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I 

Preface 

Tunnelling using the Tunnel Boring Machine (TBM) approach has become widely used 

and is currently an important method employed by the tunnelling industry. The devel-

opment of TBM technology has made the approach applicable in an increasingly wider 

range of rock mass conditions. Technically speaking, excavations can now be carried 

out in almost all rock conditions using this method, given certain economic constraints. 

The use of TBMs involves major investments and high levels of geological risk. Perfor-

mance and cutter consumption have a great influence on the successful execution of 

mechanised tunnelling, especially in hard rock conditions. Furthermore, the method re-

quires accurate predictions of TBM performance and costs, which in turn facilitate the 

control of risk and enable projects to avoid delays and budget overruns. Penetration rate 

is a principal measure of TBM performance and is used to evaluate the feasibility of 

using a machine in a given ground condition and to predict TBM advance rate.  

The interaction between the rock mass and the machine is a process of great complexity 

meaning that estimation of penetration rate is a complex process that not only depends 

on intact and rock mass properties (strength, fractures, and texture of rock etc.) but also 

machine specifications, including thrust and torque requirement. Developing a predic-

tive model which can take all these parameters into consideration has been always a 

challenge. This is the reason for limited success of existing models and lack of a single 

universal model for TBM performance prediction even after over six decades of use of 

these machines. In fact, performance predictions and is not straightforward issues and 

involve major risk assessments, especially in hard rock conditions. In last two decades, 

many performance predictions models have been offered by various researchers to es-

timate penetration rate of hard rock tunnel boring machines in new tunnelling projects 

which can be categorized in two main groups, namely theoretical and empirical meth-

ods. Apart from empirical and theoretical models, the use of artificial intelligence (AI) 

and machine learning (ML) techniques has received widespread attention in TBM per-

formance prediction. Machine learning is a branch of artificial intelligence that consists 

of developing algorithms able to generalize behaviours from information provided in 

the form of examples. The flexible nature of the AI techniques makes them powerful 

tools in approximating and solving engineering problems more specifically when the 

problem is highly complex and nonlinear. The fact is that ML methods have appeared 



Preface 

II 

as alternative techniques to conventional statistical techniques. In this respect, while the 

domain and common method employed for TBM performance prediction is Artifical 

Neural Network (ANN), Dr. Salimi has conducted two robust machine learning meth-

ods, namely Adative Neuro-Fuzzy Inference System (ANFIS) and Support Vector Re-

gression (SVR) during his PhD program at IGS. However, the results of most of previous 

studies in this area have been ´black or opaque box´ programs that show high correla-

tion between their predicted rates and actual machine performance but cannot be used 

in estimating machine performance in other projects. Besides that, although various em-

pirical models and artificial intelligence methods for performance prediction of hard 

rock TBMs are available, many lacks the correct context of input geotechnical parame-

ters to account for the possible range of variation of such parameters.  

The main goal of the present work is to develop a new empirical model in terms of field 

penetration index (FPI) of a TBM via statistical analysis (regression analysis), as well as 

artificial intelligence algorithm including tree-based-regression model such as, Classifi-

cation & Regression Tree (CART) and Genetic Programming (GP) which is known as 

´white or transparent box´ solutions for the prediction of TBM performance in hard rock 

conditions by presenting graph and mathematical equation, respectively. More atten-

tion is paid to introduce new models that incorporate rock mass classification systems 

such as rock mass rating (RMR). In fact, this study is dealing with the new era of data 

analysis and subsequently this is the first time, these methods have been employed. In 

the area of rock engineering and data analysis, the suitability of data mining techniques 

is closely related to the comprehensibility of the obtained model.  

The dissertation study begins with a detailed review of the parameters affecting of TBM 

performance in hard rock conditions and review of the available hard rock TBM perfor-

mance prediction models. The study conducted by Dr. Salimi compiled a database from 

seven tunnelling projects with total length of 70.73 km and boring diameter 3.6 m to 

10.5 m in different geological conditions representing a really valuable database of TBM 

field performance in hard rock. This database is subjected to systematic step by step 

statistical analysis to derive new empirical regression formulas for estimation of field 

penetration index (FPI). The data was subsequently analysed by artificial intelligence 

(AI) methods containing CART and GP. A ´graph/mathematical equation´ is offered for 

improving performance prediction for hard rock TBMs while incorporating rock type 

in the analysis with special emphasis on application of rock mass classification systems 

such as rock mass rating (RMR). The results show that the proposed chart/graph via 

CART offers more accurate results, compared to the previous common models such as 

CSM, NTNU and QTBM and the CART model. 
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Dr. Salami’s investigation shows the great potential of the AI method notably CART for 

estimation of TBM performance in hard rock conditions. Besides that, the thesis of Dr. 

Salimi indicates that the AI model he developed is a powerful and versatile model for 

not only understanding the complexity of the rock mass interaction and machine per-

formance since the impact of each variable on the target can be obviously clarified by 

the addressed tree structure in a CART model but also for estimation of TBM penetra-

tion rate with high level of reliability and accuracy.  

Stuttgart, April 2021 

Univ.-Prof. Dr.-Ing. habil. Christian Moormann 
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Abstract 

Hard rock tunnel boring has become more or less the standard method of tunnelling for 

tunnels of various sizes with length over 1.5-2 km, because of several advantages com-

pared to conventional excavation methods.  This includes higher possible advance rates 

and generally improved safety conditions. Prediction of TBM performance is a key fac-

tor for planning, cost estimation/control, and selection of proper machine specification 

to achieve efficient and safe operation. Rate of penetration (ROP) defined as the distance 

excavated divided by the operating time during a continuous excavation phase is a prin-

cipal measure of TBM performance and is used to evaluate the feasibility of using the 

mechanized tunnelling. Machine daily advance rate is estimated by multiplying ROP 

by machine utilization (U) and hours of work per day. 

During the past three decades, numerous TBM performance prediction models have 

been proposed which can be divided into two distinguished approaches, namely theo-

retical and empirical ones. Theoretical models analyse cutting forces acting on disc cut-

ter to estimate ROP based on force equilibrium equations. Laboratory cutting tests pro-

vide a basic understanding of rock fragmentation and the force-penetration behaviour 

of rocks are the basis for this class of performance prediction models. The main disad-

vantage of these models is that they do not completely represent the site parameters 

relative to rock mass conditions, in particular joints, as the TBM disc cutters would en-

counter in the field. Empirical models are primarily based on observation of field per-

formance of the TBMs. As such, they do not directly account for cutting force, cutter 

geometry, cutting geometry, and ability to estimate machine thrust and torque/power 

relative to detailed cutter head design. 

Estimation of penetration rate is a complex process that not only depends on intact and 

rock mass properties (strength, fractures, and texture of rock) but also machine specifi-

cations, including thrust and torque requirements. One should keep in mind that devel-

oping a predictive model which can take all these parameters into consideration has 

been always a problem. This is the reason for the limited success of existing models and 

lack of a single universal model for TBM performance prediction even after over six 

decades of use of these machines. To improve the capability of the models for accurately 

predicting ROP of hard rock TBMs, data from various projects with the different rock 

mass conditions and machine types have been obtained from pertinent research groups 
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and compiled in a database. This includes the intact rock properties, rock mass charac-

teristics, the corresponding machine operating parameters, and observed performance.  

