

Figure 5.5 demonstrates that the CPDI model predicts slightly lower excess pore pres-
sure. Consequently, using a 1-D, 38-element finite element model of the shake table
test, the dependence of excess pore pressure on hydraulic conductivity was studied.
Again, the UBCSAND model with parameters for Nevada sand was adopted.

Equation describing the 1-D model that avoids wave reflections from vertical bound-
aries:

∂σxy

∂y
+ ρ

∂ubase
∂t

= ρ
∂u
∂t

, (5.8)

and,

∂σ′
yy

∂y
+ ρ′ g = ρ̄

∂v
∂t

+
ρw g

k
v , (5.9)

where, σxy is the shear stress, ∂ubase
∂t is the base acceleration, and u and v are the x- and

y-direction velocities, respectively. The hydraulic conductivity is k. ρ and ρw represent
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Figure 5.6: Normalised Excess Pore Pressures - Varying hydraulic conductivities
for Nevada Sand
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Figure 5.7: One-dimensional test - Effect of hydraulic conductivity on liquefaction

the unit weights of the mixture and water, respectively. ρ̄ is given by ρ̄ = ρ′ + ρ
n ,

buoyant unit weight ρ′ is given by ρ′ = ρ − ρw, and n represents the porosity. These
differential equations are derived under the assumption of complete incompressibility
(1 − n) ∂v

∂y + n ∂w
∂y = 0, where w is the water’s velocity. It should be noted that there are

no vertical boundaries in this model. Therefore, considering wave reflections from the
vertical boundary is unnecessary.

Figure 5.6, which depicts the excess pore pressure development normalised with respect
to the initial effective stress, demonstrates that k = 0.001 m/s and 0.000121 m/s capture
the salient features of excess pore pressure generation. At a height of 25 m, we observe
that the excess pore pressure at a lower k-value causes liquefaction to occur sooner,
whereas at a higher k-value, the generated excess pore pressure levels off prior to com-
plete liquefaction occurring. Near the bottom, both permeabilities values causes the soil
to undergo liquefaction, which is to be expected given the length of the drainage path.
The loading-unloading sequences are reflected in the cyclical variation of pore pressure
at the bottom. The faster development of pore pressure in the 1-D model relative to
the CPDI model can be attributed to the stricter enforcement of incompressibility. The
predicted lower excess pore pressures are consistent with those observed in Figure 5.5
based on these results. Figure 5.7 depicts the excess pore pressure calculated from the
1-D model at heights of 1 m and 25 m.
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Figure 5.8: Effect of hydraulic conductivity on liquefaction - 2D Model

Figure 5.8 depicts that the exact same test was conducted for the 2-D FE model. When
the hydraulic conductivity was low, i.e. 0.01 m/s, the maximum excess pore pressure
was approximately half of what was calculated for lower hydraulic conductivities. Sim-
ilar findings were reported in reference [16]. In this study, the relationship between ex-
cess pore pressure and hydraulic conductivity at various fines contents was examined.
It was observed that, for a given density, the excess pore pressure increases linearly
with decreasing hydraulic conductivity. Using a two-dimensional, 38-element model,
analyses were conducted assuming UBCSAND and Nevada sand parameters in order
to estimate the computational time with varying hydraulic conductivities. For k = 0.001
m/s, the calculation took approximately 12 minutes, while k = 0.000121 m/s required
55 minutes. To reduce computational time, higher values of k were selected. Reference
[151] provides the relationship between hydraulic conductivity and time-step.

It should be noted that the CPDI predictions of the shake table prototype, like those
reported in reference [40], correspond to a one-dimensional situation. The experimental
setup was in fact a two-dimensional problem. The conditions at the walls of the sand
container were not considered as indicated previously, and the assumption of uniform
properties may be overly optimistic, despite the fact that the physical test specimen
was likely fabricated with great care. Therefore, it is reasonable to anticipate some
differences between measurements and predictions. It is essential that the overall char-
acteristics have been captured.

Figure 5.9 illustrates a comparison between the results from the CPDI model and those
from the commercial finite element code FLAC, as performed in reference [40]. Com-
pared to the experiments, both FLAC and CPDI were able to capture the rate of increase
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Figure 5.9: Excess Pore Pressure comparison - Numerical: FLAC and CPDI
vs. Measured, for Nevada Sand

of pore pressure quite accurately. As predicted by the CPDI simulations, the maximum
value of excess pore pressure is lower than both the experimental and FLAC numeri-
cal results. FLAC employs the finite difference method (FDM), which permits a more
stringent application of the compressibility criterion [101].

5.4 Conclusion

In this chapter, the UBCSAND model, which was initially described in Reference [159],
has been presented. The justification for implementing an in-house constitutive law as
opposed to using one of the commercially available ones is the flexibility it provides
in adapting it to the application at hand and, if necessary, improving it. The imple-
mented model is examined for accuracy using an element test, in which cyclic direct
shear tests are conducted. When the results of the numerical model were compared
to those of the experiments, it was determined that they were in good agreement. In
addition, a dynamic simulation, the shake table test, was conducted and compared to
the experimental findings. Additional results of the model are compared favourably to
the experimental data in Appendix D. Having gathered all the necessary components
for application to a real-world problem, this topic will be covered in the following
chapter.
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Chapter 6

Contributions towards numerical simulation of
pile installation

Vibratory driving of monopiles is not a well-understood offshore pile foundation instal-
lation technique, causing engineers to be rather cautious in their applications. In the
case of vibratory driving, there is a significant potential for cost and time savings over
impact driving. Through the application of two-phase CPDI model together with the
UBCSAND constitutive law described in the preceding sections, this chapter attempts
to shed more light on the vibratory installation of offshore monopiles.

According to a 2012 report cited in reference [140], approximately three-quarters of
offshore wind parks were constructed on monopile foundations. In sandy soils, the
use of monopiles for offshore wind farms is likely the most logical option; however,
little is known about the installation behaviour due to a lack of visual access and the
inability to reliably measure and document changes in the soil state during installation.
Changes in the state of the soil surrounding a pile affect its resistance, either positively
or negatively. Reference [1] investigated the distinction between the lateral bearing
behaviour of vibrated and impact-driven large monopiles in dense sand. Typically, a
hammer powered by hydraulics is utilised to install monopiles by impact driving. To
drive the pile into the subsoil, several thousand blows must be delivered to it.

While the impact driving method of installation is prevalent due to its cost-effectiveness
and overall versatility, i.e. the capability to install the pile to its final installation depth,
it is not the only method. An issue with this method of installation is that it induces a
high level of noise (pressure waves) in the water, which is harmful to marine life [64].
Although there are methods employed to keep the noise level low, such as using a bub-
ble curtain, isolation casings, and coffer-dams, this only serves to increase operational
costs and at times fails to maintain noise emission levels below the prescribed values.
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6.1 Vibratory pile installation

Alternatively, the monopile foundations can be installed using vibratory driving. The
system consists of a suspended vibrator that clamps onto the driving material and
a power unit that supplies the required hydraulic pressure, to provide the adequate
clamping force. Frequently, a crane is employed to manipulate and position the sus-
pended vibrator. The crane regulates the system’s static weight during the vibratory
driving process. When resistance is encountered, the crane can raise the vibrator-pile
system or release tension for maximum static force. The majority of experimental and
field investigations of vibratory driven piles have concentrated on their axial behaviour
[33, 35, 122]. The observations indicate that, compared to impact-driven piles, vibratory-
driven piles generally exhibited a lower axial pile capacity and axial stiffness. According
to references [87, 122], vibrated piles have higher skin friction and lower pile tip resis-
tance than hammered piles. According to Labenski [122], vibrated piles have a greater
capacity in loose and medium-dense soils. This is the result of densification around the
pile shaft zone. On the other hand, loosening appears in dense and extremely dense
soils, resulting in diminished capacity.

During the vibratory installation of piles, conventional soil dynamics issues such as
shear resistance of soils, local densification of soil body, and fluidisation of soil, to
name a few, become relevant. When sand is sheared, the grains rearrange and reorient
themselves in an effort to occupy a stable position with maximum inter-particle contact.
Whether this rearrangement results in densification or loosening dependens on soil-
specific parameters and the vibration process. In highly dynamic processes occurring in
saturated granular soils, liquefaction or fluidisation is an additional factor that must be
considered. When fully saturated soils that have been subjected to cyclic or monotonic
loading undergo liquefaction, the shear strength is significantly reduced. Contractive
loose sand attains its critical state, resulting in a condition of continuous flow with
significant shear distortion and strength decrease. This state is maintained by the soil
as long as the acting shear stresses are less than its reduced shear strength [44]. When
the soil reaches the critical state, it flows with a constant void ratio, effective mean
stress, and deviatoric stress.

Reference [193] investigated the influence of void ratio, confining pressure, and the
magnitude of the stress/strain cycle on liquefaction. It was inferred that the liquefac-
tion ceased only after the excitation ceased. Regarding liquefaction, a comparison can
be made between the pile and the soil surrounding the pile. Sand deposits with a void
ratio above the critical state line exhibited a tendency to contract during shearing, and
positive pore pressure development was observed under undrained conditions, result-
ing in liquefaction. On the other hand, deposits with an initial void ratio below the
critical state line exhibited a tendency to dilate upon shear, resulting in a decrease in
pore pressure that causes an increase in the effective stress, which in turn increases the
strength and stability.
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6.2 Numerical simulation of model pile installation

During the vibratory installation of a pile, it is known that pore water pressure increases
in a zone surrounding the pile. This is supported by numerous studies, including ref-
erences [139, 141, 176]. Therefore, the possibility of liquefaction cannot be disregarded.
Although the development of excess pore pressure can be modelled using a coupled
formulation, the accuracy of the magnitude of generated excess pore pressure and the
resulting reduction in effective stresses is dependent highly on the constitutive model
used for the soil. Using ABAQUS™ to model the phenomenon, reference [191] imple-
mented a multi-phase formulation that incorporated the hypoplastic soil model [213].
The analysis captured the excess pore pressures as well as the corresponding reduction
in effective stress around the pile. A finite element analysis simulating a vibratory-
driven pile was presented in [172]. Using the hypoplastic soil model once more, their
analyses were able to simulate a liquefaction zone around the pile.

The mechanism of liquefaction has been used to describe the reduced shear strength in
saturated soils that makes pile installations possible. According to reference [193], the
grains temporarily lose a portion of their interparticle forces and are supported solely
by the pore water pressure. High acceleration and amplitude were also reported to
significantly increase the development of pore water pressure. For soil grains near the
pile shaft experiencing high acceleration amplitudes, the occurrence of soil fluidisation
is constant, regardless of the degree of saturation. It was also evident that the forma-
tion of excess pore pressure greatly facilitated the process of penetration. However, its
magnitude was contingent on the cyclic strain amplitude. It was observed that the am-
plitude of pile displacement is proportional to the amplitude and mean value of excess
pore water pressure [31].

In this study, an effort was made to employ a model capable of capturing the lique-
faction effects, so that the phenomena described in the aforementioned literatures are
accounted for by the model. In addition, the capability of the code to model the ex-
tremely dynamic and complex pile installation is evaluated.

6.2 Numerical simulation of model pile installation

The purpose of the model test, which was originally conducted at Techincal University
of Berlin, is to realistically simulate the vibratory driven (and impact driven) pile instal-
lation of an open steel pipe pile. According to Remspecher et al. [186], the individual
dimensions of geotechnical model tests conducted under 1 g conditions were scaled.

The test apparatus consisted of a steel container with an inner base measuring 1.70
metres by 0.70 metres and a height of 1.15 metres, with an additional drainage layer
measuring 0.25 metres at the bottom. The pile has a 20 cm outer diameter, a 4 mm
wall thickness, and a final installation depth of 0.87 m. A system of guide rollers
positioned atop the container ensured that the pile could only penetrate the glass panel
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Chapter 6 Contributions towards numerical simulation of pile installation

Figure 6.1: Schematic model test set up of the model vibratory pile [186]

in a vertical direction. This also served to prevent the pile from tilting. The design
of the model vibrator was based on the mode of operation of large-scale vibrators, in
which two sets of centrifugal masses rotate in opposite directions, allowing for a truly
vertical acceleration of the pile with no horizontal movement. The model vibrator’s
centrifugal force was set to 1,670 N at a constant frequency of 23 Hz. Table 6.1 provides
the vibration motor’s technical specifications. The model vibrator has a total static load
of 225 N. Figure 6.1 depicts a diagrammatic summary of the experiment. Reference
[186] provides a comprehensive explanation of the utilised testing setup and testing
procedure.

Parameter Value
Working Moment 16.0 kg cm
Centrifugal force, at 23 Hz 1,670 N
Mass of the vibration motor and mounting 22.91 kg
Mass of the pile 19.021 kg
Combined mass of motor, mounting and pile 41.93 kg

Table 6.1: Overview of the vibration motor parameters [186]
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6.2 Numerical simulation of model pile installation

Figure 6.2: Background computational grid discretisation (Left) and
Particle discretisation of pile and soil (Right)
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Model and boundary conditions

A pile installation was modelled using an axially-symmetric CPDI formulation and the
penalty contact procedure described in Chapter 3. For a scaled model test, the predic-
tions were compared to previously published experimental data. In the present study,
a multi-phase CPDI model was employed alongside the hypoplastic sand (elaborated
in Appendix C) and UBCSAND sand models. The goal was to model the evolution of
pore pressure and compare predictions to measured values at a single control point,
along with other state parameters including effective stresses.

A hollow model pile with a diameter of 0.2 m was vibrated into an assumed homoge-
neous and completely saturated soil. It was assumed that initial stresses corresponded
to K0 conditions (K0 = 0.5) The CPDI model was allowed to reach steady state be-
fore a harmonic load was applied. A loading frequency of 23 Hz was directly ap-
plied to the pile head. The particles on top of the pile were subjected to a dynamic
centrifugal force amplitude of 1,670 N, similar to the experimental setup, as tabu-
lated in Table 6.1 together with a static force of 419.3 N was applied. F = Fs + Fd =
419.3 + 1670 sin (2 π · 23 · t), where t is the time in seconds, provides the relationship
for the total force.

The bulk modulus of water was assumed to be 2.2 GPa (K f ). The adopted explicit time-
stepping scheme imposed a significant computational burden on such a high value. In
the work of Osinov et al. [172], it is demonstrated that a higher effective stress state for
the zone of liquefaction is observed when the bulk modulus of water is decreased by a
factor of 10. To provide more realistic conditions, a more precise, and therefore higher
and complete value was adopted. It was assumed that the pile vibrated only in the
vertical direction, with its horizontal movement constrained. The friction coefficient, µ
for interface elements used to model contact between the pile and the soil was assumed
to be 0.38.

The axially symmetric boundary depicted in Figure 6.2 was discretised using approx-
imately 25,000 particles representing the soil and pile domain, in addition to 1,500
interface elements. More particles were packed near the pile’s foot and jacket, requir-
ing an irregular meshing strategy. This allowed the process dynamics and solution

N160[−] me[−] ne[−] np[−] Ke
G[−] Ke

B[−]
11.5 0.5 0.5 0.4 1224 1120
Kp

G[−] ϕpt[◦] ϕ f [
◦] c[kPa] Pa[kPa] σt[kPa]

423 31.5 37.5 0 100 0
h f ac1[−] h f ac2[−] h f ac3[−] h f ac4[−] h f ac5[−] h f ac6[−]
0.65 0.85 1.0 0.6 1.0 0.95

Table 6.2: UBCSAND model parameters for Berlin Sand
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6.2 Numerical simulation of model pile installation

ϕc[◦] pt[−] hs[MPa] n[−] ed0[−]
31.5 - 230e6 0.3 0.391
ec0[−] ei0[−] α[−] β[−] mR[−]
0.688 0.791 0.13 1 4.4
mT[−] R[−] βr[−] χ[−] e0[−]
2.2 1e − 4 0.2 6 -

Table 6.3: Hypoplastic model parameters for Berlin Sand

convergence to be realised more rapidly. The pile was initially embedded 0.1 m, which
approximated the experiment-observed pile penetration due to gravity. A continuously
updated time-stepping scheme was implemented, wherein the time step was updated
every 100 time steps based on the continuously evolving stress-dependent stiffness pa-
rameter. As described in the previous section, particle-in-cell damping was assigned a
value of 1% for both the solid and fluid phases. Both the hypoplastic soil and UBC-
SAND models were adopted using the parameters shown in Tables 6.2 and 6.3, with a
relative density of 75% assumed for both constitutive models.

0 2 4 6 8 10 12 14

-0.6

-0.4

-0.2

0.0

Time [sec]

 Experimental
 UBCSAND Model
 Hypoplastic Model

Installation Depth [m]

Figure 6.3: Vertical penetration of the vibrated pile - Experimental vs. Numerical
(Hypoplastic and UBCSAND Model)
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6.2.1 Vibratory installation simulation results for a model pile

Referring to Figure 6.3, there is a reasonable match between the experiment and nu-
merical predictions with both constitutive laws. Together with the CPDI multi-phase
formulation, the constitutive models were able to reproduce the measured installation
depth over time quite accurately. Both the hypoplastic and UBCSAND models captured
the initial relatively high rate of installation and the gradual decrease in rate of pene-
tration, which can be attributed to factors such as the increase in skin friction along the
length of the shaft.

Evaluation of effective radial stresses

Figures 6.4a and 6.4b depict the predicted effective radial stresses in the soil with depth
at a radius of 1 cm from the axis of rotation (inside the pile) and 12 cm from the axis
(outside the pile) corresponding to a vertical pile penetration of 47 cm, respectively. The
simulations began with the geostatic stress condition. As the vibration began, a rise in
effective radial stress was observed, which can be attributed to the pile’s dynamic action
on the soil skeleton. Outside the pile, the UBCSAND sand model predicts a maximum
increase of 40 kPa, while the increase inside the pile is slightly greater. In contrast, the
hypoplastic model predicts an increase of 15 kPa inside the pile and a similar increase
in radial stress outside the pile. The location of the pile foot corresponds to the region
of maximum stress. As anticipated, the radial stresses surpass the K0 values.

During the vibration process, high stresses were observed under the pile’s tip, with a
zone of elevated stresses surrounding the pile’s location 3D to 4D distance from the
center line. This result agrees well with the work of reference [141], who calculated
a comparable response. Referring to Figure 6.4, the same elevated stress response is
observed on the exterior of the pile. For the UBCSAND predictions, a similar trend
is observed both inside and outside the pile, but the magnitude of the effective radial
stress is significantly greater than that corresponding to K0 conditions. This is due to the
fact that the hypoplastic sand model accounts for changes in the void ratio. Eventually,
the stress distribution beneath the pile followed the geostatic distribution.
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Figure 6.4: Effective Radial Stress disctribution inside (Left), and outside (Right)
of the vibrated pile - Hypoplastic and UBCSAND Models
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Chapter 6 Contributions towards numerical simulation of pile installation

Figures 6.5 and 6.6 depict the effective radial stresses calculated using the UBCSAND
model of the pile at a depth of 47 cm and 55 cm from the surface, respectively. As
anticipated, an elevated stress response is observed close to the pile shaft, and it re-
turns to its geostatic value further away. The maximum value of effective radial stress
is approximately eight times the geostatic value. Reference [55] observed a similar in-
crease in radial stresses for a similar back-calculation. The simulations in reference [55]
were performed using the MMALE method, assuming dry soil continuum and instead
assuming the buoyant density for the soil to obtain the correct stress conditions. It
should be noted that the continuum was represented using the hypoplastic soil model.
In the reference, an effective stress increase of 3 to 7 times its initial value was noted, as
opposed to the roughly 8-fold increase in this work. On a qualitative level, the results
are consistent with the hypotheses.

Remarks on excess pore pressure close to the pile shaft

Figure 6.7 compares the excess pore pressure evolution for numerical and experimental
results at a depth of 35 cm from the top of the soil and a distance of 2 cm from the pile.
Beginning with a distribution of hydrostatic pressure, one observes an increase in pore
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Figure 6.7: Excess Pore Pressure development of vibrated pile - HPS and UBCSAND
Model, compared against experiments
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6.2 Numerical simulation of model pile installation

pressure. Negative values indicate an increase in excess pore pressure, while positive
values indicate suction. In addition, it can be observed that both the hypoplastic model
and UBCSAND models can replicate the trend of excess pore pressure generation for
approximately 5 seconds of vibration, which corresponds to a 35 cm installation depth
(see Figure 6.3); however, the results during the first 5 seconds are significantly different.
The models also account for the observed development of suction in the region after the
pile toe has passed the control level. Simulations and measurements confirm that an
excess of pore pressure develops until the pile tip reaches the control point, after which
the regime changes to suction. While the UBCSAND model is capable of accurately
capturing the development of excess pore pressure, oscillations in the pore pressure
values are observed. Why the Hypoplastic model predicts a -7 kPa spike in excess
pore pressure at approximately 3 seconds when the measured value is -0.5 kPa requires
further investigation. At this time, it is believed to be a numerical artefact of the MPM
code. Noting that a state of total liquefaction is not observed indicates that the effective
stresses do not completely disappear.

Comparison of soil displacement with Particle Image Velocimetry results

Figure 6.8: Vertical Soil displacement during the pile installation by vibration;
CPDI (Left) and Experiment (Right)

From the CPDI calculation, vertical soil displacement was plotted and compared to the
Particle Image Velocimetry results from the experiments. Particle Image Velocimetry
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(PIV) is a method used to obtain instantaneous velocity and displacement measure-
ments in fluids. This method has found success in the field of geotechnical engineering
as well. Figure 6.8 depicts the computed value of vertical soil displacement at the con-
clusion of 25 cm of pile installation and compares it to the experimentally determined
values. The CPDI model captures quite accurately the movement of the soil near the top
surface within the pile and the movement of the soil around the pile shaft downwards.
Presumably as a result of friction between the pile and sand, the soil in a small region
surrounding the pile shaft moves downwards. In addition, sand is pushed downwards
by the tip of the pile, and the outcomes are comparable.

Remarks on the computational time

This study demonstrated that UBCSAND and hypoplastic model responses are com-
parable. However, one must answer the question,“What advantage does one model
have over another?” Having observed that the responses of both models are qualita-
tively comparable, we can now begin using the model with the lower computational
cost instead of the model with the higher computational cost if the objective is not a
comprehensive simulation of the stress and soil state, but rather to estimate the pen-
etration depth and pore pressure. For a similar response, the computational time for
the UBCSAND model is significantly less than for the hypoplastic sand model. To sim-
ulate 12 seconds of pile vibration, the UBCSAND model required 62 hours while the
hypoplastic model required 96 hours. Both models ran on Workstation processors from
the Intel Xeon family with comparable clockspeeds. The UBCSAND model utilised 16
threads while the hypoplastic model utilised 20 threads. Here, the UBCSAND model
can be substituted for the hypoplastic sand model in the context of CPDI pile installa-
tion simulation with confidence.

6.2.2 Impact driven model pile installation simulation

The mesh shown in Figure 6.2 was used to simulate the impact-driven installation of a
model pile in saturated soil, together with parameters of impact device, listed in Table

Parameter Value
Mass of drop weight 22.1 kg
Fall height 0.28 m
Potential energy at impact 60 Nm
Mounting and hammer mass 48.12 kg
Total static load 67.38 kg

Table 6.4: Overview of the parameters for the impact hammer [55]
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6.2 Numerical simulation of model pile installation

6.4. The simulation uses the Berlin sand properties listed in Table D.2. It is assumed
that the soil continuum is fully saturated. In actuality, the dynamic force for impact is
reported as energy per blow; however, this cannot be directly realised in the numerical
model. Instead, the relationship presented in reference [107] approximates the dynamic
force over time, Fd using a half-sine wave, given by relation:

Fd =
π η m

√
2 g h

2 t
, (6.1)

where, m is the mass of drop weight, h is the fall height, g is the acceleration due to
gravity and t is the impact duration, which is 0.01 seconds in this experiment. The
efficiency factor, η was introduced into the force equation to account for the energy
lost during impact that does not contribute to pile installation. Reference [55] esti-
mates a load transfer efficiency factor of approximately 0.765 based on measurements
conducted at TU Berlin. Simultaneously, it was reported that an efficiency factor of
approximately 0.7 provided the best fit between the results and experiments. Accord-
ing to the findings of a parameter study, the efficiency factor plays the most significant
role in determining the final penetration depth of a numerical model. In this work, the
value 0.7 is assumed to be the case. Maximum dynamic force is calculated to be 5.695
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Figure 6.9: Vertical penetration of hammered pile - Experimental vs. Numerical
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kN by substituting appropriate model values into Equation 6.1. The calculated static
load on the pile is approximately 0.674 kN.

At a frequency of 0.5 Hz, the experiment was conducted for a total of 354 seconds.
The length of time between blows is merely operational; the mass must be lifted and
prepared for the subsequent blow. In order to reduce computational costs, reference
[55] conducted a numerical analysis to determine the time at which the pile returns to
equilibrium, i.e., when both the pile acceleration and the excess pore pressure beneath
the pile’s tip subside. Accordingly, the ideal time between blows was estimated to be
0.15 seconds, which is also assumed for the purposes of this study. The calculation was
performed for a total of 18 seconds, resulting in a total of 120 blows.

Figure 6.9 depicts the penetration curve for the impact driven pile. The pile penetrates
nearly 0.08 metres after the initial blow. While this is not observed in the experimental
results, such a soft behaviour can be attributed to insufficient stiffness on the surface of
the soil continuum, since the stiffness of the soil is directly proportional to the current
mean effective stress (Equation 5.1). As the simulation continues, the disparity between
the simulation and the experiment diminishes. The numerical model and the exper-
iment diverge by approximately 5 percent as the simulation continues. Nevertheless,
the numerical model reproduces the experimental results arguably quite well.

Evaluation of effective radial stresses for impact driven pile

Figures 6.10 and 6.11 depict the radial effective stress during hammering at pile depths
of 47 cm and 55 cm, respectively. The radial stresses are calculated to be approximately
14 times their geostatic value, a value also observed in reference [55]. Bakroon [9] per-
formed two sets of simulations using similar boundary conditions and Multi-Material
Arbitrary Lagrangian Eulerian (MMALE) method to that of the study being described
here: one simulation assuming a locally drained formulation and the other assuming
a locally undrained formulation. In the case of drained simulation, the pile was ob-
served to punch through the soil, whereas in the case of undrained simulation, the soil
within the pile exhibited plugging behaviour. While such plugging behaviour was not
observed in the CPDI simulation, a qualitatively similar increase in stress was observed
near the pile tip. The peak radial stresses for the drained simulation occur near the
pile’s tip, whereas for the undrained simulation, they are observed to occur above the
pile’s tip. The CPDI simulation reveals the maximum horizontal stresses beneath the
pile’s tip. This variation in results can be attributed to the fact that the CPDI calcu-
lates pore pressure using a fully coupled formulation. In the case of CPDI, the drag
force, which is a function of the hydraulic conductivity, also plays a role, whereas it
is completely ignored in the case of MMALE, where a locally undrained formulation
is utilised. Despite the differences in modelling method, there is a strong convergence
between the CPDI results, the MMALE method and the experimental results.
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6.2 Numerical simulation of model pile installation

Remarks on excess pore pressure close to the pile shaft for impact driven pile
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Figure 6.12: Excess Pore Pressure development of hammered pile -
HPS and UBCSAND Model, compared against experiments

Figure 6.12 depicts the excess pore pressures measured at a depth of 35 cm from the
surface and 2 cm outside the pile in comparison to the numerical results. The numerical
model captures an area of excess pore pressure as the pile approaches the measurement
point. This trend is supported well by the experimental findings. Positive values in-
dicate suction zone pressure, while negative values indicate excess pore pressure. The
excess pore pressure is roughly double the amount measured during the experiment.
As illustrated in Figure 6.7, this pattern of variation has also been observed in the vi-
bratory driven process. Until approximately 3 seconds, when the pile toe passes the
control point, the numerical model overestimates the excess pore pressure. However,
after 3 seconds, the results are significantly different. In addition to accurately cap-
turing the excess pore pressure, the numerical model also captures the suction regime
that develops in the control zone. There is still some discrepancy between the exper-
imental and numerical results, which is attributed to numerical artefacts in the CPDI
code and requires further investigation. Overall, there is a close correlation between the
experimental and numerical results.
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Chapter 6 Contributions towards numerical simulation of pile installation

Concluding remarks

This section presented the initial step taken in the modelling of vibratory and impact
driven pile installation. In both instances, an acceptable correlation, both qualitative and
quantitative, with experimental data was observed. In addition, the numerical model
was able to capture the generated excess pore pressure for both vibrated and impact
driven piles with reasonable accuracy. Using both the UBCSAND and hypoplastic soil
models, the CPDI model was able to predict the installation behaviour and stress state
changes in the soil. This section demonstrates that the numerical method developed
for this study is capable of simulating the highly dynamic vibratory and impact-driven
model piles in saturated soil. Verifying that the numerical method can model the in-
stallation of a real-scale monopile is the next step in this regard.

6.3 Numerical simulation of a full-scale pile installation

To investigate the impact of vibratory installation in comparison to the conventional
installation method of impact hammering, a joint industry project with a total budget
of approximately 6 million euros was commissioned. The objective of the project was to
examine the viability of employing the vibratory installation method for monopiles to
achieve a quicker and more environmentally friendly offshore foundation installation.
The pile installations for the VibroPile project were carried out in Cuxhaven, a coastal
city on Germany’s North Sea coast. A quarry was selected as the installation location for
the monopiles. As shown in Figure 6.13, the site consisted of glacial, overconsolidated,
dense sand deposits with a 1 m thick clay layer approximately 5 m below the surface.
According to Moormann et al. [157], the geological history of the site is comparable to
the planned development site for offshore wind projects in the North Sea.

Project background

Six installation tests of monopiles were conducted. Three monopiles were vibrated
into the ground, while the remainder were installed using the conventional impact
hammer technique. The installation of Pile P4 was back-calculated in this study. In the
preceding section, the CPDI tool developed for this project was used to calculate the
results of a model pile. Due to a lower geostatic stress state, although good correlations
were found between the experimental and numerical results, it should be appreciated
that the transfer of the numerical model to a full-scale model is not always guaranteed.
In addition, approximately 20 seconds of vibration and hammering were simulated
for the model pile. While it is impossible to say with certainty how long it would
take for a pile to be vibrated to the planned installation depth, as it depends on many
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6.3 Numerical simulation of a full-scale pile installation

Figure 6.13: Overview of CPT data from pile locations CPT6-3 through CPT6-6;
measured near location of pile P4
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Chapter 6 Contributions towards numerical simulation of pile installation

Parameter Value
Working moment 500 kgm
Total weight 1,536 kN
Maximum centrifugal force 10,748 kN at 1,400 rpm

Table 6.5: Data of vibration motor [157]

variables such as vibration parameters and ground conditions, it is certain that real-
world monopile installation would take significantly longer to reach final installation
depth. The vibration motor’s parameters are tabulated in Table 6.5. The Pile P4 was
vibrated for a total of four minutes on January 7, 2014.