The main goal of this investigation was to develop a new model which incorporates 

both the intact rock and rock mass properties as well as TBMs specifications (operational 

and design parameters) to estimate ROP. In particular, following is the list of main ac-

complishments of the study: a) analysis of the TBM performance to identify the main 

parameters affecting machine performance and their impact; b) statistical analysis of 

data to develop new empirical models for prediction of TBM rate of penetration; c) ap-

plication of artificial intelligence algorithms (Regression tree and Genetic Programming, 

GP) to improve the accuracy of TBM performance prediction models by offering perti-

nent graphs and formulas, d) validate the predictive capabilities of the proposed models 

for application in different geological conditions. The results show that, the proposed 

models that were generated by statistical regression or use of regression tree offer a 

quick estimate of TBM performance with reasonable accuracy and efficiency.  

The best results seem to be offered by using the regression tree (CART) system where 

input parameters used in RMR rock mass classification system such as UCS , RQD , Js , 

and Jc are used to represent the rock mass to predict field penetration index (FPI) which 

represents the normalized machine performance that incorporates machine size and 

RPM, cutterload (or by extension cutterhead thrust).  The results show that the CART 

models and the tree that it offers can offer reasonable estimates of the machine perfor-

mance based on the 61.03 km of data that has been analysed from various rock types 

and machine sizes and types. Another advantage of CART is that it can be used by an-

yone for the prediction of the machine performance, in contrast to the other artificial 

intelligent approaches that require specialized and proprietary computer programs. The 

accuracy of the proposed CART model in this study is validated/evaluated by compar-

ing the results of its prediction with other world-wide common TBM performance pre-

diction models including, CSM, NTNU, and QTBM. This comparison was based on avail-

able geotechnical information from site investigation and as-built geological data col-

lected during the construction phase of Lot 2 of Zagros water conveyance tunnel 

(ZWCT) in Iran. The results show that, the CART model which was developed based 

on a sufficient diverse database of machine performance can provide a more accurate 

prediction of machine performance compared to other mentioned methods.  

 



XXI 

Zusammenfassung 

Der Hartgesteinstunnelvortrieb hat sich mehr oder weniger als Standardmethode für 

Tunnel mit unterschiedlichen Durchmessern und Vortriebsstrecken von über 1,5-2 km 

durchgesetzt, da er im Vergleich zu konventionellen Vortriebsmethoden mehrere 

Vorteile aufweist. Dazu gehören höhere mögliche Vortriebsraten und allgemein 

verbesserte Sicherheitsbedingungen. Die Prognose der TBM-Leistung ist ein 

Schlüsselfaktor für die Planung, Kostenabschätzung/-kontrolle und die Auswahl der 

richtigen Maschinenspezifikation, um einen effizienten und sicheren Betrieb zu 

erreichen. Die Vortriebsleistung (ROP), definiert als die gefahrene Strecke geteilt durch 

die Betriebszeit während einer kontinuierlichen Vortriebsphase, ist ein 

Schlüsselindikator für die TBM-Leistung und wird zur Beurteilung der Machbarkeit des 

Einsatzes des maschinellen Vortriebs verwendet. Die tägliche Vortriebsleistung der 

Maschine wird durch Multiplikation von ROP mit der Maschinenauslastung (U) und 

den Arbeitsstunden pro Tag geschätzt. In den letzten drei Jahrzehnten wurden 

zahlreiche Modelle zur Vorhersage der TBM-Leistung vorgeschlagen, die in zwei 

unterschiedliche Ansätze unterteilt werden können, nämlich in theoretische und 

empirische Modelle. Theoretische Modelle analysieren die auf das Schild wirkenden 

Schnittkräfte, um die ROP auf der Grundlage einer Kräftebilanz abzuschätzen. 

Laborschneidversuche liefern ein grundlegendes und fundamentales Verständnis der 

Gesteinsfragmentierung. Das Kraft-Durchdringungsverhalten von Gestein ist die 

Grundlage für Leistungsvorhersagemodelle. Der Hauptnachteil dieser Modelle ist, dass 

sie die Standortparameter in Bezug auf die Gebirgsverhältnisse wie sie die TBM-

Scheibenschneider im Feld antreffen würden, insbesondere die Fugen, nicht vollständig 

darstellen. Empirische Modelle beruhen in erster Linie auf Beobachtungen der in situ 

Leistung der TBMs. Als solche berücksichtigen sie nicht direkt die Schneidkraft, die 

Schneidengeometrie, die Schneidengeometrie und die Fähigkeit zur Abschätzung des 

Maschinenschubs und des Drehmoments/der Leistung im Verhältnis zur detaillierten 

Schneidkopfkonstruktion.  

Um die Fähigkeit der Modelle zur genauen Vorhersage der ROP von Hartgestein-TBMs 

zu verbessern, wurden Daten von verschiedenen Projekten mit unterschiedlichen 

Gebirgsbedingungen und Maschinentypen gesammelt, die die Eigenschaften des 

intakten Gesteins, die Eigenschaften des Gebirges, die entsprechenden 

Betriebsparameter der Maschine und die beobachtete Leistung umfassen. Das 



Zusammenfassung 

XXII 

Hauptziel dieser Untersuchung war die Entwicklung eines neuen Modells, das sowohl 

die intakten Gesteins- und Gebirgseigenschaften als auch die TBM-Spezifikationen 

(Betriebs- und Konstruktionsparameter) zur Abschätzung der ROP einbezieht. 

Diese Dissertation ist thematisch in die folgenden Teile unterteilt: 

Im Kapitel 1 werden Grundlagen der Tunnelbohrmaschinen (TBMs) und die 

Vorhersage der Leistung im Hartgestein sowie die Ziele der Forschung aufgezeigt. 

Kapitel 2 beschreibt kurz einen Überblick über die historische Entwicklung des 

maschinellen Tunnelvortriebs und Vorhersagemodelle. Die Hauptvorteile und die 

große Bedeutung des TBM-Vortriebs im Untertagebau werden hervorgehoben. 

Außerdem wird die Klassifizierung von Tunnelbohrmaschinen erörtert und es werden 

drei Haupttypen von Hartgesteins-TBMs dargestellt. 

Kapitel 3 bietet einen umfassenden Überblick über die Parameter, die die TBM-

Leistung unter Hartgestein-Bedingungen beeinflussen. Diese sollen als Einführung in 

die Auswahl der kritischen Parameter und das Verständnis ihrer Auswirkungen auf die 

TBM-Leistung dienen.  

Kapitel 4  enthält einen Überblick über die verfügbaren Modelle zur Vorhersage der 

TBM-Leistung in hartem Gestein. Er ermöglicht, den Hintergrund der Arbeit zu 

verstehen und hebt die Hauptkonzepte hinter den vorhandenen Vorhersagemodellen 

sowie die wichtigsten Einschränkungen dieser Modelle hervor. Dies ermöglicht ein 

Verständnis der wichtigsten Faktoren und Parameter, sowohl geologisch als auch TBM-

bezogen, die eine wichtige Rolle bei der Abschätzung der Leistung von TBMs im 

Hartgestein spielen. 

Kapitel 5 beschreibt die Projekte und die Geologie, die für die Entwicklung der TBM-

Feldleistungsdatenbank verwendet wurden, einschließlich des Zagros-

Wasserleitungstunnels Los 2 im Iran; des Golab-Wasserleitungstunnelprojekts im Iran; 

des Ghomrood-Wasserleitungstunnels Los 3 & 4 im Iran; des Maroshi-Ruparel-

Wasserversorgungstunnels in Mumbai, Indien; des zweiten Manapouri Tailrace 

Tunnels in Neuseeland und des Lötschberg Basistunnels in der Schweiz. Für jedes 

dieser Projekte wird eine kurze Beschreibung der geologischen und bodenkundlichen 

Bedingungen gegeben. 

Kapitel 6 erläutert die TBM-Leistungsdatenbank und die verfügbaren Daten unter 

verschiedenen Bedingungen. Die Daten sind unterteilt in geologische Parameter (wie 

z.B. Gesteinsfestigkeit, Bruchgrad der Gesteinsmasse usw.) und TBM-Parameter (wie 

z.B. gemessene Eindringraten und Vortriebsraten, angewandte Schubkraft usw.). 

Basierend auf diesen beiden Datensätzen und Analysen wurde ein neues TBM.-

Leistungsvorhersagemodell zur Abschätzung der TBM-Leistung auf der Grundlage der 
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Felsmasseklassifikation (RMR) entwickelt und unter Verwendung von multivariablen 

Regressionsanalysen vorgestellt. 

Kapitel 7: Es wird die Untersuchung von Methoden des maschinellen Lernens 

vorgestellt, nämlich Genetische Programmierung (GP) und Regressionsbaum, 

insbesondere Klassifizierungs- und Regressionsbaum (CART), und es werden neue 

Modelle auf der Grundlage von CART zur Schätzung der TBM-Leistung auf der Basis 

von RMR-Eingangsparametern vorgeschlagen. Außerdem wird eine neue Formel aus 

GP-Algorithmen vorgestellt, die RMR-Eingangsparameter verwendet. Die Ergebnisse 

der vorgeschlagenen Modelle werden durch eine einschlägige statistische Analyse, die 

die Restfehler darstellt, miteinander verglichen. 

Kapitel 8: Präsentiert die Modellbewertung durch verschiedene statistische Indizes, 

gefolgt von einer probabilistischen Sensitivitätsanalyse, um die entwickelten Modelle 

zu untersuchen und die Auswirkungen der Eingabeparameter auf die 

Ausgabeergebnisse zu bewerten. Schließlich wurde die Genauigkeit und Effizienz des 

CART-Modells durch die drei empirischen Prognosemodelle, einschließlich Colorado 

School of Mines oder CSM, NTNU und QTBM, validiert. 

Im abschließenden Kapitel 9 werden die Schlussfolgerungen der Arbeit vorgestellt und 

die Diskussion über einige Folgearbeiten eröffnet, die in zukünftigen Studien in Angriff 

genommen werden könnten.  
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Chapter 1 Introduction 

A key factor in the successful application of a Tunnel Boring Machine (TBM) in tunnel-

ling is the ability to develop an accurate penetration rate estimated for determining pro-

ject schedule and costs as well as selection of proper machine specifications to make 

tunnelling economical. While the use of hard rock TBM has become the standard 

method of excavation of tunnels with a length of over 1.5 km in almost all ground con-

ditions, the estimation of machine performance in many of the challenging ground types 

has not reached a sufficient degree of accuracy. Although many models have been pro-

posed for prediction of rate of penetration (ROP), the accuracy of the models depends 

on the original database from which they were driven. This is to say that, the errors in 

prediction caused by lack of accounting for some of the geological parameters are typi-

cally high, especially if the model that is used for prediction does not match the ground 

conditions of the target project.  

In general, performance estimation for a TBM refers to estimation of certain parameters 

which include (Rostami, 2016a): 

• Rate of penetration (ROP) which is also referred to as penetration rate (PR) and 

often expressed in m/h and refers to the linear footage of excavation per unit time, 

when the machine engages the ground and is in production. 

• Utilization rate (U), expressed in percent (%) and representing the ratio of boring 

time to the total time. Total time could refer to the number of hours worked per 

workdays, boring days, or calendar days. 

• Advance rate (AR), which is the amount of daily advance expressed in m/day 

and is calculated as: 

AR ROP U Ns Sh=                                                                                                                  (1.1) 

with Ns being the number of shifts per day and Sh being the number of hours per shift.  

Currently, three different models including Colorado School of Mines or CSM (Rostami, 

1997) and Norwegian University of Science and Technology or NTNU (Bruland, 1998) 
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as well as field penetration index (FPI) (Nelson et al. 1983, Hassanpour 2009, 2011) mod-

els are the most recognized TBM performance prediction and prognosis models in use 

around the world. The CSM model allows the calculation of the cutting forces that need 

to be applied on a disc cutter in order to reach a certain penetration into the rock. This 

method offers the advantages of being able to consider the geometry of the problem (the 

diameter and tip geometry of the disc and the spacing or distance between the grooves) 

in detail. However, the original CSM model does not consider the natural discontinui-

ties of the rock mass, which have an important influence on the net speed of the TBM. 

To overcome this shortcoming, Yagiz (2002) and Ramezanzadeh (2005) modified the 

original CSM model by adding some rock mass properties as input parameters into the 

model. 

Bruland (1998) updated and improved the NTNU model, which was originally pro-

posed in 1978, based on field data mainly collected from Norwegian tunnels. The NTNU 

method uses some rock drilling indices such as Drilling Rate Index (DRI) estimated from 

rock brittleness “S20” and hardness index “SJ” in addition to joint conditions to develop 

the estimated rate of penetration of TBM (Blindheim and Bruland, 1998). The NTNU 

model requires special specialized tests which are not commonly performed in many 

projects. 

Filed Penetration Index (FPI) has been introduced by Nelson et al. (1983) and has been 

subsequently used as a means for predicting the performance of TBMs. For instance, 

Hassanpour et al. (2011) has recently used FPI estimated as a function of RQD and UCS  

to develop new equations and charts for TBM performance prediction. 

1.1 Motivation 

Since the first successful use of tunnel boring machine (TBM) in hard rock in early 1950s, 

they have been continuously transformed by improving their installed cutterhead 

power, size of machines, cutter loading capacity, and designs for application in various 

ground conditions, even some adverse grounds. In the last two decades, many perfor-

mance predictions models have been developed by various researchers to estimate the 

penetration rate of hard rock tunnel boring machines (TBMs) in new tunnelling projects. 

All in all, to answer a basic question, ‘‘How is it possible to accurately estimate TBM rate of 

penetration (ROP) and assess the interaction between rock mass conditions and the design and 

operational characteristics of the TBM?” This is possibly due to the fact that, TBM perfor-

mance prediction involves understanding the rock fragmentation process in wide range 

from micro-scale (i.e., the interaction of surface contact of rock material and cutter tip) 

to macro-scale (including the interaction of rock mass and TBM). As noted by Robbins 
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(1980): ‘‘nothing has been more difficult than evaluating the rock mass characteristics and ap-

plying the evaluation to a formula predicting penetration rate” and/or by Nelson (1993): ‘‘the 

geotechnical engineering profession clearly does not have a recommended method for quantitative 

estimation of the effects of rock mass variations on TBM penetration rate”. 