Model and boundary conditions

In the wake of the simulation of model scale pile installation, a similar approach to
the numerical simulation was adopted for the simulations presented in this section. As
described in Chapter 3, an axially-symmetric model and the penalty contact algorithm
were used to describe the soil continuum and the soil-pile interaction, respectively. The
soil and pore fluid were modelled using the two-phase CPDI formulation described in
Chapter 4. The stress-strain relationship was calculated using the UBCSAND model,
which was described in detail previously in Chapter 5. The results of the numerical
simulation were compared to the field measurements.

The open steel pipe pile with a diameter of 4.30 metres was vibrated into the soil,
which is assumed to be homogeneous and completely saturated. Initial stresses were
set according to K0 conditions, with K0 assumed to be 0.5. Before applying the dynamic
load, FD, the CPDI model was allowed to reach steady-state conditions. While the
CPDI model achieved steady-state conditions, the static load was activated. The pile’s
parameters are tabulated in Table 6.6,.

The installation of piles occurred in two stages. Initially up to approximately 9 m from

Parameter Value
Outer diameter 4.3 m
Wall thickness 45 mm
Total length 21 m
Total mass of pile 99.57 ton
Motor mass 65.10 ton
Total static load 164.67 ton

Table 6.6: Pile parameters from VibroPile project for Pile P4 [157]
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Figure 6.14: Measured vs. Input frequency for the numerical model for Pile P4

Time [sec] 0-5 5-9 9-17 17-24 24-29 29-31 31-43
Frequency [Hz] 19.7 13.6 10.2 17.3 31.2 33.7 18.2

Time [sec] 43-57 57-62 62-74 74-78 78-84 84-94 94-98
Frequency [Hz] 6.7 18.7 28.2 26.7 43.7 15.8 19.3

Time [sec] 98-102 102-106 106-111 111-118 118-123 123-133 133-138
Frequency [Hz] 21.2 20.8 19 15.6 14.1 14.7 14.3

Time [sec] 138-161 161-183 183-206
Frequency [Hz] 14.5 24.2 14.3

Table 6.7: Frequency of the vibrator, approximated to a step function, from Figure 6.14
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Chapter 6 Contributions towards numerical simulation of pile installation

the surface, the pile was intermittently vibrated with a lower frequency and lower load.
Beyond 9 m and up to approximately 18.5 m from the surface, the pile was vibrated with
a frequency that was nearly constant. Consequently, the vibrator’s frequency does not
remain constant throughout the duration of pile installation. Resultantly, the dynamic
force also changes, as indicated by the relationship:

Fd = M · (2 π f )2 · sin(2 π f t) , (6.2)

where, M is the eccentric moment, taken as 500 kgm, and f is the frequency of the
vibrator, which changes according to the step function shown in Figure 6.14. The val-
ues of the approximated step function of frequency is tablulated in Table 6.7. As the
simulation progresses, the frequency is fed into the CPDI code and varies dynamically.
The bulk modulus of water is assumed to be 2.2 GPa (K f ). The pile’s horizontal accel-
eration and displacement are constrained by imposing a strict boundary condition. The
interface elements meshed to represent the pile’s contact with the soil are assigned a
coefficient of friction, µ of 0.3.

Figure 6.15 depicts an axially-symmetric continuum consisting of pile and soil particles.
This continuum was discretised with approximately 36,000 particles and 11,000 inter-
face elements. From the lessons learned in the previous section, where instabilities with
the contact elements occured at deeper pile installation depths, a deliberate decision to
adopt a finer discretisation for the interface elements was made. Utilising an irregular
meshing pattern enabled the packing of more particles near the pile’s toe and jacket,
which is the region of interest.

An effort was made to install the pile from the surface. However, due to numerical
instability that occurs when the pile vibrates in a region of very low stress state, it was
decided to embed the pile 5 m, which not only approximated the pile penetration due
to gravity, but also approximately 30 seconds of pile vibration. Utilising a dynamic
time-stepping scheme, the incremental timestep for the marching scheme is updated
every 1,000 time steps. After reference [160], particle-in-cell damping was activated,
with 1 percent value assignment for both solid and fluid phases. The Cuxhaven soil
parameters for UBCSAND were adopted, with an assumed 85% relative density for the

N160[−] me[−] ne[−] np[−] Ke
G[−] Ke

B[−]
25.0 0.5 0.5 0.95 1432 854
Kp

G[−] ϕpt[◦] ϕ f [
◦] c[kPa] Pa[kPa] σt[kPa]

820 32.6 37.9 0 100 0
h f ac1[−] h f ac2[−] h f ac3[−] h f ac4[−] h f ac5[−] h f ac6[−]
0.65 0.85 1.0 0.6 1.0 0.95

Table 6.8: UBCSAND model parameters for Cuxhaven Sand
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6.3 Numerical simulation of a full-scale pile installation

Figure 6.15: Background computational grid discretisation (Left), and
Particle discretisation of pile and soil (Right)
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model. The model parameters are tabulated in Table 6.8.

Discussion of vertical pile penetration results

0 20 40 60 80 100 120 140 160 180 200 220

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Time [sec]

 Vibrated Pile P4
 UBCSAND Model

sta
rt 

of
 n

um
er

ic
al

 
ca

lc
ul

at
io

n

Depth, below ground level [m]

en
d 

of
 n

um
er

ic
al

 
ca

lc
ul

at
io

n

Figure 6.16: Vertical penetration of pile - Experimental vs. Numerical model

Figure 6.16 shows the results of the pile penetration simulation. During the first 10
seconds of simulation, the pile initially penetrates more slowly than observed during
the experiment. This disparity in results is to be expected, given that the pile was
embed 5 metres deep which causes the stress state beneath the pile’s foot and around
the pile’s jacket to vary from the field data. Additionally, the assumption is made that
the soil continuum is homogeneous, which will also affect the prediction. Figure 6.13
demonstrates that a 1 m thick clay layer begins at a depth of approximately 4 m. While
the rate of pile installation between 4 and 5 m increases, a similar behaviour cannot
be observed from the numerical calculation, as the non-homogeneity and altered stress
state around the pile jacket from the surface to 5 m depth have been disregarded.

As previously stated, the frequency varies continuously as the simulation continues.
During vibratory installation, the soil surrounding the pile’s jacket is affected in nu-
merous ways. The soil in the vicinity of the pile is partially loosened as a result of the
pile’s vibrations. This theory is supported by the research presented in reference [172].
This loosening of the soil facilitates the pile’s penetration through the soil. According to
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6.3 Numerical simulation of a full-scale pile installation

references [54, 146], the penetration rate increases as the frequency of the vibrator rises.
When the pile is vibrated at lower frequencies, a high stress concentration is observed
under the pile’s toe, which is not observed at higher frequencies. This increased stress
concentration provides increased resistance to the installation of piles. In the research of
reference [91], a comparable change in installation rate was observed. It is more difficult
to observe a comparable increase or decrease in penetration rate as frequency increases
or decreases, respectively, which is attributed to the frequency fluctuating continuously
throughout the installation. Throughout their simulations, both references [54, 91] as-
sume a constant frequency, varying it as part of a parameter study. It should also be
noted that as the input vibration frequency increases, the dynamic forces also update
themselves.

As the simulation progresses, the installation rate closely resembles field data. Ac-
cording to the data, the frequency is relatively stable between 80 and 160 seconds. In
addition, between 8 and 15 m in depth, which corresponds to 60 to 110 seconds, the
average cone resistance of the soil is approximately 30 MPa. In this area, a constant
installation rate is expected. According to the results of the numerical model, the in-
stallation rate should be roughly constant between 8 and 13 metres. As the simulation
approaches a depth of 13 metres, the installation frequency reaches its maximum value
of 43.7 Hz.

The dynamic force increases at an increasing rate as the installation frequency increases.
From the numerical structure of the constitutive model, it can be inferred that as the
mean effective stress increases in the continuum, the elastic constants also increase.
Owing to the increased transfer of dynamic load from the pile to the soil particles, there
is an increase in the mean effective stress. An increase in elastic stiffness is anticipated
to slow the rate of pile installation, which is observed between 90 and 110 seconds
when the frequency increases and between 110 and 120 seconds when the frequency
decreases. After this point, the resistance on the pile’s shaft begins to play a greater role
in dictating the installation rate.

The numerical model overestimates the ultimate installation depth by 1 m. This over-
estimation can be explained by the following factors: i) a 5 m prior embedment, which
was required for the numerical stability of the calculation, permitted the alteration of
the stress state around the pile jacket only at the end of the simulation; ii) a homoge-
neous layer was assumed for the model, which is not representative of reality. Overall,
a good fit is obtained between the field data and the numerical model. Importantly,
the tool has demonstrated its reliability in simulating the entire pile installation process
and can be used to make Class-A predictions of the pile installation rate, thus achieving
one of the research project’s original objectives.
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6.3 Numerical simulation of a full-scale pile installation

Comments on the effective radial stress

In the context of a field study, stress analysis is not straightforward. This study is made
more complicated by the multitude of sensors required to precisely measure the stress
change. In their work with pile installation, White and Bolton [216] identified three
‘zones’ of behaviour in the vicinity of the pile: i) very near, ii) near, and iii) far field.
The work also references an interface zone. This zone is immediately adjacent to the pile
and extends horizontally for 2 to 3 mm. Identifying this region’s numerical behaviour
accurately would necessitate an extremely fine mesh, which would impose a significant
computational burden. Owing to the small size of this area, no reliable Particle Image
Velocimetry analysis was possible. Experiments were conducted on jacked piles, but
efforts have been made to determine if such zoning is discernible in vibrated piles.

Figures 6.17, 6.18 and 6.19 depict the effective radial stress for the vibrated pile at dif-
ferent depths. All calculations indicate that there is a region of significant radial stress
increase beneath the pile tip. Additionally, stresses within the pile are calculated and
plotted. In their simulation of a jacked pile, reference [92] found a stress increase of up
to 4.5 times the pile’s geostatic value. A similar increase in radial stress was reported in
reference [218]. At a depth of 8 metres below the surface, a similar increase in stress is
observed in the case of vibratory piles, even though the installation method is arguably
distinct. This depth corresponds to approximately fifty seconds of pile installation, or
twenty seconds after simulation initiation. Outside the jacket of the pile (0.51D), a stress
increase of approximately eight times the initial value is calculated. This is roughly con-
sistent with what was observed for model monopiles in the preceding section, in which
an increase in stress up to seven times the initial value was calculated. This difference is
due to factors intrinsic to the soil and extrinsic to varying dynamic loads. Phuong et al.
[179] examined the effect of initial sand density on radial stresses during installation
for simulations of pile installation using the Material Point Method (MPM). According
to the report, the effective radial stresses under the pile tip in the case of looser sand
were 1.5 times lower than in its denser configuration. The observed outcomes of this
study are consistent with the reported findings.

Ko et al. [115] analysed the plugging effects in open-ended steel pipe pile in FE analy-
ses. A zone of increased radial stress was observed for small diameter piles, whereas
plugging effects, or a zone of massively increased radial stress regime, was not observed
for larger diameter piles (≥2 m). Due to the large diameter of the pile utilised in this
study, it is reasonable to conclude that plugging would not develop in this simulation
and that a zone of massively increased radial stress can be ruled out. Consistent with
this conclusion, a zone of increased effective radial stresses, similar to the one observed
outside the pile, is calculated within the pile as well. This observation is also consistent
with experimental and field data from other researchers [22, 114, 174].
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6.3 Numerical simulation of a full-scale pile installation

The effective radial stresses are slightly lower than those observed outside the pile,
which is due to the use of an axially-symmetric boundary condition. Figure 6.20 de-
picts the contour plot of the effective radial stress at a depth of 8, 12 and 17 metres
from surface. The region of elevated stresses, both external and internal to the pile,
is evident in the figure. Underneath the tip of the pile, both within and outside the
monopile, there is a zone of increased radial stresses, which is observed as the simu-
lation progresses (see Figures 6.18,6.19). This indicates that the soil beneath the pile
hardens during the installation process, which is consistent with the findings of Ko
et al. [115], in which the zone of elevated stresses extended well below the pile’s tip.

Figures 6.18 and 6.19, which depict the radial stresses at depths of 12 and 17 m, respec-
tively, demonstrate a similar pattern of behaviour. At each of the three snapshots, it was
observed that the effect of pile installation on stress elevation decreases as the plane of
measurement moves further from the axis of symmetry, from the 1D distance from the
rotation axis to the 3D far field plane. In their work with numerically modelling pile
installation in saturated sand using MPM, Phuong [180] reached similar conclusions re-
garding the effective radial stresses in the far-field region compared to the region close
to the pile jacket.

In each of the three snapshots, the region adjacent to the pile shaft (0.51D) displays
modified effective stresses. This is to be expected because the vibration of the pile
primarily excites the soil near the pile. The conclusion that can be drawn is that the
effective stresses are less than their initial value. References [8, 164] draw similar con-
clusions by observing the results of field tests using measurements of the earth pressure
acting near the pile’s shaft after installation. Since the effective stresses never disappear
entirely, it can be concluded that there is no total liquefaction of the soil near the pile’s
jacket. According to Seed and Idriss [192], the absence of complete liquefaction is en-
tirely plausible, given the 85 percent relative density of soil, whose susceptibility to
complete liquefaction, is diminished.

In conclusion, the results of an examination of the effective stresses would be useful
when more granular data on the state change of soil are required. Having obtained
a reasonable pile installation prediction over time, it is reasonable to assume that the
radial stresses, which play a significant role in the lateral behaviour of the monopile
[52], are also reasonable and reflect reality.

145



Chapter 6 Contributions towards numerical simulation of pile installation

0
20

40
60

80
100

120
140

160
180

200
220

-120

-100

-80

-60

-40

-20 0 20 40 60 80

100

120

Installation Tim
e [sec]

 0.51D
 from

 Rotation A
xis

 1D
 from

 Rotation A
xis

 1.5D
 from

 Rotation A
xis

 2D
 from

 Rotation A
xis

 2.5D
 from

 Rotation A
xis

Excess Pore Pressure [kPa]

start of numerical 
calculation 

suctionexcess

5m
, below

 ground level
pile toe passing

(a)
Excess

Pore
Pressure

calculated
5m

below
ground

level

0
20

40
60

80
100

120
140

160
180

200
220

-120

-100

-80

-60

-40

-20 0 20 40 60 80

100

120

Installation Tim
e [sec]

 0.51D
 from

 Rotation A
xis

 1D
 from

 Rotation A
xis

 1.5D
 from

 Rotation A
xis

 2D
 from

 Rotation A
xis

 2.5D
 from

 Rotation A
xis

start of numerical 
calculation 

suctionexcess

10m
, below

 ground level

pile toe passing

Excess Pore Pressure [kPa]

(b)
Excess

Pore
Pressure

calculated
10m

below
ground

level

0
20

40
60

80
100

120
140

160
180

200
220

-120

-100

-80

-60

-40

-20 0 20 40 60 80

100

120

Installation Tim
e [sec]

 0.51D
 from

 Rotation A
xis

 1D
 from

 Rotation A
xis

 1.5D
 from

 Rotation A
xis

 2D
 from

 Rotation A
xis

 2.5D
 from

 Rotation A
xis

Excess Pore Pressure [kPa]

suctionexcess

15m
, below

 ground level

start of numerical 
calculation 

pile toe passing

(c)
Excess

Pore
Pressure

calculated
15m

below
ground

level

0
20

40
60

80
100

120
140

160
180

200
220

-120

-100

-80

-60

-40

-20 0 20 40 60 80

100

120

Installation Tim
e [sec]

20m
, below

 ground level

Excess Pore Pressure [kPa]

suctionexcess

start of numerical 
calculation 

pile toe passing

 0.51D
 from

 Rotation A
xis

 1D
 from

 Rotation A
xis

 1.5D
 from

 Rotation A
xis

 2D
 from

 Rotation A
xis

 2.5D
 from

 Rotation A
xis

(d)
Excess

Pore
Pressure

calculated
20m

below
ground

level

Figure
6.21:C

alculated
Excess

Pore
Pressures

varying
distances

from
rotation

axis

146



6.3 Numerical simulation of a full-scale pile installation

P
il

e 
D

ep
th

 =
 8

 m
, 

b
el

o
w

 g
ro

u
n
d
 l

ev
el

P
il

e 
D

ep
th

 =
 1

2
 m

, 

b
el

o
w

 g
ro

u
n

d
 l

ev
el

P
il

e 
D

ep
th

 =
 1

7
 m

, 

b
el

o
w

 g
ro

u
n

d
 l

ev
el

P
o
re

 P
re

ss
u

re

Fi
gu

re
6.