As noted earlier, TBM performance prediction models can be divided into two distin-

guished approaches, namely, theoretical and empirical ones. Although the theoretical 

models provide a basic understanding of rock fragmentation and explanations into the 

force-penetration behaviour of rocks, the main shortcoming of these tests is that they do 

not completely represent the real rock mass conditions as the TBM disc cutters encoun-

ter in the field. In such cases where standard laboratory rock cutting facilities are not 

available, TBM performance may be predicted by using formulas developed to estimate 

cutting forces for a certain disc cutter, working in a given rock type/strength. The early 

models were developed by using a single intact rock parameter, mainly uniaxial com-

pressive, and follow-up works involved using other rock strength parameters, namely 

tensile strength. However, the latest empirical models have considered several rock and 

rock mass parameters along with machine design and operational parameters to esti-

mate machine performance. 

Another group of empirical models attempts to correlate TBM performance to rock mass 

classifications/features. Among the most commonly used classification/feature systems, 

Rock Mass Rating (RMR), Rock Mass Quality Index (Q), and Geological Strength Index 

(GSI) have been used more frequently in TBM performance prediction because of the 

simplicity and worldwide acceptance of the classification systems in general engineer-

ing practices, and in particular, in underground mining and construction. It is worth 

noting that, the Geological Strength Index (GSI) was first presented in preliminary form 

by Hoek et al. (1992) and subsequently further developed by Marinos and Hoek (2000, 

2001). The GSI can be used for both hard and weak rock masses and is based on an 

essentially qualitative geological description of the rock mass. The GSI or this system is 

to provide an estimate of the properties of the rock mass in question (Marinos et al. 

2005). This method of quantifying rock mass has been compared to RMR and Q, among 

other rock mass classification systems and there are formulas linking one to the other in 

the rock mechanics world. However, GSI is known to work better in weaker rock masses 

and where RMR and Q cannot quite distinguish the rock mass conditions. 

In addition, due to the complexity of TBM performance prediction, beyond mathemat-

ical and empirical solutions, artificial intelligence (AI) methods particularly machine 

learning algorithms, containing artificial neural network (ANN), Fuzzy logic, adaptive 

neuro-fuzzy inference system (ANFIS) and support vector regression (SVR) have been 

widely utilized by many researchers (Alvarez Grima et al., 2000; Okubo et al., 2003;  



Chapter 1  Introduction 

4 

Gholamnejad and Tayarani, 2010; Ghasemi et al. 2014; Salimi et al. 2016a). Mahdevari et 

al. (2014) used a support vector regression analysis (SVR) to predict penetration rate 

based on data from the Queens Water Tunnel, in New York City. Machine learning is a 

relatively new area of science that has been used in a variety of engineering applications 

and in the past few years, it has been continually under development. Generally, ma-

chine learning is a branch of artificial intelligence that investigates how machines can 

be trained to recognize patterns from a given set of training examples. Over the last 

decades, a large amount of machine learning methods has emerged and presented. 

These methods start from very diverse conceptual bases, although all of them have a 

series of common themes such as, ability to learn and adapt complex patterns; consid-

eration of nonlinear relationships between qualitative and dependent variables; capa-

bility of generalization; thus, can be applied to incomplete and noisy data; ability to 

accommodate both categorical and quantitative data, etc. However, most of these ma-

chine learning methods (e.g., artificial neural networks or support vector machines) are 

difficult to apply as a large quantity of parameters must be fitted and estimated and 

they behave as “black, hazy or opaque boxes”. This means that they can be applied to 

predict the value of a target variable depending on data, but the rules or implicit pat-

terns within the model cannot be interpreted or the end-users need a computer code 

and have to be relatively expert in the particular field to employ them. In the area of 

rock engineering/tunnelling, the suitability of data mining techniques is closely related 

to the applicability of the resulting model. As a result, this investigation is focused on 

regression tree and genetic programming which are defined as “white, transparent or 

translucent box” presenting via a graph and mathematical equation, respectively 

(Salimi et al. 2016c; Carranza, 2011). 

The most commonly used TBM performance prediction models such as, CSM & NTNU 

models have been developed about 20 years ago, and while there have been some up-

dates and adjustments to the base models, there seems to be a need for new models and 

approaches. To meet this objective, while there are several TBM performance prediction 

models introduced within the past two decades, but the growth of TBM manufacturing 

technology and the existence of some shortcomings in the prediction models have made 

it necessary to continue the research on the development of new performance prediction 

models for hard rock TBMs. 

1.2 Research Objectives 

The main purpose of this study is to improve the predicting capabilities for estimation 

of TBM performance in various ground conditions. For this purpose, data from various 
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projects with the different rock mass conditions and machine types has been collected 

from pertinent research groups and compiled in a database. 

The term ‘hard rock’ is not always precisely defined. Table 1.1 shows the classification 

of rock types in terms of rock strength presented by the International Society of Rock 

Mechanics (ISRM). The specific parameter used is Uniaxial Compressive Strength, UCS  

(ISRM, 1978; 1979). The research presented in this thesis focuses on ‘low strength rock’ 

conditions to extremely high strength which, according to the ISRM classification, fall 

within the categories low, medium, high, very high, and extremely high strength (UCS  

> 6 MPa) based on the range of the UCS values in the TBM field performance database 

used in this study. Therefore, it can be concluded that, in the current study, the term 

“hard rock” is colloquial and it only refers to the rocks that are not very soft (i.e., salt, 

coal. Gypsum, etc.) or very low in strength. 

Table 1.1: Classification of rock based on uniaxial compressive strength (ISRM, 1978; 

1979) 

Definition UCS (MPa) 

Soil < 0.25 

Extremely low strength 0.25 - 1 

Very low strength 1 - 5 

Low strength 5 - 25 

Medium strength 25 - 50 

High strength 50 - 100 

Very high strength 100 - 250 

Extremely high strength > 250 

 

Obviously, the data collected from the various operation will be inhomogeneous, mean-

ing that there are some parameters missing or incomplete. However, the analysis of 

available information has been conducted using available analytical tools.  

The main goal of the present work is to develop new models based on statistical analysis 

(Regression analysis), as well as artificial intelligence algorithms (Regression tree and; 

genetic programming) for the prediction of TBM performance in hard rock conditions. 

More attention is paid to introduce a model that incorporates rock mass classification 

systems such as rock mass rating (RMR) or its input parameters into TBM performance 

prediction. To reach these goals following approach has been taken: 
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1) Compile a database of field performance of hard rock TBMs and perform an ini-

tial qualitative statistical analysis to understand the data and ranges of the critical 

input parameters.  The initial study of the database will also allow the research 

team to understand the nature of the data, the issue of inhomogeneity, and take 

measures to reduce the impact of missing data on the outcome. This refers to the 

proper and methodical screening of the data. 

2) Preliminary quantitative statistical analysis including development of histo-

grams, examination of co-variation of different parameters, followed by bi-vari-

ate analysis to see the trends and seek normalization of data sets. 

3) Application of multivariable regression analysis of independent and objective 

parameters in linear and non-linear modes to seek the relationship between pa-

rameters for introducing new empirical models. 

4) Application of machine learning algorithms which are known as “white or trans-

parent box”, such as classification and regression tree (CART) to develop a new 

model (graph). The developed graph allows users to estimate the penetration rate 

of TBMs. Besides that, genetic programming (GP) is conducted to present a new 

formula based on GP algorithms. 

Figure 1.1 is an illustration of the work-flow research design for this study, including 

the literature review involved during the course of this research work. 

1.3 Thesis layout 

The thesis is divided into nine chapters. The present chapter, Chapter 1, provides an 

introduction to the tunnel boring machine (TBM) and prediction of their performance 

in hard rock conditions, motivation, and objectives of the research are outlined.  

Chapter 2 briefly described an overview of the historical development of mechanized 

tunnelling and predictive models. The main advantages and the great importance of 

TBM excavation in underground construction are highlighted. In addition, the classifi-

cation of tunnel boring machines is discussed and three main types of hard rock TBMs 

are illustrated.  

Chapter 3 offers a comprehensive review of parameters affecting TBM performance in 

hard rock conditions. This would serve as an introduction to the selection of the critical 

parameters and understanding their effect on TBM performance. 

Chapter 4 contains a review of the available hard rock TBM performance predictions 

models. It allows one to understand the background of the work and highlights the 

main concepts behind the existing prediction models and the main limitations of these 
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models. This allows for understanding the main factors and parameters, both geology 

and TBM-related, that play important role in estimating the performance of hard rock 

TBMs. 

Chapter 5 describes the projects used for the development of the TBM field performance 

database, including Zagros water conveyance tunnel Lot 2 in Iran; Golab water convey-

ance tunnelling project in Iran; Ghomrood water conveyance tunnel Lots 3 & 4 in Iran; 

Maroshi-Ruparel water supply tunnel located Mumbai, India; the Second Manapouri 

Tailrace Tunnel in New Zealand and Lötschberg Base Tunnel in Switzerland. For each 

of these projects, a brief description of the geological and ground conditions is provided. 

Chapter 6 explains the TBM performance database and the available data in different 

conditions. The data is subdivided into geological parameters (such as rock strength, 

rock mass fracturing degree, etc.) and TBM parameters (such as measured penetration 

rates and advance rates, applied thrust force, etc.). Based on these two sets of data, a 

new TBM performance prediction model for estimation of TBM performance based on 

rock mass rating (RMR) classification is developed and introduced by using multi-var-

iable regression analyses. 

Chapter 7 presents the study of machine learning methods, namely Genetic Program-

ming (GP) and Regression tree in particular classification and regression tree (CART) 

and new models based on CART for estimation of TBM performance based on RMR 

input parameters are proposed. Furthermore, a new formula from GP algorithms that 

uses RMR input parameters is presented. The results of the proposed models are com-

pared and compared through pertinent statistical analysis that represents the residual 

errors. 

Chapter 8 presents the model evaluation through different statistical indices, following 

by probabilistic sensitivity analysis to examine the developed models and assess the 

impacts of input parameters on the output results. Finally, the accuracy and efficiency 

of the CART model has been validated through the three prognosis empirical models, 

including Colorado School of Mines or CSM, NTNU, and QTBM. 

Chapter 9 presents the conclusions drawn from the work performed and opens the dis-

cussion on some of the follow-up work which could be tackled in future studies. 
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Figure 1.1: Diagram illustrating the research design 
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Chapter 2 Tunnel Boring Machines (TBM) 

2.1 Introduction 

Together with bridges and viaducts, tunnel construction is one of the most important 

branches of Civil Engineering, while there are many precedents of using TBMs in mine 

developments in the past 50 years. Nowadays, tunnels with increasing complexity 

(greater length, depth, etc.) and in difficult environments are being constructed for civil 

purposes (traffic, hydraulic, etc.). This increasing complexity is promoting the use of 

mechanized tunnelling techniques, which makes it possible to complete tunnel con-

struction in a shorter time and with enhanced safety conditions. 

In this chapter, a brief historical overview of the development of mechanized tunnelling 

techniques is offered. Classification of tunnel boring machine is presented and three 

main types of TBMs in rock tunnelling are highlighted and compared. The main ad-

vantages and importance of TBM excavation in underground construction are noted in 

this chapter as well. 

2.2 History and Development of TBMs 

Tunnelling developed rapidly during the industrialization at the start of the 19th cen-

tury with the building of the railway network. In hard rock, this was by drilling and 

blasting. The first stage of the developing mechanization of tunnelling therefore was the 

development of efficient drills for drilling holes for the explosive. There were also at-

tempts to excavate the rock completely by machine (Maidl et al. 2008). The history of 

the TBMs dates back to 1800’s. During the period 1846-1930 more than 100 rock, hard-

ground, and soft ground tunnelling machines of various types were designed and pa-

tented, e.g., a hammer percussion powered by compressed air used for ramming and 

boring was first proposed by an English man J.D. Brunton in 1844. In 1849, J. J. Couch 

of Philadelphia made the first percussion rock drill which was motorized by steam. 

Later, J. W. Fowle is credited with inventing the first direct action drilling machine in 

1874 (Stack, 1995; Kramer et al. 1992).  

The first tunnelling machines were not literally TBM in the true impression. They did 

not work the entire face with their excavation tools, the intention was to break out a 
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groove around the tunnel wall. After cut, the machine was pulled back and the remain-

ing core loosened with explosive or wedges. This was the basic concept of a machine 

designed and manufactured in 1846 by the Belgian engineer Henri-Joseph Maus for the 

Mount Cenis tunnel (Figure 2.1). The machine employed with hammer drill chiselling 

deep annular grooves in the stone, the compressed air to power the drills was to be 

provided by water powered compressors at the portal and reached to the machine via 

pipes. As early as 1851, Charles Wilson in the US develop and built a tunnel boring 

machine, which was patented in 1856 (Figure 2.2) and it was to somehow similar to the 

modern TBMs. The machine had all the characteristics of a modern TBM and, therefore 

it can be categorized as the first machine worked by boring the tunnel which the entire 

face excavated by using cutters. The tools had been organized on rotating cutterhead 

and the required thrust for cutting was encountered by pressure sideways against the 

rock. In 1853, the machine underwent various tests and after advancing around 3 m in 

Hoosac tunnel located in Boston, USA, due to the problems with disc cutters, it was 

unable to compete with the established Drill & Blast method. After the experience of 

using TBM at the Hoosac tunnel, in 1875, an improved version of the machine presented 

which had a completely new design for cutting head; the entire face was not excavated 

with the cutting tools, and only an external ring and central hole dug up. (Figure 2.3). 

That was to be obtained by mounting disc cutters at the outer and rotational axis of the 

cutting wheel. After the maximum cut depth was achieved, the machine had to be 

pulled back to enable the remaining core to be broken and removed using explosives 

(Maidl et al. 1996).  