22
:C

ou
nt

ou
rs

of
Po

re
Pr

es
su

re
s

of
so

il
ar

ou
nd

Pi
le

P4
,

at
de

pt
hs

8
m

(l
ef

t)
,1

2
m

(m
id

dl
e)

,a
nd

17
m

(r
ig

ht
)

fr
om

su
rf

ac
e

147



Chapter 6 Contributions towards numerical simulation of pile installation

Comments on the excess pore pressures

Figure 6.21 plots the pore pressure is plotted at different locations; i.e., at depths of 5,
10, 15, and 20 m, and at distances of 0.51D, 1D, 1.5D, 2D, and 2.5D from the rotation
axis. The pore pressures are compared to installation time. The pore pressures tend to
be proportional to the vertical distance between the pile toe and the control point in all
four figures. As the pile approaches the control point, the excess negative pore pressure
rises. As the pile toe approaches the control point, the excess pore pressure flips to a
positive value. Positive pore pressure corresponds to the suction zone, while negative
pressure corresponds to the excess zone. As the pile toe passes the control point, the
maximum value of pore pressure was measured. After that, the excess pore pressures
exhibited a slow tendency to approach their geostatic value. As the horizontal distance
between the pile and the control point increases, the pore pressures also tend to exhibit
a lower peak value. As the horizontal distance between the control point and the pile
shaft increases, it can be inferred that the accelerations in the porous soil continuum
diminish, resulting in a reduced excess pore pressure response. Chai et al. [46] also
reported a similar decrease in excess pore pressure as the measurement point is moved
farther from the shaft. As the pile approaches the control points, the acceleration of
the soil imparted by the vibrating pile is inferred to increase. As the pile passes the
control point, the sole source of soil excitation is the pile shaft, resulting in a decrease in
dynamic acceleration and, consequently, a reduced pore pressure response. Snapshots
of the pore pressures at pile depths 8, 12 and 17 metres from the surface are shown
in Figure 6.22. A localised zone of excess pore pressures below the foot of the pile, as
reported by reference [172] is observed in this simulation as well.

The rise and fall in pore pressure over time must be thoroughly analysed. Reference
[41] was the pioneer in correlating the change in excess pore pressures with the distance
between the CPT cone and the pressure sensor. While the cone was still some distance
from the sensor, an increase in negative pore pressure was observed. On the contrary,
as the cone approached the sensor, a positive pore pressure reading was recorded.
Positive pore pressures were attributed to a zone of compression beneath the cone,
while negative pore pressures were attributed to soil dilation caused by shearing. This
dilation increases the void volume, reducing the pore pressures and increasing the
effective stresses; it is more pronounced in dense sands [154]. As the pile advances past
the control point, the reversal of pore pressure is explicable based on the findings of
reference [31]. In their research, Bonita [31] vibrated the CPT cone and measured the
tip’s excess pore pressure. A positive pore pressure value was always measured. Since
the control point was so close to the cone structure, it could be argued that a similar
analogy can be drawn in the present work as well.
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6.3 Numerical simulation of a full-scale pile installation

Remarks on soil movement around pile

Figure 6.23: Movement of soil continuum around pile at a depth of 8 m from surface

Osinov et al. [172] examines the development of the displacement field in the area of
the pile foot. In the study, a liquefaction zone was determined to exist close to the
cylinder-shaped solid pile, beginning with a uniform stress state. An accumulation of
residual displacement in the form of soil rotation has been observed by a numerical
investigation. In the zone where excess pore pressure was detected, rotation of the
soil was computed. Reference [9] also reports a similar soil rotation regime during
modelling of pile hammering. Both sources were concerned with miniature pile models.
In this work, however, when the monopile with a large diameter is vibrated into the
saturated soil, a comparable soil rotation regime is seen. The centre of rotation is
roughly in the region where excess pore pressures were recorded (See Figure 6.21), as
reported in reference [172]. The CPDI model is thus capable of capturing the granular
motions of the soil continuum as a result of higher pore pressures.

Concluding remarks

In conclusion, the back-analysis of the VibroPile project has achieved its intended pur-
pose, namely the elimination of uncertainties associated with vibratory pile installation.
Having simulated the vibratory pile installation with available field data, we may not
only use the CPDI+UBCSAND numerical package developed for predicting the pile
installation behaviour in advance, but also use it to gain insight into the change of soil
state as the pile installation progresses. The soil’s final state parameters - stresses, pore
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Chapter 6 Contributions towards numerical simulation of pile installation

pressure, and strain - can be transmitted to a commercial finite element software to pro-
vide the initial state for calculating the lateral pile behaviour of the installed monopile.
When waves impact a pile foundation, they impart a cyclic load, which makes lateral
behaviour important. The results of the simulation can also be used to make observa-
tions regarding the usability of the system. To properly validate the model, the next
step would be to apply the numerical package to a Class-A pile installation prediction.

6.4 Application of CPDI for Class-A offshore monopile
vibratory installation prediction

After validating the CPDI+UBCSAND package for the back-analyses of model- and
real-scale pile installations, a Class-A (pre-event) prediction of the pile installation depth
was performed. To the best of our knowledge, this is possibly the first time such a
project has been undertaken, in which the installation forecast of a monopile being
vibrated into the seabed is performed prior to the event. Prior to installation, Zaaijer
[224] modelled the dynamic lateral behaviour of offshore foundations and compared
the results to experimental data. In order to predict the lateral behaviour of offshore
monopiles, reference [39] developed the so-called PISA design model, which was the
result of a major European industry-academic collaboration. The project’s focus was on
large diameter rigid piles with low length-to-diameter (L/D) ratios that were embedded
in clay. In this study, an initiative was undertaken to predict the installation behaviour
of monopile installation using vibratory methods prior to offshore installation in order
to provide an estimate of the time required to install the monopile. Thereafter, the
results of the Class-A predictions are compared to field data to determine whether the
developed tool is indeed reliable for use in simulations of offshore pile installation.

The forecast model for pile installation was created as part of the research project known
as ‘VISSKA’, which is the German acronym for ‘Messung Modellierung und Bewertung
der alternativen Gründungsmethode Vibrattionsrammung in Bezug auf Installation,
Schallemissionen und Auswirkungen auf Schweinswale im Offshore-Windpark “KAS-
KASI II” - “VISSKA”’. It can be translated into english as “Measurement, modelling
and assessment of vibratory pile driving in relation to installation, noise emissions and
effects on harbour porpoises at the KASKASI II offshore wind farm”. The objective
of the research project is to investigate the viability of vibratory pile installation for
monopiles at the KASKASI II offshore wind park. Additionally, the project seeks to
investigate the impact of noise emissions during installation on the behaviour of North
Sea-dwelling porpoises. The German Ministry of Economic Affairs and Energy pro-
vided the research project, which is being conducted by project partners from both
industry and academia. In the past, individual blows from a hydraulic hammer were
used to pound offshore wind turbine foundations into the seafloor. The foundations
will be driven by vertical vibrations, according to the plan. It is anticipated that this
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6.4 Application of CPDI for Class-A offshore monopile vibratory installation prediction

will be the first commercial offshore windpark to use the improved vibratory installa-
tion for installing all of the wind turbine foundations into the seabed. The wind farm,
with an installed capacity of 342 megawatts, is expected to generate enough renewable
energy to power nearly 400,000 homes.

Model and boundary conditions

For the numerical model, an axially symmetric boundary condition and the penalty
contact algorithm, together with the two-phase CPDI formulation and the UBCSAND
model were considered, all of which had been utilised successfully in simulations de-
scribed thus far. The UBCSAND model, which was previously employed for both
model and actual scale tests of pile installation that yielded acceptable results for back-
calculation or Class-C analysis of the experiments, is employed once again, but this time
for Class A predictions. Class-A predictions are especially difficult because the available
data to build the model are scant, if adequate. To develop a model that can simulate
the dynamic process with reasonable accuracy and complete the task in a reasonable
amount of time, reasonable assumptions must be made. In order to achieve this, the
following assumptions are made about the model:
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Figure 6.24: Measured CPT data at planned location of Pile K30
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1. It is assumed that the soil is completely saturated.

2. It is assumed that the soil is homogenous and isotropic. The behaviour of the soil
is smeared across the entire continuum to generate a single parameter set for the
numerical simulation.

3. It is assumed that the pile has a constant cross section.

Given that the location of foundation installation is offshore, the assumption that the
soil is fully saturated (Sr = 1) is not only reasonable, but also considered obvious. The
second premise, that the soil has been homogenised, is grounded more in computa-
tional and practical reality. The only available data that sheds light on the variability of
the soil is the cone resistance value from the CPT test. Within the perimeter of the site
of interest, it is well known that CPT data exhibit spatial variability [30, 125, 171, 215].
The location of the CPT test conducted for the project is a few metres away from the
location where the pile foundation was to be installed. Given this, it would be impracti-
cal to calibrate multiple sets of parameters for the soil model, given that the parameter
set may not accurately represent the field condition. In this regard, the decision to as-
sume a homogeneous soil continuum for the current study is entirely justified. It was
assumed that the relative density, Id of the soil was 100 percent. As depicted in Fig-
ure 6.24, this was determined by analysing CPT data from a site close to the planned
location of Pile K30. The analysis and subsequent homogenisation of the CPT data is
presented in Appendix E.

Lastly, it is assumed that the pile has a constant cross-section. This decision is based
more on the practical realities of the CPDI code, and in part, convenience. The original
geometry of the pile consists of 20 cans stacked on top of one another. The wall thick-
ness and pile diameter of each of these cans varies. The cans, when stacked, reach a
height of 59.62 metres, with each can ranging in length from 0.24 metres to 3.93 metres
and wall thickness from 0.05 metres to 0.328 metres. While 0.328 m represents the pile
flange section, which is an exceptional component of the monopile, the wall thickness
typically ranges from 0.05 m to 0.085 m. For there to be a significant difference in the
results, the current number of particles per cell, approximately nine, must change. Con-
sequently, the background computational mesh must be significantly refined, resulting

Parameter Value
Frequency of Vibrator 20 Hz
Static moment of the vibrator 1,920 kgm
Total mass, with mounting elements 435 ton
Static load 4,266 kN
Dynamic load 30,319 kN

Table 6.9: Vibrator parameters from VISSKA project
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Parameter Value
Outer diameter 6.0 m
Wall thickness 70 mm
Total mass of pile 646.6 ton
Total length 59.62 m
Embedded length 27.7 m

Table 6.10: Pile parameters from VISSKA project for Pile K30

in a reduction in the calculation’s incremental time step. Experience with the code sug-
gests that such an exponential increase in the complexity of mesh preprocessing is not
justified by the marginal improvement anticipated from the computation. Table 6.9 tab-
ulates the parameters of the Cape Holland Triple CV-640 VLT-U used in the installation
of monopiles are tabulated. Table 6.10 illustrates the homogenised pile dimensions for
pile K30 used in this study.

The Cuxhaven soil parameter are tabulated in Table 6.11. The soil characteristics and
geological history of Cuxhaven are assumed to be comparable to those of the planned
offshore windpark site. In addition, an abundance of high-quality laboratory data were
available for the model, as were parameters for the hypoplastic soil model, which could
be used to compare the results with those of the UBCSAND model. In references
[73, 74], the differences between the hypoplastic soil model and the UBCSAND model
within the context of the two-phase code were already investigated for Berlin Sand.

The axially-symmetric continuum depicted in Figure 6.25, which consists of the soil and
pile continuum, was discretised with approximately 27,000 particles and 13,000 inter-
face elements, which simulated pile-soil contact. The background computational grid
consisted of a tartan grid, with the smallest rectangular grid measuring 0.1 m by 0.01
m. This background grid density was deemed adequate to provide a reasonably ac-
curate solution that could converge well without imposing an excessive computational
burden. Utilising a regular meshing scheme, more particles were packed in the vicinity
of the pile’s jacket. The pile was embedded five metres into the ground prior to start of
simulations. Due to the fact that the amount of pile penetration due to gravity cannot
be accurately estimated in advance, this initial depth was chosen in part to improve

N160[−] me[−] ne[−] np[−] Ke
G[−] Ke

B[−]
42.6 0.5 0.5 0.95 1432 854
Kp

G[−] ϕpt[◦] ϕ f [
◦] c[kPa] Pa[kPa] σt[kPa]

820 32.6 37.9 0 100 0
h f ac1[−] h f ac2[−] h f ac3[−] h f ac4[−] h f ac5[−] h f ac6[−]
0.65 0.85 1.0 0.6 1.0 0.95

Table 6.11: UBCSAND model parameters for Cuxhaven Sand, Id = 100%
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Figure 6.25: Background computational grid discretisation (Left),
and Particle discretisation of pile and soil (Right)
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6.4 Application of CPDI for Class-A offshore monopile vibratory installation prediction

the numerical stability of the model. Adopting a continuously-updated dynamic time
marching scheme, the time step was modified every 1,000 iterations based on the con-
tinuously evolving stiffness. Two percent particle-in-cell damping was applied to both
the solid and liquid phases. The simulation continued until the final embedment depth
was approximately attained.

Analysis of vertical pile penetration results
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Figure 6.26: Vertical penetration of the pile - Numerical vs. Measured at field

Figure 6.26 illustrates the results of the pile penetration, including both experimen-
tally measured data and numerical results. In comparison to the experimental results,
we can observe a reasonably good penetration behaviour from the results. Despite
assuming a highly homogenised and idealised model setup, there is a reasonable cor-
relation between the field and the calculated numerical data. This indicates that the
CPDI+UBCSAND tool performed well when applied to the numerical forecast of pile
installation. Two triumphs of the capability of the numerical tool can be highlighted
here: i) a reasonable match with the field data, in which the numerical model reaches
the embedment depth reached by the offshore vibration installation, and ii) the achieve-
ment of a stable solution simulating the vibratory process of an offshore monopile. This
work is, to the best of our knowledge, the first to simulate pile vibration in large time
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Parameter Value
Location K30
Easting [m] 419219
Northing [m] 6038386
Water depth LAT [m] - GEOENG 2012 22.66
Water depth LAT [m] - LAT (FUGRO 2015) 22.57
Water depth LAT [m] used in Design 22.57

Table 6.12: Measure depth of the water at location of Pile K30

scales (greater than 10 minutes) within the framework of two-phase CPDI. While the
results are encouraging, a more in-depth analysis is required.
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Effective Radial Stress, 

30 m from Sea Level

Effective Radial Stress, 

25 m from Sea Level

Effective Radial

Stress

Figure 6.28: Effective stress of soil, 30 m (top) and 25 m (bottom) below Sea level
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The Table 6.12 shows the depth of the seabed from the surface of the water. The pile
height at which the vibration process began was recorded as 34.816 metres, which
would imply a self-weight penetration of 2.234 metres. The numerical model assumed
a 5 m self-penetrating depth. This decision, however, was deliberate and not the result
of calculations. This decision was also dictated by numerical considerations. During the
first 50 seconds of simulation, the installation rates derived from field data and numer-
ical simulation are comparable and very close. In comparison to field data, the results
of the numerical simulation indicate a stiffer response beyond the 150-second installa-
tion time. Figure 6.27 corroborates the results from CPT data for the location, which
explains the softer response from the field data. In the numerical model, it is assumed
that the relative density is homogeneous and constant. In the field, between depths
of 30 m and 25 m below sea level, a zone of decreased cone resistance is measured,
indicating a zone of decreased relative density when compared to the assumption of a
density of 100 percent. This assumption of a region of greater relative density would
explain why the numerical simulation result was stiffer than the field measurement.