In 1866, Cooke and Hunetr from Wales, introduced an exclusive new system, in which, 

instead of a cutting wheel turning about the tunnel centerline, three drums rotated 

about a horizontal axis transverse to the tunnel (Figure 2.4). The central drum had a 

larger diameter and ran ahead of the others, while the outer drums extended the cross-

section. In 1863, Frederick E. B. Beaumont applied for a patent for a tunnelling machine 

equipped with chisels, but unsuccessfully employed for the construction of a water tun-

nel. Following in 1875, he applied for a patent for a tunnel boring machine with a rotat-

ing cutting wheel. Later in 1880, the idea was adapted by Colonol T. English and devel-

oped and enhanced for his own machine. It had cylindrical holes in the cutting arms for 

the drilling tools, which chisel bits screwed. The main advantage of this configuration 

was that, the bits could be changed without withdrawing the machine from the face. A 

lower frame built the base frame of the machine with equipment to carry the muck away 

and drive for the drilling head. An upper frame kept the actual drilling equipment, that 

was pushed forward by a hydraulic cylinder. It was possible for the first time to push 

the cutterhead forward without releasing the bracing of the machine to the tunnel walls.  

Beaumont manufactured two machines to the patent of Colonel T. English in 1881 and 
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applied them to drive the Channel Tunnel. The machine worked well from 1882 till 1883 

and altogether 1840 m were excavated on the French side and 1850 m on the English 

side. The maximum daily advance rate was 25 m which was a phenomenal success for 

that time (Figure 2.5) (Maidl et al. 2008).     

 

Figure 2.1: Tunneling machine designed by H.J. Maus in 1846 (Stack, 1982) 

 

Figure 2.2: First tunnel boring machine by C. Wilson, Hoosac tunnel, 1853 (Maidl et al. 

2008) 
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Figure 2.3: Further developed TBM by C. Wilson (Maidl et al. 2008) 

There was no further application of tunnelling machine in the next decades, however, 

they were successfully applied in mining for cutting relatively soft rock, for example, 

the tunneling machine utilized for driving galleries in potash mines, which the first 

version in 1916/1917 called “Eiserner Bergmann”. 

 
 

Figure 2.4: Tunneling machine by Cooke & Hunter (Maidl et al. 2008) 
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Figure 2.5: Tunnel boring machine by Beaumont, Channel Tunnel; 2.13 m diameter 

(Maidl et al. 2008) 

The first development of modern TBMs was in the 1950s, when the first gripper TBM 

with disc cutters as the only excavation tool was developed by James S. Robbins (Figure 

2.6). With this machine, advance rates up to 30 m/day were achieved in hard rock in the 

Humber Sewer tunnel project, which represented significant progress at that time 

(Maidl et al. 2008). The first use of continuous conveyor behind the TBM was conducted 

in 1963, which the world’s largest TBM at the time, a 11.20 m diameter Robbins Main 

Beam, was built for the Mangla Dam Project. The unique project used a coal mine 

conveyor developed by James Robbins and Goodman, rather than muck cars, in the 

industry’s first-documented use of continuous conveyors for TBM tunneling. Muck was 

removed continuously from five TBM tunnels bored at the remote job site, making the 

prototype a great success (Figure 2.7). 
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 a b 

Figure 2.6: Tunnel boring machines from Robbins: a) First Robbins TBM (8.0 m diame-

ter); b) First modern gripper TBM (3.3 m diameter) (Robbins, 1976) 

 

Figure 2.7:  The first continuous conveyor behind TBM in 1963 (The Robbins Company, 

n.d.) 

The development of earth-pressure balance shields started much later. This technique 

was first developed by the Japanese company Sato Kogyo Company Ltd. in 1963, after 

considerable research both in the laboratory and in the field, a unit was finally manu-

factured by Ishikawajima-Harima Heavy Industries (IHI) in 1966 (Stack, 1995). The de-

velopment of earth-pressure balance shields was due to the strict environmental regu-

lations and laws already in force in many major cities in Japan. These concerned air and 

groundwater pollution, the dumping of excavated material, and also health and safety 
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precautions pertaining to compressed air (Maidl et al. 1996; 2012). The precursor to all 

Earth Pressure Balance (EPB) and Slurry TBMs (For soft ground tunnelling) happened 

in 1964 which Robbins developed the first compressed air tunnelling machine to suc-

cessfully excavate a 2.9 km long tunnel below the water table in Paris, France. The de-

sign served as the genesis for the EPB and Slurry TBMs (Figure 2.8). 

 

Figure 2.8: Compressed air tunnelling machine, Paris RER metro, 1964 (The Robbins 

Company, n.d.) 

After a delay of about 10 years, in 1960s, the development of tunnel boring machines 

was also started in Europe by German manufactures such as Demag and Wirth. The 

early TBMs were mainly intended to bore hard rock. The developing technology for 

hardening the disc cutters enabled the use of this type of tool in really hard rock.  

Encouraged by the successful implementation of a gripper TBM for the Mangla dam 

project in 1963 with a diameter of 11.17 m, a gripper TBM was also used for the con-

struction of the Heitersberg tunnel (Ø10.65 m) in Switzerland in 1971. The work neces-

sary to secure the rock with steel installation, anchors and mesh-reinforced shotcrete 

however made the hoped for advance impossible. The required adaptation to the large 

cross-section was first achieved in 1980 by the modification of the Robbins gripper ma-

chine from the Heitersberg tunnel by the Locher und Prader Company to a shielded 

TBM with segmental lining for the advance of the Gubrist tunnel (Ø11.50 m). Robbins 

and Herrenknecht had continued to make shield machines of this type in diameters 

ranging between 11 and 16 m (Maidl et al. 2008). At the end of the 1960s, inclined head-

ings and large tunnel sections were driven for the first time using the reaming method, 

the development of reamer boring being closely associated with the Murer Company 
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(Maidl et al. 2008). Drilling tools from deep boring technology such as tungsten carbide 

insert (TCI) and toothed bits were mounted on rotating cutterheads (Maidl et al. 2008).  

As late as 1959, the idea of a fluid-supported tunnel face was successfully tested by 

Elmer C. Gardner for a sewer tunnel with a diameter of 3.35 m. In 1960 Schneidereit 

introduced the term active face support through a bentonite suspension. In 1967 the first 

slurry shield with a cutting wheel and hydraulic mucking was used in Japan. It had a 

diameter of 3.1 m. In Germany, the first shield with a bentonite-supported tunnel face 

was developed and used by Wayss & Freytag (Maidl et al. 1996). 

In the 70s and 80s, notable signs of progress were directed to TBM tunnelling in brittle, 

hard rock and bigger excavation diameters. The first double shield TBM was developed 

in 1972 with the collaboration of SELI, & Robbins companies for the Orichella, Italy.  

Carlo Grandori developed the concept of the double shield TBM and, in collaboration 

with Robbins, put it into practice for the building of the Sila pressure tunnel (Ø 4.32 m) 

in Italy (Figure 2.9). The main intention of the development of this machine was to make 

the gripper TBM, which had then already proved very effective in appropriate geologi-

cal conditions, more flexible for use in heterogeneous rock conditions. Since their first 

use in 1972 and the successful modification of this type of machine, double shield TBMs 

with customized segmental lining designs have achieved high advance rates under fa-

vourable rock conditions and have been made by all the well-known manufacturers, 

mainly in the medium diameter range. The capability of the double shield TBM design 

was demonstrated impressively at the end of the 80s in the chalk of the Channel Tunnel, 

which is favorable for tunnelling (Maidl et al. 2008; 2012). Shielded and double-shield 

TBMs were introduced in the same period. This made it possible to increase the range 

of application of TBMs to complex and heterogeneous geological conditions. Today, 

TBMs with very large diameters (up to 18 m” Bertha, Fig. 2.10a”) are being built for use 

in soft ground tunnelling while the record size in rock tunnelling is about 14.5 m (“Big 

Becky, Fig. 2.10b”) and a lot of efforts have been devoted to increasing the range of ap-

plication of TBMs to a variety of geological conditions with reduced/acceptable risks. 

Today’s TBMs have advanced computer systems to control and record the excavation 

parameters. Moreover, they also have advanced guidance systems to minimize devia-

tion from the route. 
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Figure 2.9: Double shield TBM 144-151, Sila pressure tunnel, Ø4.32 m, 1972. (Maidl et 

al. 1996) 

  

   (a)                                                                           (b) 

Figure 2.10: (a)“Bertha”, Seattle tunnel project, (TBM-EPB; 17.5 m diameter) USA ; (b) 

“Big Becky” Niagara tunnel project; (Main Beam TBM; 14.5 m diameter); 

Ontario, Canada (Tunneltalk.com) 

2.3 Classification of Tunnel Excavation Machine 

Tunnels are constructed under various types of geological conditions varying from hard 

rock to very soft sedimentary layers. Various conditions of ground that a TBM may en-

counter during tunnelling as well as practical issues during an excavation of tunnel ne-

cessitates improvement in designing and manufacturing of different TBMs with differ-

ent capabilities. According to the French Association of Tunnels and Underground 
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Space (AFTES), “the mechanized tunnelling techniques” (as opposed to the so-called 

“conventional” techniques) are all the tunnelling techniques in which excavation is per-

formed mechanically by means of teeth, picks, or discs. The problem with the classifica-

tion of tunnelling machines is that there is no uniform, globally accepted definition and 

classification for tunnelling machines. However, the term Tunnel Boring Machine 

(TBM) is now universally adopted for all the machines that have a full-face cutting 

wheel for excavating a tunnel. The classification to be considered in this study is based 

on what has been developed by the International Tunnelling Association (ITA) Working 

Group No.14 “Mechanized Excavation”. Tunnel excavation machines can be classified 

by the methods for excavation (full-face or partial face), the types of cutterhead (rotation 

or non-rotation), and by the method of securing reaction force (from gripper or seg-

ment). Several types of tunnel excavation machine are illustrated in Table 2-1 and Figure 

2.11 As can be seen from Table 2-1, Tunnel Boring Machine can be categorized into two 

main groups including: 

• Hard rock machines 

• Soft ground machines 

Table 2.1: Classification of Tunnel Excavation Machines (ITA, 2000) 
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Figure 2.11: General classification of TBMs for various ground conditions (Rostami, 

2016a) 

In practice, rock tunnelling machines can be grouped into three main categories based 

on their propelling mechanism: 

1. Unshielded or Open TBMs using grippers  

2. Single Shield TBMs, pushing off the segments 

3. Double Shield TBMs (combination of 1 & 2) 

In hard rock tunnelling projects, the type of machine depends on the quality of the sur-

rounding ground and some practical issues. Different types of rock tunnelling machines 

are shown in Figure 2.12.  By considering the purpose of this study, only rock tunnelling 

machines in this figure are investigated. The open mode rock TBMs can be classified as: 

• Unshielded TBMs (open type) with single or double gripper 

• Shielded TBMs (single or double or telescopic shield) 
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Figure 2.12: Different types of rock tunnelling machine: Left; open TBM with single and 

double gripper, Right; Single and double shielded machine (Munchener 

Ruck, Munich Re Group, 2004) 

2.3.1 Open TBMs 

The gripper TBM, often also widely defined as open TBM, is the classic form of tunnel 

boring machine. This type of machine is utilized in stable rock conditions with a low 

flow of water; it needs to be associated with a primary support system for excavation 

using the conventional method (rock bolts, shot concrete, steel arches, etc). Application 

of this type in rock with more than 40 MPa has been suggested by the International 

Tunnelling Association. The problem that may interface in the application of open type 

is a stand-up time of rock mass. Open type TBMs are designed to have the ability to 

install various support systems immediately behind the cutterhead. Simultaneous exca-

vation and ground support installation is possible in modern open TBMs. Examples of 

open type TBM with relevant details are shown in Figures 2.13 and 2.14. 

Open type TBM machines are categorized by the single or double gripper. In both types, 

grippers are utilized to provide thrust force to move forward and press the head against 

the tunnel face. Thus, the rock mass of the tunnel wall must be competent enough and 

stable to react to the pressure imposed by grippers. The maximum amount of gripper 

pressure on the tunnel wall is determined on the basis of compressive strength of rock 

mass and is usually 2 to 3-fold that of machine thrust. The performance and penetration 

rate of open machines is directly impacted by the amount, type, and required time to 

erect supports behind the cutterhead for the given rock conditions. 
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Figure 2.13: Open TBM type: Left; Herrenknecht and Rehm (2006), Right; Wirth Com-

pany (Wirth GmbH)  

 

Figure 2.14: Schematic drawing of Open TBM and its components (The Robbins Com-

pany, n.d.) 

In a single gripper machine, motors are mounted in the front area on the cutterhead 

support that hosts the gearbox and motors. In double gripper machines, motors are lo-

cated at the rear end of the machine, behind the rear grippers. To maintain the static 

stability of double gripper machines and prevent excessive torsion in the cutterhead 

body, grippers are designed to be close to the cutterhead. This means that there is not 

enough space for the installation of a support system as compared to single gripper 

machines. Therefore, the use of a double gripper machine could cause some issues in 

weak rocks. Also, steering of the open TBMs is different between double gripper (Kelly 

type) and single gripper (Main beam) TBMs. Machines manufactured by Wirth or Jarva  
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(Atlas Copco) company, have two sets of grippers and power is transferred through an 

interior shaft (Kelly), solidly connected to the head and the steering is done by setting 

the machine in the right course between the strokes and excavating a line during the 

stroke. The direct is reset as needed for the following strokes.  This offers more stable 

boring and less stress on the head, however; there is no possibility to correct the path 

during penetration and cycle. The opposite is true for main beam machines where the 

machine can be steered during excavation by applying differential loading against the 

opposite grippers and use of the loading by font shoes to direct the machine during the 

stroke. 