Over a depth of 25 metres below sea level, the cone resistance tends to increase. This
trend is maintained until a depth of 15 metres below sea level. This layer of denser
soil explains why the rate of pile installation has decreased. Again, the homogenisation
soil continuum assumed by the numerical model cannot accommodate this localised
zone of extremely dense soil. At a depth of 15 metres, the cone resistance increases
further, resulting in a further decrease in pile installation rate. At this point, the more
rigid numerical model intersects and surpasses the field data. However, the pile in the
field encounters a local zone of highly compacted soil. The pile vibrates with min-
imal horizontal movement for approximately one hundred seconds. In contrast, the
numerical model begins to exhibit a decreased installation rate. This decrease in the
numerical model can be explained by the increased friction acting on the pile shaft as
it approaches greater depths, as well as the increased stress-dependent stiffness devel-
oped by the UBCSAND model. Both the numerical model and the vibrating pile in
the field demonstrate a slower installation overall. In comparison to the field data, the
numerical model begins to exhibit a softer behaviour beyond 15 metres depth. The vi-
bration continues in the field to a depth of 17 metres below sea level, after which refusal
was reported. The depth at which refusal is encountered correlates well with the CPT
test results in which 125 MPa of cone resistance is encountered. After approximately 10
minutes of calculation time, the simulation was terminated at this point.

Figure 6.28 depicts the effective stress values at two distinct pile heights, approximately
30 m and 25 m from Sea Level. As observed in a previous simulation of VibroPile and
as expected, the effective stress is greatest around the pile’s jacket. As the control plane
is moved away from the pile, the effective stress value recovers to its geostatic value.
The results of this contour are consistent with expectations. In addition, the stress state
around the pile can be retrieved and sent to a different commercial software that can
replicate long-term lateral or axial cycle tests. Due to its two-dimensional implementa-
tion, the CPDI code employed in this work cannot simulate lateral behaviour accurately
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6.4 Application of CPDI for Class-A offshore monopile vibratory installation prediction

at this time.

Following refusal, the vibrator tooling was swapped for the impact hammer tooling.
This transition took about two to three hours. Later, the piles were hammered to their
final embedment depths. Overall, the results of the numerical simulation indicate a very
close correlation with the experimental findings. Notably, the simulations performed
here are Class-A predictions, taking the dynamic effects of the process into account.

Remarks on pile acceleration
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Figure 6.29: Accelerations measured 13 m below pile head

Figure 6.29 was subsequently used to compare the accelerations measured 13 m be-
low the pile head with field data. In this comparison, accelerations from the first 200
seconds of the simulation were disregarded; the numerical simulation was started ater
100 seconds of field installation. The rationale for this decision is that the pile was
embedded 5 m while the measured penetration due to gravity was only 2.2 m. Given
this assumption, it is reasonable to conclude that the region of soil surrounding the pile
would have a different (i.e., undisturbed) stress state than that observed in the field.
After beginning the evaluation of accelerations 300 seconds after installation, the stress
around the jacket of the pile could be considered comparable, or the soil around the
jacket of the pile for the numerical model is at the very least disturbed. Comparing
the results of calculated and measured field data reveals that the peak accelerations of
the models are quite comparable. The numerical model also captures quite accurately
a greater downward acceleration (represented by negative values) than an upward ac-
celeration (shown here by positive values). Labenski [122] describes the variation in
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recorded acceleration measured on the pile when vibrated in different soil densities. In
light of this, it is reasonable to conclude that the accelerations recorded from the field
are not regular, whereas the accelerations calculated from the pile, despite falling within
the range of the measured accelerations, are quite regular. Overall, a good correlation
is observed between the numerical calculation and the field data.

Concluding remarks

The developed CPDI+UBCSAND numerical package has demonstrated its ability to
perform Class-A offshore monopile installation prediction. Given the recent push for
renewable energy, wind power provides a cleaner and greener alternative to other forms
of renewable energy, with the only limitation being the installation space required for
monopile foundations. Installation of offshore monopiles using vibratory installation
methods has been fraught with uncertainty. By providing a prediction of the installa-
tion’s behaviour during the design phase, this research aimed to alleviate certain con-
cerns. Ideally, the next step would be to incorporate this tool during the project’s design
and conception phases. This numerical package would provide designers with the data
necessary to optimise their designs and, ultimately, the installation procedure.

6.5 Summary

The two-phase CPDI code presented in Chapter 4 and the UBCSAND model described
in Chapter 5 are utilised in this chapter to simulate pile vibration in saturated sand.
In addition, simulations of impact hammering on model piles were conducted. In
both simulations, a strong correlation was obtained with experimental data. Simulated
was also a full-scale monopile from the VibroPile project. In this instance, the entire
installation procedure was successfully simulated, and a good correlation was seen
between the experimental and numerical calculations.

A Class-A simulation of monopile installation was also shown. Overall, a fair prediction
was made. In addition to simulating the installation rate quite accurately, the algorithm
was able to replicate extremely dynamic vibratory pile vibration for over 10 minutes.
According to the author’s knowledge, this monograph is the first to provide Class-
A prediction of offshore pile installation simulation. In the current modelling, it is
assumed that the soil is a homogeneous continuum. While this simplification allowed
for good results to be obtained in a fair amount of time, the next step would be to
construct numerous layers of soil to simulate the actual ground situation.
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Chapter 7

Conclusions and Recommendations

7.1 General conclusions

The work presented here was the result of research and development efforts aimed at
creating a numerical tool to simulate large deformation problems. The first objective
was to quantify the dynamic large deformation behaviour of sandy soils, the undrained
behaviour of sandy soils, and the effect of the dynamic behaviour on the soils’ strength.
Due to the complexity involved in convergent to a stable solution at each time step,
capturing massive deformations within the framework of finite element has always
been a difficult endeavour. The robustness of the solution, and hence its dependability,
depends on the precision with which the solution converges to a stable value at the
conclusion of each time step. The second objective was to ensure that the soil’s porous
media behaviour is adequately reflected. To accurately depict the actual state of the soil
as it is dynamically aroused, the method employed should ideally be hydrodynamically
fully-coupled. The third objective was to establish a sophisticated constitutive equation
that not only adequately models the soil and captures its response to dynamic stresses,
but does so with a minimal processing overhead. All of these efforts lead to the creation
of the UBCSAND+CPDI code that was utilised in this study.

A further objective was to establish a dependable calculation tool with the capability of
capturing the large deformations of the model while also taking into account the fully
saturated nature of the soil and accurately capturing the physics of the soil as a result of
the dynamic excitations in the soil. This effort resulted in the development of a tool that
provides a numerical package that is that is capable of capturing the large deformations
that occurs in saturated porous media while also providing the capacity to capture
the inherent physics of the fluidisation of soil. The two-phase CPDI code that was
developed and used in this work has, through the validation cases shown in this study,
not only was able to provide reasonable results for the back-calculation of experiments
and field tests, but was also applied to Class-A prediction of the pile installation forecast
with good accuracy. This study was carried out to determine whether or not the two-
phase CPDI code that was developed and used in this work could successfully capture
the soil-structure interaction of axially-symmetric two-phase systems.
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Convected Particle Domain Interpolation method

The second chapter of the thesis (Chapter 2) was dedicated for a literature study on
the current state of the art in terms of numerical approaches, with a particular focus on
massive deformation. The Convected Particle Domain Interpolation (CPDI) Method,
which is an advanced version of the Material Point Method, was chosen for the use
in this study as a result of the literature review. This is despite the fact that there is
a plethora of numerical methods that can be used. According to the findings of the
literature review, the CPDI approach was found to demonstrate superior consistency
and accuracy in comparison to the traditional MPM formulation. Because the CPDI
code was used as the foundation for the numerical modelling, not only was a solid and
well-developed foundation guaranteed for the subsequent simulation of the soil, but
also of the structures that interact with the soil. This was accomplished by adopting the
CPDI code as the base for the numerical modelling.

Chapter 3 provided the numerical makeup of the CPDI code. While in the material
point method (MPM), the continuum is represented by material points, wherein the
continuum paramters like stress, strain and other state variables get stored, in the case
of CPDI, the material points are extended to domains. The incremental solution for the
momentum equation is solved on the background computational grid. The numerical
make-up for a two-dimensional element formulation, which consists of four-noded reg-
ular rectangular elements was provided in the work. It’s extension to the CPDI formu-
lation was also presented. The CPDI formulation’s extension to the axially-symmetric
framework, after the work of Hamad [82] was presented in this work. Through the use
of Method of Manufactured solution (MMS), single element tests as well as through
large continuum examples, the CPDI code was validated. Through this validation, it
was ascertained that the not only is the implementation of the CPDI code proper, but
also that for cases where the single-phase continuum structure will interact with the
soil, the results that are expected from such interactions were reliable.

The formulation of the penalty contact algorithm, following the implementation of
Hamad [82] was provided. To refine the contact between two continuums in CPDI, the
predicted contact surface was further discretised with linear one-dimensional elements.
On the basis of these elements, continuum contact could be evaluated. The contact al-
gorithm implemented in CPDI was compared to the findings of the commercial finite
element programme ABAQUS™.

The code was then compared to the granular collapse benchmark test. The objective
of this study is to compare the final run-off calculated by the numerical model to the
experimental results. In addition to handling massive deformations and capturing the
intricate movement of the soil column as it collapses, the CPDI code was also able
to estimate the final run-off distance with fair accuracy. Here, the knowledge-gap of
the many modelling parameters of the CPDI technique was filled, specifically the in-
fluence of number of particles per computing grid, the effect of various smoothening
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algorithms, and the effect of local damping on the final results. The results of this in-
vestigation were helpful in determining the values of these parameters for later, more
complicated calculations. The dependence of the final result on the constitutive law
was also investigated. At various time intervals, the run-off distance from the numer-
ical simulation was compared to the experiment, and it was demonstrated that the
findings obtained using the CPDI code are remarkably comparable to those from the
experiment.

The extension of the single-phase CPDI algorithm to model pore fluid was presented in
Chapter 4. The governing equations, as well as the extension of Kelvin-Voigt elements
for saturated media, were derived by reference [107]. This formulation enabled simula-
tion of the behaviour of saturated materials. The solid and pore fluid dynamic equilib-
rium was computed at the background computational grid, while the mass balance of
the components and constitutive laws for both the soil and fluid are developed at the
material point level. The implementation of the two-phase CPDI code was evaluated
using the well-known one-dimensional consolidation problem after Terzaghi [204], with
excellent convergence between the analytical solution and the two-phase CPDI code’s
output.

Constitutive law : UBCSAND

Chapter 5 described the numerical structure of the UBCSAND constitutive model,
an elasto-plastic model capable of simulating the liquefaction of non-cohesive soils.
Within the framework of a two-phase CPDI, the implemented constitutive law was pro-
grammed according to the FISH code presented in reference [159]. The implementation
of the model was validated using a straightforward single element test. The test re-
sults suggested that the applied UBCSAND model was able to capture the complete
liquefaction of the loose sand sample. The model was then implemented inside the
framework of the two-phase CPDI, and the implementation was evaluated using the
classic shake table test as a benchmark. This was done to validate the model’s imple-
mentation under dynamic loading within the CPDI code. The results of the shake table
test demonstrated that the UBCSAND model in conjunction with the two-phase CPDI
code accurately predicted the liquefaction of the sample. The experiment-observed top-
down liquefaction was likewise computed in the computational model. A parameter
test was conducted to determine the influence of boundary conditions and hydraulic
conductivity on the final results.

Numerical simulation of monopile installation

The purpose of this Chapter 6 was to determine if the numerical package developed
here was capable of predicting the offshore monopile installation rate. After experi-
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mental examination of vibratory [186] and impact installation of model monopiles [9],
a back-analysis utilising the developed numerical package was conducted. As the pile
vibrates or was hammered into the soil, it was essential to capture the stress state
change caused by pile-soil interactions, which governs the installation rate and the de-
velopment of excess pore pressures (or suction). The numerical results from the CPDI
code were compared to the experimental values, and a satisfactory match was found
for both the vibrated and hammered monopiles. The generation of excess pore pressure
was comparable to the measured values. As the pile is being installed, the numerical
code was able to record both the excess and suction zones of pore pressure that form
in the soil continuum. Through the study of effective radial stresses, the installation
process’s effects on the soil was also determined. In the case of vibrated piles, the zone
of influence extended to 1.5D, after which the effect of pile installation on the change
of soil stress state began to diminish. However, the zone of influence for the hammered
pile extended beyond 1.5D, up to 2D, after which it began to diminish.

To investigate the viability of using the numerical package to large diameter offshore
monopiles, a back-analysis of a vibrated pile performed as part of the VibroPile project
was performed. In order to recreate the field test as accurately as feasible, the varying
installation frequency was also incorporated into the input. Pile P4, one of the three
vibrated monopiles, was selected for comparison with the simulation. The simulation
was performed for approximately 200 seconds. When the pile depth results were com-
pared to the field data, a very good match was found. The calculation evaluated the
impact of the installation process on radial stresses of the soil. As observed in the case
of the model pile, the zone where radial stresses changes may be calculated extended
to 1.5D. This knowledge can be useful to designers, who can consider this information
during the planning phases of monopile foundation projects requiring the installation
of many monopiles. Also analysed were the excess pore pressures observed at certain
control locations. Given the difficulties of installing and monitoring these sensors, mea-
suring such granular data from the field was a difficult undertaking. Having previously
confirmed the results for the model monopile, the results from the VibroPile model can
be deemed reliable because the same numerical approach and constitutive law were ap-
plied. Similarly, a suction zone was computed as the pile toe passes the control point,
which was preceded by an excess pore pressure zone when the pile was sufficiently
distant from the control point. As the monopile near this control point, the pressures
reversed. It is also noted that the influence of installation on the excess pore pressure
declined increasingly with distance from the measurement point. Beyond 1.5D, there
were no discernible excess pore pressures. The results of this simulation concluded
the initial objective of the study, which was to comprehend the dynamic behaviour of
the pile during installation. Not only do the findings of this simulation replicated the
observed field behaviour pretty well, but also included granular soil state information
that would otherwise be not accessible.

164



7.2 Future developments

Class-A forecast of monopile installation

The penultimate research objective of this dissertation was to model a Class-A offshore
monopile vibratory installation and compare it to field data, which was made available
after the simulation had been completed. Having assessed the soil state parameters in
earlier studies, this study focussed primarily on the prediction of pile depth. When
compared to field data, a fair prediction of the pile installation rate was produced.
In addition, the measured accelerations for the pile were compared to the calculated
numerical results, which revealed a fair forecast. Despite the fact that the current nu-
merical model reduced the problem to two dimensions and disregarded any anisotropy
or variations in the seabed soil profile, assuming a homogenous model, the vibration
behaviour of piles was accurately predicted.

7.2 Future developments

When it comes to simulating reality, there is always room for improvement, even though
progress was made in simulating large deformation of saturated soil, and capturing the
dynamics that occurs in the soil due to loading conditions. In the application of the
CPDI numerical code for pile installation, the homogeneity of the soil continuum was
one of the most important assumptions. This, however, is not the case in the real
world, as soil is an inherently heterogeneous material, with density and composition
varying with depth. When pile installation behaviour is addressed, the presence of such
interstitial layers is expected to have an effect. A multi-layered continuum simulation
that is not restricted to the use of a single constitutive law will be the logical next step
in the research. This will allow for a more accurate reflection of reality. In this regard,
the CPT data, which are currently evaluated, homogenised, and fed into the code as a
single input parameter, must be included as part of the soil characteristics input to the
CPDI model. This would necessitate incorporating soil calibration procedures into the
CPDI code.

Despite the fact that the CPDI code was capable of simulating the dynamics of both
soils and structures, the time required for such calculations was quite extensive. The
simulation performed as part of the VISSKA project, as detailed in Chapter 6, required
an average of 60 minutes per second of numerical simulation. This resulted in a com-
putation time of approximately 25 days, despite the code’s OpenMP implementation.
Future versions of the code must incorporate the MPI (message passing interface) stan-
dard in order to increase the computational efficiency of such models. This would
enable the use of high-performance computers whose access is currently available but
for which code is incompatible with their architecture.

Coupling of the CPDI code and a CFD solver to investigate the pressure wave propa-
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Figure 7.1: Concept of a coupling between the CPDI code and CFD solved

gation through the sea water during pile installation is another area where substantial
contributions can be made. A CPDI model’s computation time is proportional to the
number of particles packed into the mesh. The conventional installation of piles gener-
ates high underwater sound waves, which is detrimental to aquatic life. To predict these
waves prior to installation would necessitate simulating massive boundaries, which is
not feasible in CPDI due to high computational time. As conceptualised in Figure 7.1,
this can be mitigated by coupling the CPDI code with a CFD solver. This would aid
in simulating the behaviour of the soil continuum during the installation process and
monitoring the propagation of the induced pressure waves.
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Appendix A

Appendix to Chapter 3.4 : Performance of the
single phase CPDI model

After implementing the CPDI numerical code, its performance is evaluated to ensure
that it behaves as expected and that the error is within the expected range. This study
compares all of the available MPM iterations, including the classical formulation, Gen-
eralised Interpolation Material Point (GIMP), and the CPDI. The results of this study are
also used to justify the increased computational overhead caused by the CPDI imple-
mentation and to quantify the difference between formulations numerically. The pur-
pose of this Appendix’s study is to ensure that the code performs as expected during
unit tests and simple tests. The continuum tests conducted in Chapter 3 are described.

A.1 Frame-indifference of CPDI

The principle of material frame indifference is an essential component of the numer-
ical modelling of large deformations. This necessitates that the spatial stresses rotate
with the material while the reference stresses remain unaffected by rotation. According
to the principle of material frame indifference, if a deformed material is rotated, the
spatial traction and stresses must also rotate. However, the reference stresses must be
rotationally insensitive. In their work, Speziale [198] provided a critical analysis of the
concepts of material frame-indifference. However, the concept of basis indifference is
distinct from that of frame indifference. The work of Frewer [69] provides a compre-
hensive description of the terminology and formulations used to explain the concept of
material frame-indifference.

As an object undergoes deformation, the spatial tractions and stresses must rotate ac-
cording to the principle of material frame-indifference. While the rotation of spatial
tractions is simple and can be implemented by calculating updated normals, the same
cannot be said for stresses. The material objectivity or material frame indifference principle
stipulates that the material response must be independent of the observer [143]. Con-
stitutive laws should therefore be written with an objective reference frame in mind.
A difference between the reference and deformed configurations of a deforming body
may develop over time. This is typically disregarded for problems with small defor-
mations, but cannot be assumed for problems with finite deformations. Over small
incremental deformations, it is possible to linearize the nonlinear finite deformation
problem. For an elastic constitutive equation, the objective stress rate tensor σ̊ is given
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by the form:

σ̊ = f (ε̇) , (A.1)

where, ε̇ represents the strain rate and f represents the constitutive equation. The
Cauchy stress tensor, σ is symmetric and objective. Materially, it is a time derivative, but
it can be demonstrated that it is not objective. In the context of continuum mechanics,
references such as [20, 143] provide a comprehensive list of the various objective stress
rates. The relation between the Jaumann co-rotational stress rate and the Cauchy stress
rate is given by:

σ̊ij = σ̇ij − ωik σkj + σik ωkj , (A.2)

where, ω, the spin tensor is given by the relation:

ωij =
1
2

(
∂vi

∂xj
−

∂vj

∂xi

)
. (A.3)

Here, v represents the velocities of the continuum. Hill [93] advanced Equation A.2 by
introducing volume change effects. The so-called Hill rate or more commonly referred
to as the co-rotational rate of Kirchoff stress tensor ∇

σ is given by:

∇
σij = σ̇ij − ωik σkj + σik ωkj + ˙εkk σij , (A.4)

where, ˙εkk is the spherical part of the strain rate tensor. The objective stress rate
definition, from Equations A.2 and A.4 can be summarised for the constitutive equation
as:

∇
σij = Dijkl ε̇kl , (A.5)

where, Dijkl is the constitutive tensor.

The reference [153] demonstrates that the accuracy of the Jaumann stress rate has certain
limitations. It has been shown that the Jaumann stress rate is inaccurate for moderate
to large deformations with deviatoric strains exceeding 10 percent. This error is caused
by the assumption that the spin tensor ω is the rotation rate tensor. This assumption
is accurate for rigid body rotations and plausible for small strains and large material
rotations. As shown in reference [153], a significant difference between fabric rotation
rate and spin tensor may occur in the case of large deformations and large material
rotations [97]. However in case of large deformations and large material rotations,
a significant difference between rotation rate of fabric and spin tensor may occur, as
was shown in reference [153]. For numerical calculations of material rotations, it is
suggested that an approach outlined in the work [153] based on polar decomposition
be utilised.

Kamojjala and Brannon [108] provide an efficient algorithm for taking into account the
principle of material frame indifference via polar decompositions. The presented algo-
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A.1 Frame-indifference of CPDI

rithm has been incorporated into the CPDI code. The rationale behind the algorithm
was to emphasise that the common approaches used by finite element codes to satisfy
frame difference, namely working in an approximate un-rotated frame for which ro-
tation during the increment is implicitly neglected by using only a single orthogonal
tensor for all un-rotation operations during the step, are insufficient and require the
use of different polar rotations if the material undergoes rotation. The fundamental
algorithm to account for frame-indifference is as follows:

Stress update algorithm

■ Initialise stresses σn, and symmetric part of velocity gradient, Dn, where n
is the time step.

■ The stress and the symmetric part of velocity gradient are un-rotated using
the relations:

σ̄n = RT
n · σn · Rn,

D̄n = RT
n · Dn · Rn,

where, Rn is the rotation matrix at time step, n.

■ The updated stresses σ̄n+1 are computed using the un-rotated stress and
strain measures by means of an appropriate constitutive law.

■ The updated un-rotated stresses and the strain measures are re-rotated us-
ing the relation:

σn+1 = RT
n+1 · σ̄n+1 · Rn+1,

Dn+1 = RT
n+1 · D̄n+1 · Rn+1

In order to test the stress update algorithm, a classical single-element test is per-
formed in CPDI. The test problem consists of two phases,

■ The element is subjected to uniaxial deformation. During the initialisation phase,
zero-stresses are assigned to the element. In one second, the acceleration due to
gravity, g, increases linearly from 0 to its maximum value.

■ The deformed configuration is permitted to undergo a 90-degree superimposed
rotation. This is accomplished by changing the direction of g from vertical to
horizontal over the course of one second, while maintaining the block’s position.

For simulation, a linear elastic constitutive law is selected. 500 kPa is assigned to the
Young’s Modulus, E, and 0.30 is assigned to the Poisson’s ratio, µ. One background
computational grid containing a single particle is selected. The solution procedure
makes use of an explicit time stepping algorithm. It can be inferred from Figure A.1
that during the first phase of the calculation, the vertical and horizontal stresses increase
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Figure A.1: Normalised stress components vs. time

linearly until they reach their maximum value. As anticipated, no shear stresses are de-
veloped. The out-of-plane stress, σzz, is not displayed because rotation has no effect on
it. As expected, when the gravity vector is rotated by 90 degrees in the second phase,
the vertical and horizontal stresses trade places. As the simulation continues, a slight
accumulation of shear stresses dissipates. The test results indicate that the numerical
code satisfies the objectivity criterion regardless of large rotations. Reference [108] con-
tains information regarding the comparison of objectivity corrections algorithms and
the outcomes of a Method of Manufactured Solutions test.

A.2 Comparison of MPM and CPDI : Cantilever beam
problem

Compared to traditional MPM, the CPDI method’s ability to handle large deformations
is evaluated. In this numerical example, the extension instability, a common shortcom-
ing of particle-based methods, is examined. Simulation of the deformation of a vertical
bar of unit length (1 m by 1 m) due to its own weight. On the top portion of the con-
tinuum, roller boundary conditions are imposed; all other boundaries are assumed to
be free. E = 1000 kPa, ν = 0.3 and ρ0 = 1.05 g/cm3 are set as the modulus of Young,
Poisson’s ratio, and density, respectively. The acceleration due to gravity (g) is equal
to 1000 m/s2 (g = 1000 m/s2). To obtain very large deformations, a high, unrealistic
value for g is assumed. The continuum is meshed with 100 grids of dimension 0.1 by
0.1 m and populated with 9 particles per grid, totaling 900 particles for the problem.
A total of 300 computational grids are selected for the simulation’s background. The
simulation is performed for a total of 0.24 seconds using standard MPM and the CPDI
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Appendix to Chapter 3.4 : Performance of the single phase CPDI model

formulation, with a time step increment of ∆t = 0.00006 seconds. The simulation be-
gins with an instantaneous application of full gravity, which is maintained until the
conclusion.

Figure A.2 depicts a comparative examination of the simulation. Using the CPDI dis-
cretisation, the simulation does not exhibit extension instabilities. The classical material
point method, on the other hand, fails to capture the substantial deformation that re-
sults from an increase in bar load. MPM fails to account for the shear portion of the
deformation and predicts gaps in the domains that are unrealistic. The inaccuracy of
the solution is exacerbated by jumps in the particle’s internal energy as it crosses grid
boundaries. In contrast, the CPDI method maintains contact throughout the computa-
tion. Alternative nodal basis functions have been incorporated into the CPDI algorithm
to aid in maintaining particle contact even during extreme deformation. Six snapshots
presented in Figure A.2 demonstrate that particles remain in contact for 0.03 seconds
in both MPM and CPDI simulations. Between 0.03-0.05 seconds, the MPM particles be-
gin to lose contact. notably in the region where the body undergoes the most extreme
tensile deformation. Between 0.05 and 0.07 seconds in MPM, the particles completely
lose contact and begin to behave as two separate bodies. Comparing this result to that
of CPDI, the particles remain in constant contact.

Large deformations of the continuum are examined, and large particle rotations are an-
ticipated. The CPDI method, which employs parallelograms for its domains, takes into
account large rotation, whereas the MPM and uGIMP methods do not. This numerical

MPM CPDI

0 seconds

0.3 seconds

0.7 seconds g

Figure A.3: Displacement of cantilever bar: MPM vs. CPDI
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X
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g

Figure A.4: Deformation of cantilever bar: CPDI vs. GIMP

example verifies the performance of all three methods. This test assumes a cantilever
beam of length 4 m and thickness 1 m. By abruptly applying gravity at the start of
the simulation, large deformation vibrations of the beam under its own weight are pro-
duced. One end of the cantilever beam is encastered. The modulus of Young, Poisson’s
ratio, and initial beam density are E = 1000 kPa, ν = 0.3, and ρ0 = 1.05 g/cm3, respec-
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tively. Gravitational acceleration is set to be 10 m/s2. The calculation is performed for
a total of 3 seconds, with an increment of 0.001 seconds assigned to each time step. The
beam is discretised using 64 elements, with each element having a dimension of 0.25
by 0.25 m. Each element is comprised of nine particles, totaling 576 for the simulation
of the cantilever beam. We use a total of 900 background computational grid elements,
which allows us to effectively assign 4 particles per computational grid. Calculations
are performed using traditional MPM, uGIMP, and CPDI, and comparisons are made.

Figure A.3 depicts snapshots of the simulation’s results, which were performed using
classical MPM. Evidently, the simulation failed as a result of spurious material sepa-
ration. This numerical exercise demonstrates the robustness of advanced versions of
MPM versus the original formulation. Owing to the spurious oscillation of stresses in
the particles, the original formulation of MPM causes the particles to lose contact with
one another. The enhanced CPDI formulation can accurately track the particle’s large
deformation without losing contact with the particles. Repeating the simulation using
GIMP and CPDI. In both instances, the simulations are stable and the calculation is
carried out as intended, with no erroneous material separation.

0 1 2 3
-4

-3

-2

-1

0
Vertical displacement of point X [mm]

Time [sec]

 CPDI    GIMP

Figure A.5: Vertical diplacement of point X of Cantilever bar: CPDI vs. GIMP
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Figure A.4 demonstrates that the deformation of CPDI and GIMP appear comparable,
but the deformation of individual particles cannot be compared. The CPDI’s imple-
mentation of alternative grid functions permits extension of the material point, which
is not captured by the uGIMP simulation. It should be noted that if cpGIMP is imple-
mented with extension taken into account, the results will not be comparable to those
of CPDI because deformation in only one direction, either horizontal or vertical, will
be considered. In contrast, the CPDI formulation permits extension, compression, and
shear deformation of the particle.

Figure A.5 captures the displacement of point X as shown in Figure A.3. It can be seen
that while the results look initially similar, they start to diverge after around 1 second
of the simulation. The results are not entirely comparable. A similar study was carried
out in the work of Sadeghirad et al. [189] and a conclusion drawn that results from the
CPDI method are indeed more accurate.

It is investigated how particle domain shapes affect the performance of CPDI and GIMP.
Due to the nature of the formulation in the MPM formulation family, the edges of the
initial rectangular domains in GIMP are restricted to being parallel to the global co-
ordinate axes. In the case of CPDI, the edges of the parallelogram are also parallel to
the global coordinates. The geometry of the previously discussed cantilever beam was
rotated by 45 degrees in order to examine the difference in performance under identical
loading conditions in a modified configuration. In this instance, the problem cannot
be discretised precisely using rectangles with parallel edges to the global coordinates.
In this instance, the bar subjected to significant tensile deformation, as depicted pre-

0 1 2 3
-0.6

-0.4

-0.2

0.0
Vertical displacement [m]

Time [sec]

 Straight bar     Rotated bar

Figure A.7: Vertical displacement of point X of cantilever bar using CPDI
discretisation: Straight vs Rotated initial configuration
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viously, is modelled. For both the uGIMP and CPDI simulations, 1024 particles and
600 background grids were used to discretise the bar. The gravitational acceleration
applied to the model was rotated to fit the model’s configuration. Encastering one end
of the rotated cantilever bar. Such a boundary condition is not typically imposed in
the current implementation of the code. Typically, boundary conditions can only be
assigned to the boundaries whose edges are parallel with the global coordinate system.
There is no need to define any particle boundary conditions. In this case, however, the
particles were assigned boundary conditions that were used as a switch to identify the
computational grids in the background where these particles reside in order to apply
the boundary conditions. This deviation in calculation procedure was necessitated by
the cantilever beam’s rotated geometry. Figure A.6 illustrates the initial configuration
and deformation of a normal cantilever bar, as well as the direction of the resulting
gravity vector, as well as the rotation of a cantilever bar and its corresponding gravity
vector. In both instances, the direction of the background computation grid is similar
and its edges are aligned with the global coordinate axes. In every instance, there was
no instability and the simulation was completed as intended.

The displacements of the straight bar is compared with that of a rotated geometrical
configuration. Figure A.7 provides the displacement of point X as introduced in Figure
A.6. It can be seen that the results for a cantilever beam problem assuming CPDI for
the straight and rotated bars are slightly different. The bar with a rotated configuration
exhibts a softer behaviour than the straight bar. This difference in results per reference
[189] can be attributed to the initial configuration of the particles, wherein the edges of
particles are aligned to the global axis. Since the idea of this simulation was to perform

0 1 2 3
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-0.4

-0.2

0.0
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Time [sec]

 CPDI    GIMP

Figure A.8: Vertical displacement of point X of cantilever bar in rotated configuration:
CPDI vs. GIMP
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a parameter study to compare the results between a straight and a rotated bar, this
deviation in the results was acknowleged.

Figure A.8 compares the simulation results between CPDI and GIMP. Figure A.8 demon-
strates that the results from the GIMP simulation deviate slightly from the CPDI sim-
ulation, despite the fact that it has been established that the results from the CPDI
discretisation for the rotated configuration differ slightly from the unrotated configura-
tion. Comparing the performance of the rotated GIMP simulation to that of the straight
CPDI configuration reveals a significant error. It should be noted that, fundamentally,
the forces exerted on the straight and rotated bars should be identical. Due to the
orientation of the particle boundaries in the initial configuration, there is a difference
in outcomes. Due to the proposed alternative grid basis functions and its ability to
capture the tensile deformation, which is otherwise neglected by the uGIMP, it can be
concluded that the CPDI method provides more accurate results than the uGIMP when
the geometry is rotated.
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Appendix B

Appendix to Chapter 3.5 : Verification of the
penalty contact algorithm

The penalty contact algorithm implemented in Chapter 3 has been applied to prob-
lems for which a closed-form solution is known. The outcomes of the CPDI code are
also compared to the outcomes of the commercial finite element software, ABAQUS™.
Results presented in this Appendix have been published in part in Reference [84], to
which the author of this monograph contributed to the simulation using ABAQUS™

and the development of the contact formulation in CPDI.

Cylinder rolling on inclined plane

Owing to the current two-dimensional implementation, the problem of a sphere rolling
on an inclined surface presented in reference [81] has been replaced by a cylinder.
As an enhanced version of MPM, CPDI is utilised in this study to test the proposed
and conventional contact algorithms. In this problem, a cylinder with a radius of 1.6
m rolls on a plane measuring 20 m in length and 0.8 m in thickness. In two cases,
the inclination of the plane is 60◦ and 45◦, corresponding to a surface coefficient of
0.286 and 0.495. The bottom and sides of the plane are completely fixed as boundary
conditions. The first case will be referred to as slip and the second as no-slip. The
Neo-Hookean hyperelastic material model is adopted for the rolling cylinder with the
following mechanical properties: bulk modulus 6 MPa, shear modulus 3 MPa, and
density 1 g/cm2. The same elastic constitutive model is applied to the plane, but its
properties are multiplied by a factor of ten. In all cases, a gravitational acceleration of
10 m/s2 is considered.

Figure B.1: Initial and finial location of the slip case of the rolling cylinder
showing the gap of the MPM contact
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Figure B.2: Displacement and velocity of the centre point of rolling cylinder:
No-slip contact (upper row), and slip contact (lower row)

A plane-strain analysis is conducted using a computational mesh consisting of four-
node regular cells of size 0.4 m. See Figure B.1 for the irregular CPDI discretisation in
which the maximum particle size is 0.2 m. A 0.001 m interface layer is discretized using
a two-node element of 0.1 m size, yielding a total of 517 linear segments. The analytical
solution for the location of the cylinder’s centre when it rolls on a surface is given by:

ds (τ) =
5
2

(√
3 − 2

7

)
τ2 and dn (τ) =

5
√

2
3

τ2 , (B.1)

with ds and dn being the position along the plane at time τ for the slip and no-slip case,
respectively.

The numerical solution is obtained by calculating the initial gravity stresses at zero in-
clination, followed by a sudden tilt of the plane and cylinder. Figure B.2 illustrates the
proposed method along with the analytical for comparison purposes. The proposed
scheme based on penalty function manages to accurately predict the contact forces,
compared with the analytical solutions, in both slip and non-slip situations. The ap-
proach based on the penalty function yields a straight line for the velocity variation,
with the exception of the final portion of the no-slip case.
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4

Figure B.3: Von Mises stresses (0 − 20 MPa) of the CPDI (left) and FEM (right) analy-
ses using penalty contact algorithm at: 0, 0.4, 1.6, and 3.2 ms

Collision of two elastic rings

To demonstrate the efficacy and precision of the proposed contact algorithm, the colli-
sion of two elastic rings is reproduced. In this issue, the interface along the interaction
between the deformable bodies is severely deformed. Following Huang et al. [95] and
the references cited therein, the inner and outer diameters of the two rings are 60 mm
and 80 mm, respectively. They are separated by 4 mm. Each ring has a 1.01 g/cm3

density, a 121.7 MPa bulk modulus, and a 26.1 MPa shear modulus, and conforms to
the Neo-Hookean model adopted earlier. Both rings are assigned an initial velocity of
30 m/s in opposite directions. The computational mesh employed has a 2 mm cell size,
while the particle size of the CPDI domains is 0.5 mm. The surface is discretized with
a 2 mm mesh size and an assumed friction coefficient of 0.1.

The software ABAQUS™ where the penalty algorithm is implemented in the FE frame-
work is chosen as a reference solution. The rings in this analysis are discretized with a 2
mm mesh size. In addition, similar constitutive model routines are integrated into FEM.
As illustrated in Figure B.3, the present algorithm is capable of capturing the highly dy-
namic collision behaviour. In addition, the suggested mapping procedure of the contact
forces to the computational grid in Equation 3.58 provides a weighted average of the
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Figure B.4: Variation of the total contact forces during the collision

interface forces and subsequently generates relatively smooth contact stresses. Across
the line of symmetry, symmetric deformations and stresses are observed for the same
reason. As depicted in Figure B.4, the contact forces of the two analyses are monitored
during the collision. Despite the fact that this application is regarded as a multi-contact
problem in which the configuration of the interface changes during continuous de-
formation, the trend indicates that the contact forces of the two schemes are in good
agreement. Figure B.4 demonstrates that, beyond 1.6 ms, the rings interact at the outer
edges rather than the centre, which accounts for the small difference between FEM and
the present CPDI analysis.
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Appendix C

Appendix to Chapter 5 and Chapter 6:
Hypoplastic Model for sand

This section presents a brief overview of the hypoplastic model for sand and its ex-
tension to small strain stiffness. The material model of sand is based on the work of
Von Wolffersdorff [213] and its extension to small strain stiffness, on the work of Niemu-
nis and Herle [165]. For the sake of completeness, the hypoplastic model implemented
in the CPDI code is discussed in this section briefly. For a more detailed understanding
of the model, the readers are directed towards reference [165].

Model Formulation

Hypoplasticity is an approach to non-linear constitutive modelling of geo-materials.
Following from Von Wolffersdorff [213], the hypoplastic constitutive relation in the rate
form is expressed as

σ̇ = G (σ, e, ε̇) , (C.1)

where, σ̇ is the Zareba-Jaumann stress rate tensor, ε̇ is the strain rate tensor, and e is
the current void ratio. The rate of void ratio is follows from

ė = (1 + e) tr (ε) . (C.2)

The general form of the tensorial function G is selected such that

σ̇ = Lε̇ + N∥ε̇∥, (C.3)

where, L and N are the fourth-order linear and second-order non-linear constitutive
tensors, respectively. The term ∥ε̇∥ is the Euclidean norm of the strain rate tensor. For
ease of representation, Equation C.3 is represented in index notation as

σ̇ij = Lijkl ˙εkl + Nij

√
˙εij ˙εij, (C.4)

with Lijkl and Nij being the linear and non-linear constitutive tensors, respectively.
The decomposition of function G into a linear and non-linear tensors is performed
to achieve the inelastic behaviour of sand without having to decompose the strain into
elastic and plastic parts. Tensors Lijkl and Nij are functions of stress and void ratio.
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They are represented as

Lijkl = fb fe
1

σ̂ijσ̂ij

(
f 2 δik δjl + a2 σ̂ik σ̂jl

)
, (C.5)

Nij = fd fb fe
a f

σ̂ijσ̂ij

(
σ̂ij + ˆ̂σij

)
. (C.6)

The tensors σ̂ij and ˆ̂σij are the normalised stress tensor and the deviatoric stress tensor,
respectively. They are represented as

σ̂ij =
σij

I1
, with I1 = σ11 + σ22 + σ33, (C.7)

ˆ̂σij = σ̂ij −
1
3

δij. (C.8)

From Equation C.5, the constant a is represented as

a =

√
3
(
3 − sin ϕc

)
2
√

2 sin ϕc
, (C.9)

where ϕc is the critical state friction angle, and the factor f is represented as

f =

√
1
8

tan2 ψ +
2 − tan2 ψ

2 +
√

2 tan ψ cos 3θ
− 1

2
√

2
tan ψ, (C.10)

where, cos 3θ is the Lode angle function and is given by

cos 3θ = −
√

6
tr( ˆ̂σ · ˆ̂σ · ˆ̂σ)[

ˆ̂σ : ˆ̂σ
]3/2 . (C.11)

tan ψ is defined as
tan ψ =

√
3 ∥ ˆ̂σ∥ . (C.12)

We define three characteristic void ratios namely, critical void ratio ec, the minimum
possible void ratio ed corrected to the corresponding density, and the maximum pos-
sible void ratio ei corresponding to the minimum density. The variables ec0, ed0 and
ei0 correspond to the void ratios at vanishing pressure represented by the first stress
invariant I1. From Equation C.6, the factors fe and fd are represented as

fe =

(
ec

e

)β

, and fd =

(
e − ed
ec − ed

)α

(C.13)

with β and α being the input indices. From Equation C.5, the pressure dependency of
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the soil stiffness, represented by the factor fb is defined as

fb =
hs

n

(
1 + ei

ei

)(
ei0

ec0

)β (−I1

hs

)1−n
[

3 + a2 −
√

3 a
(

ei0 − ed0

ec0 − ed0

)α
]−1

, (C.14)

where, hs is the pressure independent granular stiffness and n is an input index. The
characteristic void ratios are updated according to the relation

ei

ei0
=

ec

ec0
=

ed
ed0

= exp

[
−
(
−I1

hs

)n
]

. (C.15)

Finally, substituting Equations C.5 and C.6 into Equation C.4, the final constitutive
equation is expressed as

σ̇ij = fb fe
1

σ̂ijσ̂ij

[
f 2ε̇ij + a2

(
σ̂ikσ̂jl

)
ε̇kl + a f fd

(
σ̂ij + ˆ̂σij

)√
ε̇ij ε̇ij

]
(C.16)

Extension to small strain stiffness

To predict the very small strain stiffness and recent stress history effects, the model
is combined with the intergranular strain concept [165]. The formulation is extended
to account for small strain stiffness, by introducing a new state variable called the
intergranular strain δ denoted by

δ =
∫

δ̇dt , (C.17)

where,

δ̇ =

{
(I − δ̂ ⊗ δ̂ρβr) : ε̇, for δ̂ : ε̇ > 0
ε̇, for δ̂ : ε̇ ≤ 0 ,

(C.18)

with, δ̂ being the direction tensor for the intergranular strain. It is defined as

δ̂ =

{
δ/∥δ∥, for δ ̸= 0
0, for δ = 0 .

(C.19)

ρ is defined as the normalised intergranular strain magnitude defined as

ρ =
∥δ∥
R

. (C.20)

βr and R are intergranular strain concept parameters. The constitutive relation of the
extended hypoplastic model is written as

σ̊ = M : ε̇ . (C.21)
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The stiffness tensor of the intergranular strain concept formulation M is constructed
from tensors L and N and is modified by two scalars mT and mR. The tensor is repre-
sented as

M =
[
ρχmT +

(
1 − ρχ

)
mR

]
L

+

{
ρχ (1 − mT) L : δ̂ ⊗ δ̂ + ρχNδ̂, for δ̂ : ε̇ > 0 ,
ρχ (mR − mT) L : δ̂ ⊗ δ̂, for δ̂ : ε̇ ≤ 0 .

(C.22)

In index notation, Equation C.22 is written as

Mijkl =
[
ρχmT +

(
1 − ρχ

)
mR

]
Lijkl

+

ρχ (1 − mT) Lijmn

(
δ̂mkδ̂nl

)
+ ρχNikδ̂jl, for δ̂ij ε̇ij > 0 ,

ρχ (mR − mT) Lijmnδ̂mkδ̂nl, for δ̂ij ε̇ij ≤ 0 ,

(C.23)

with, variables mR and mT defined as

mR = pr Ag

(
p
pr

)ng
4AmαG

2pαE

(
λ∗κ∗

λ∗ + κ∗

)
1(

1 − νpp − 2αE
α2

ν
ν2

pp

) , (C.24)

mT = mrat mR. (C.25)

Variables χ and mrat are the intergranular strain concept parameters. Ag and ng are
parameters quantifying the dependency of shear modulus at very small strain on mean
effective stress parameter.

Constrained Modulus Calculation

For the MPM formulation, time integration of momentum equation is restricted by the
CFL (Courant, Friedrichs and Lewy) condition where the critical time step is bound by
the characteristic length of the element and the wave speed of the material. This con-
dition requires the constrained modulus Ec to calculate the wave speed and ultimately,
the size of critical time step. We consider the case of one-dimensional straining similar
to that of oedometer test. We take all the components in the strain rate tensor equal to
zero except ε̇22. For the sake of simplicity, the stresses are assumed to be isotropic and
are given by

σ̂ij =
1
3

δij, and ˆ̂σij = 0. (C.26)

The above values are obtained given that σ̂ijσ̂ij =
1
3 . Given these conditions, and with

ψ = 0 and f = 1, it is shown that

L = fb fe

(
3 +

a2

3

)
, and (C.27)
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N = a fb fd fe (C.28)

With L and N being the components of the tensor Lijkl and Nij, respectively. This
corresponds to ε̇22 ̸= 0. The constrained modulus thus becomes

Ec = L ∓ N, (C.29)

with the minus and plus sign indicating the loading and unloading conditions, respec-
tively. This yields the constrained modulus

Ec =
[
ρχmT +

(
1 − ρχ

)
mR

]
L

+

{
ρχ (1 − mT) L + ρχN, for δ̂ij ε̇ij > 0 ,
ρχ (mR − mT) L, for δ̂ij ε̇ij ≤ 0 .

(C.30)
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Appendix D

Appendix to Chapter 3.6 and 5.3 : Comparison
of performance of Constitutive laws

This Appendix covers the impacts of constitutive law, along with equivalent simulation
parameters. In this Appendix, two constitutive laws are discussed: the hypoplastic
sand model [213] and the UBCSAND model, which was implemented in-house for the
CPDI code.

D.1 Granular Column Collapse

The influence of constitutive laws on final outcomes is not a novel research topic. Refer-
ence [147] compared the results of the collapse of a granular column for various failure
laws. The Mohr-Coulomb failure criterion was compared to the more complex Nor-
Sand soil model in Reference [65].

To examine the potential impact of constitutive laws on the final result, a comparison
is made between the simple Mohr-Coulomb model and the much more complex UBC-
SAND model. In Chapter 5, the formulation of the UBCSAND model will be described
in detail. In order to compare simulations, it is necessary to ensure that the input pa-
rameters used to describe the soil are comparable. In order to accomplish this, the
parameters of the UBCSAND will be calibrated. While the results of the column col-
lapse experiments were taken from references [133, 134], there was no data regarding
the description of the Quartz sand mixture in the form of Oedometer or Triaxial tests.

The UBCSAND parameters were fitted as closely as possible to the limited data avail-
able from the Mohr-Coulomb model’s results. Figure D.1 depicts the final results of the

N160[−] me[−] ne[−] np[−] Ke
G[−] Ke

B[−]
10.7 0.7 0.7 0.4 100 125
Kp

G[−] ϕpt[◦] ϕ f [
◦] c [kPa] Pa [kPa] σt[kPa]

5 31 31.1 0 100 0
h f ac1 [-] h f ac2 [-] h f ac3 [-] h f ac4 [-] h f ac5 [-] h f ac6 [-]
0.65 0.85 1.0 0.6 1.0 0.95

Table D.1: Calibrated UBCSAND model parameters for Quartz Sand
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Figure D.1: Calibration of UBCSAND on drained triaxial compression test at p′0 = 100
kPa

calibration exercise, in which the final strengths were matched as closely as possible
for this study. Note that the UBCSAND is primarily used for modelling granular satu-
rated sands susceptible to liquefaction under dynamic loading. In order to numerically
represent the soil with some precision, UBCSAND’s parameter calibration must be ex-
haustive. In this case, the lack of high-quality data presents a challenge. Observing the
behaviour of this simulation using a complex constitutive law is still of interest. The
calibrated parameters of the UBCSAND model are listed in Table D.1.

The simulation is conducted assuming that there are 9 particles per grid. The simulation
from the UBCSAND model is compared to the simulation experiment and results pre-
sented in the preceding section. The simulation performed with the UBCSAND model
is subjected to deviatoric strain smoothening. In this instance, numerical damping was
reduced to 2%, a value considered low enough to contribute to the numerical stability
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Figure D.3: Kinetic, Potential and Strain energies of the system run using UBCSAND
model

of the solution. In contrast to the Mohr-Coulomb model, the UBCSAND model allows
for softening/hardening behaviour. In order to account for this change, the damping is
decreased. The Mohr-Coulomb simulation assumed a 7.5% local damping coefficient.

Figure D.2 depicts the simulation results and the effects of constitutive law on runoff,
while Figure D.3 displays the corresponding energies. The surface of the Mohr-Coulomb
simulation result is compared to the UBCSAND simulation result and the experiment
results. During the initial milliseconds of the simulation, the Mohr-Coulomb and UBC-
SAND simulations produce comparable results. The shapes of the soil column during
deformation for the Mohr-Coulomb and UBCSAND models are examined.

Already, it is obvious that the softening or hardening behaviour of the constitutive law
must be considered when attempting to back-calculate experimental results, such as
in this study. In order to accurately replicate the non-linear behaviour of sand, it is
also essential that the soil parameters be calibrated prior to simulation. Due to a lack
of high-quality data, only a cursory parameter identification was performed in this
simulation. It is hypothesised that with improved calibration, the need for artificial
numerical tricks to fit the numerical simulation to experiment can be reduced and the
constitutive law can handle it on its own.
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D.2 Shake Table Test : Performance comparison of the
UBCSAND and hypoplastic models

N160[−] me[−] ne[−] np[−] Ke
G[−] Ke

B[−]
11.5 0.5 0.5 0.4 1224 1120
Kp

G[−] ϕpt[◦] ϕ f [
◦] c[kPa] Pa[kPa] σt[kPa]

423 31.5 37.5 0 100 0
h f ac1[−] h f ac2[−] h f ac3[−] h f ac4[−] h f ac5[−] h f ac6[−]
0.65 0.85 1.0 0.6 1.0 0.95

Table D.2: UBCSAND model parameters for Berlin Sand

ϕc[◦] pt[−] hs[MPa] n[−] ed0[−]
31.5 - 230e6 0.3 0.391
ec0[−] ei0[−] α[−] β[−] mR[−]
0.688 0.791 0.13 1 4.4
mT[−] R[−] βr[−] χ[−] e0[−]
2.2 1e − 4 0.2 6 -

Table D.3: Hypoplastic model parameters for Berlin Sand

Using the properties of Berlin sand, simulations for the shake-table test were then con-
ducted in order to compare the predictions of the UBCSAND and HPS soil models for
a boundary-valued problem with well-defined boundary and loading conditions. The
boundary and loading conditions remained unchanged, as did the number of particles
and the background grid. In this instance, the particle-in-cell damping was increased
from 1 percent to 2 percent. This increase in damping value was strictly required to
maintain numerical stability. Given that Berlin sand parameters existed for the hy-
poplastic sand model and high-quality experimental data were available for calibrating

Parameter Nevada Sand Berlin Sand
Gs[−] 2.67 2.61
e0[−] 0.68 0.465
emin[−] 0.511 0.391
emax[−] 0.877 0.688
D10[mm] 0.11 0.20
D50[mm] 0.17 0.55
Cu[−] 1.75 3.25
Cc[−] 0.88 0.60

Table D.4: Physical properties of Nevada and Berlin Sand
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Figure D.4: CPDI simulation of shake table test : Comparison of the mean effective
stress for both models at heights 13.2 m and 24.8 m
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the UBCSAND sand model, the properties of Berlin sand were adopted. In addition,
Berlin sand was utilised in the experimental study described in the following Chapters
(Chapter 6). The numerical makeup of the hypoplastic model is described in Appendix
C.

The monotonic and cyclic test data from reference [124], which corresponded to a rela-
tive density Dr = 75%, were utilised to calibrate the constitutive models. The procedure
described in [194] was used to estimate the reference values for the stiffness parame-
ters and stress exponents during the calibration of the UBCSAND model. Later, these
values were refined through an iterative process to better match the published results.
Tables D.2 and D.3 describe the properties of Berlin sand. Table D.4 outlines the phys-
ical properties of both types of sand. It should be noted that the Berlin sand is coarser
than the Nevada Sand.

Figure D.4 compares the cyclically induced evolution of mean effective stress at heights
of 13.2 m (Figure D.4a) and 24.8 m (Figure D.4b). Clearly, top-down liquefaction de-
veloped as the mean effective stress approached zero and plateaued near the column’s
top before plateauing below 13.2 m is observed. This behaviour is consistent with the
experimentally observed results depicted in Figure D.5 during the test with Nevada
sand. It is evident that the predicted rates of strength loss along the upper portion
of the column (24.8 m) for both constitutive models are nearly identical. The average
rate of liquefaction associated with the hypoplastic sand model is greater than that of
the UBCSAND model; i.e., the effective stress plateaus sooner. Each model predicts a
slightly different final strength of the soil following liquefaction, with the hypoplastic
sand model predicting a lower strength than the UBCSAND model. We observe incom-
plete liquefaction in both cases. The outcomes are comparable to those predicted by the
UBCSAND model when the Nevada sand soil parameters are utilised.

The Figure D.5 depicts the evolution of excess pore pressure. As observed in Figure
D.5b, the rate of evolution of excess pore pressure is comparable in the top portion of
the column (24.8 m), although the average rate of evolution of excess pore pressure in
the case of the HPS model is slightly higher than that of the UBCSAND model. Figure
D.5a depicts that the behaviour of the bottom portion of the section is comparable
to what can be discerned by examining the evolution of mean effective stresses. The
comparison of predictions is generally satisfactory.
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Figure D.5: CPDI simulation of shake table test : Comparison of the mean effective
stress for both models at heights 13.2m and 24.8m
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Figure D.6: Evolution of Excess Pore Pressure at height 24.8m from UBCSAND Model
- Nevada vs. Berlin Sand

Comparing the excess pore pressures of Nevada and Berlin sand in Figure D.6 reveals
that the rates of pressure increase captured numerically given the same permeability
are initially roughly equivalent for both sands. The times at which the values plateau
are also roughly the same, whereas the peak values attained by the models are vastly
different. Both models exhibit incomplete liquefaction, consistent with what was pre-
viously explained. The parameters selected for Berlin sand correspond to a denser
soil than those selected for Nevada sand, with initial void ratios of 0.68 and 0.4655 for
Nevada and Berlin sands, respectively. According to [210], poorly graded soils (Cu < 6)
and soils with lower relative densities (in this case, Nevada sand) have a lower cyclic
strength. At higher relative densities, the reverse trend was observed (in this case Berlin
sand).
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Appendix to Chapter 6.4 : Summary of data
from field test

Determination of relative density

The relative density (ID) of the soil is determined based on the cone resistance by two
methods. The simplest method is based on DIN 4020:2010-12, given by the relation:

ID = −0.33 + 0.75 log(qc) , (E.1)

where, qc is the cone resistance in MN, with no correlation to depth. Alternatively,
the method proposed by Schmertmann [190] can be used, and is given by the relation:

qc = C0 pa
σ′

pa

C1

exp(C2 ID) , (E.2)

where, qc is the measured cone resistance, σ′ is the inital effective vertical geostatic
stress component, and pa is the atmospheric pressure. Rearranging Equation E.2, it is
possible to obtain the relative density as:

ID =
1

C2
ln

 qc/pa

C0
(
σ′/pa

)C1

 , (E.3)

where, C0, C1, C2 are non dimensional empirical correlation factors, investigated in
the work of Jamiolkowski et al. [102]. The correlations are tabulated in Table E.1.

σ′ = σ′
v0 TS TS+TOS+HS

C0 17.74 17.68
C1 0.55 0.50
C2 2.90 3.10
R 0.90 0.89
σ 0.12 0.10
N 305 180

Table E.1: Coefficients for Equation E.3, after Jamiolkowski et al. [102]
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Layer Depth [m]

Average
Cone

Penetration
Resistance [MPa]

Average
Unit

Weight [kN/m³]

Vertical
Stress

at
Mid-Point [kPa]

DIN
Method [%]

DIN
Method

Average[%]

Relative
Density [%]

Average
Relative

Density [%]

Homogenised
Relative

Density [%]

From To (submerged)

1

0.00 1.00 25 8.5 4.25 71.85

71.85

136.70

111.71

109.46

1.00 2.00 25 8.5 8.50 71.85 125.52
2.00 3.00 25 8.5 12.75 71.85 118.98
3.00 4.00 25 8.5 17.00 71.85 114.34
4.00 5.00 25 9.5 21.75 71.85 110.37
5.00 6.00 25 10 26.75 71.85 107.03
6.00 7.00 25 10 31.75 71.85 104.27
7.00 8.00 25 10 36.75 71.85 101.91
8.00 9.00 25 10 41.75 71.85 99.85
9.00 10.00 25 9.5 46.50 71.85 98.11

2

10.00 11.00 70 9.5 51.25 105.38

105.38

129.76

125.06

11.00 12.00 70 10.5 56.50 105.38 128.18
12.00 13.00 70 10.5 61.75 105.38 126.75
13.00 14.00 70 10.5 67.00 105.38 125.43
14.00 15.00 70 10.5 72.25 105.38 124.22
15.00 16.00 70 10.5 77.50 105.38 123.09
16.00 17.00 70 10.5 82.75 105.38 122.03
17.00 18.00 70 10.5 88.00 105.38 121.04

3

18.00 19.00 38 10.5 93.25 85.48

85.48

100.40

93.33

19.00 20.00 38 10.5 98.50 85.48 99.51
20.00 21.00 38 10.5 103.75 85.48 98.67
21.00 22.00 38 10.5 109.00 85.48 97.88
22.00 23.00 38 10.5 114.25 85.48 97.12
23.00 24.00 38 10.5 119.50 85.48 96.40
24.00 25.00 38 10.5 124.75 85.48 95.70
25.00 26.00 38 10.5 130.00 85.48 95.04
26.00 27.00 38 10.5 135.25 85.48 94.40
27.00 28.00 38 9 139.75 85.48 93.87
28.00 29.00 38 9 144.25 85.48 93.36
29.00 30.00 38 9 148.75 85.48 92.86
30.00 31.00 38 9 153.25 85.48 92.38
31.00 32.00 38 9 157.75 85.48 91.92
32.00 33.00 38 9 162.25 85.48 91.46
33.00 34.00 38 9 166.75 85.48 91.02
34.00 35.00 38 9 171.25 85.48 90.59
35.00 36.00 38 10 176.25 85.48 90.13
36.00 37.00 38 10 181.25 85.48 89.68
37.00 38.00 38 10 186.25 85.48 89.24
38.00 39.00 38 10.5 191.50 85.48 88.79
39.00 40.00 38 10.5 196.75 85.48 88.35
40.00 41.00 38 10.5 202.00 85.48 87.93

4

41.00 42.00 75 10 207.00 107.63

107.63

109.47

107.74

42.00 43.00 75 10 212.00 107.63 109.08
43.00 44.00 75 10 217.00 107.63 108.71
44.00 45.00 75 10 222.00 107.63 108.34
45.00 46.00 75 10 227.00 107.63 107.98
46.00 47.00 75 12 233.00 107.63 107.56
47.00 48.00 75 12 239.00 107.63 107.15
48.00 49.00 75 12 245.00 107.63 106.75
49.00 50.00 75 12 251.00 107.63 106.36
50.00 51.00 75 11 256.50 107.63 106.01

Table E.2: CPT Evaluation for Pile K30
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E.1 CPT Data at other locations

In Table E.1, TS, TOS and HS refer to Ticino, Toyoura and Hokksund sands, respectively.
Assuming the parameters for TS+TOS+HS, the relative density for Pile K30, simulated
in Chapter 6 is evaluated in Table E.2.

E.1 CPT Data at other locations

While all the piles are planned to be vibrated under the framework of the project VIS-
SKA, one of the five piles at different locations is planned to be the locations which will
be calculated numerically prior to installation. Pile K30 is chosen, in part due to it being
installed one among the first. The CPT data for the rest of the locations K05, K11, K14
and K26 are provided in Figures E.1, E.2, E.3 and E.4, respectively. A procedure similar
to one explained in the previous section can be used to evaluate the relative density.
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Appendix E Appendix to Chapter 6.4 : Summary of data from field test
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Figure E.1: CPT data at location for pile K05
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Figure E.2: CPT data at location for pile K11
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E.1 CPT Data at other locations
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Figure E.3: CPT data at location for pile K14
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Figure E.4: CPT data at location for pile K26
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Appendix E Appendix to Chapter 6.4 : Summary of data from field test

E.2 Installation data for other measured piles

While providing the installation forecast for all the vibrated piles was beyond the scope
of this work, it’s vertical penetration is nevertheless provided in Figures E.5, E.6, E.7
and E.8. This data may be used to calibrate the numerical model in the future by means
of running Class-C simulations.
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E.2 Installation data for other measured piles
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Figure E.5: Measured vertical penetration of the Pile K05
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Figure E.6: Measured vertical penetration of the Pile K11
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Figure E.7: Measured vertical penetration of the Pile K14
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Figure E.8: Measured vertical penetration of the Pile K26
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