2.3.2 Single Shield TBMs 

This type of machine is covered by a cylindrical steel shield that starts behind the cut-

terhead and extends to the rear section of the machine where segments can be erected 

to cover the tunnel walls. The shield propels forward by activating thrust jacks to push 

off the segments. Single shield TBMs and its components are shown in Figure 2.15. This 

type of machine is designed and built for hard rock excavation in unstable ground 

where there is a high risk of wall cave in and roof falls and offers workspace protection 

when it is necessary to support the tunnel immediately after excavation.  The tunnel is 

supported by the installation of the precast lining in the rear end of the shield as it pro-

pels forward. So, the main task of the shield is to protect the staff and excavation equip-

ment from falling the rock and unstable materials as well as facilitating the conditions 

to install the required support system. Usually, single shield machines are utilized when 

there is no possibility to use gripper due to the unfavourable conditions of surrounding 

rock mass of tunnel. Installation of ground support is done after completion of excava-

tion cycle at tunnel face when a machine is stopped and thrust jacks can be retreated to 

make room for a new ring of precast concrete segments. Therefore, utilization of the 

single shield is lower than double shield machines where the excavation and ground 

support can be done simultaneously. The advance rate of a single shield machine usu-

ally is negatively affected by the speed of the installation support system, especially in 

weak ground conditions.  
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Figure 2.15: Schematic drawing of single shield TBM with different parts (The Robbins 

Company, n.d.) 

2.3.3 Double Shielded TBMs 

In 1972, SELI in collaboration with Robbins company developed a new machine for the 

Orichella project in Italy. The double shield or telescopic shield TBM is a combination 

of the open and shield TBMs. General shape of this machine and different parts of the 

double shield machine are shown in Figures 2.16 and 2.17 respectively. It enables, the 

machine to use grippers in good rock and acts like a single shield TBM for driving in 

fractured rock with low stand-up time. The double shield TBM consists of two main 

components, the front shield and the gripper (or rear shield). Both shield parts are con-

nected with each other with telescopic jacks. The machine can either adequately clamp 
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itself radially in the tunnel using the gripping units; or where the geology is bad, can 

push off the existing lining in the direction of the drive. 

 

Figure 2.16: 3D view of double shielded TBM (Herrenknecht and Rehm, 2006) 
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Figure 2.17: Schematic drawing of double shield TBM and its components (The Robbins 

Company) 

The front shield can thus be thrust forward without influencing the gripper shield, so 

that segmental lining can be installed in the tail/rear shield simultaneously and the ma-

chine to move forward when the cycle is complete (without the delay of installing seg-

ments). The operation is possible by independent activities associated with excavation 

and installation of the lining. The double shield TBM has some disadvantages compared 

to the single shield TBM, including the longer shield that makes it vulnerable to jam-

ming in ground squeezing conditions and material getting into the telescopic joint.  

Comparison of three types of rock TBMs is illustrated in Table 2.2 based on their ad-

vantages and disadvantage. More information about TBM classifications/definitions, 

application & related subjects can be found in Maidl et al. (1996; 2008; 2012); Stack 

(1995); DAUB (2005); JSCE (2007); Guglielmetti et al. (2008); Maidl (et al. 2013). 
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Table 2.2: Comparison of three types of rock TBMs (Barla and Pelizza, 2000) 

Open TBM Single shield TBM Double shield TBM 

Advantages 

Effortless operation Wide range of application Wide range of application 

Applicability in hard rock Safety Safety 

High excavation rate Precast segmental lining Support system flexibility 

Support system flexibility installation Simultaneous installation of final 

support system 

Less construction cost High performance 

 

Low investment cost Working in falling ground Working in falling ground 
  

Controlling water inflow with 

closed shield 

Disadvantages 

Grippers inability in 

unstable rock mass 

Two work phases High investment cost 

Support installation in 

weak rock masses 

Drive-in weak ground Complex operation 

 

Need of precast lining Need of cleaning the telescopic joint 
 

High investment cost 

 

 

Complex operation Possibility of TBM jamming in 

highly convergent ground 
 

Need of segment plant 
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Chapter 3 Parameters Affecting Performance 

of Rock TBMs 

3.1 Introduction 

The rate of tunnelling with TBM can vary between 15 km/year to 15 m/year depending 

on geological conditions, machine specification, and contractor experience. Major bor-

ing problems in TBM operation can appear in both unfavourable or favourable rock 

mass conditions.  In fact, in two boundary conditions of geological settings, perhaps 

other tunnelling methods, such as blasting, could yield better results as compared to 

TBM. For example, in 1967 in a TBM manufactured by Robbins Company, bore 7.5 km 

of a tunnel in 4 months. The tunnel alignment included Shale, with geological and struc-

tural was known.  Meanwhile, in the former phases of this project, 270 m of the tunnel 

was driven in glacial sediments and was excavated for 7 months. The advance rate re-

duction from 2.5 m/h to 0.05 m/h in this project is the exact reason for the great influence 

of geological conditions of the tunnel on the advance rate of TBM (Barton, 2000). One of 

the significant technical challenges and achievements in hard rock TBM tunnelling as-

signed to the construction of the Niagara Tunnel Project (NTP) located in Queenston, 

Ontario, Canada. A 10.4 km long, 14.4 m diameter tunnel was completed using Main 

Beam TBM “the largest hard rock TBM in the world” manufactured by Robbins com-

pany. The TBM began boring in September 2006 and May 2011 marked the completion 

of the TBM’s drive. During July 2009, the TBM excavated 468 m (1,500 ft) in one month 

and advanced 153 m (503 ft) in one week overcoming significant geological challenges 

resulting the machine achieved a world record-breaking month for any TBM 11 m in 

diameter or larger (The Niagara Tunnel Project (2012).; Perres et al. 2014; Wallis, 2011; 

Robbins Company).   

More recently, after 17 years of construction time, the new Gotthard Base Tunnel was 

opened on December 2016. With a length of 57 km, it is not only the world's deepest 

railway tunnel but also a unique masterpiece of engineering, with the highest point ly-

ing at 550 metres above sea level excavated by 4 Herrenknecht gripper tunnel boring 

machines. In late summer 2009, the two Herrenknecht gripper TBM completed the 

northern Erstfeld-Amsteg section with a length of just over 7 kilometres, fortunately, 

the geology was almost ideal and this was how the tunnelling record on the Gotthard 
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was set 56 meters just in 24 hours, world record for a hard rock tunnel boring machine 

of this dimension. On June 16 and September 16, 2009, the construction site teams in the 

north each reached the destination in Amsteg after 18 months of driving, 6 months ear-

lier than planned. On the way to the Gotthard, lötschberg base tunnel which had been 

excavated by 2 gripper TBM manufactured by Herrenknecht with the diameter of 9.40 

m showed a record of 52 meters in 24 hours. (Herrenknecht AG; Sala & Wick, 2016).  

A world record standing for hard rock TBM tunnelling belongs to The Brenner Base 

Tunnel (BBT). The Brenner Base Tunnel which is “the longest underground rail link in 

the world when completed in 2026” is being built from the Tulfes portal near Innsbruck 

to Fortezza in South Tyrol, Italy, for a total of 64 kilometers - 7 kilometers more than the 

Gotthard Base Tunnel. The tunnel passes through hard rock, including quartz, slate, 

gneiss, tonalite, and granite. A special feature of the project is the exploratory tunnel, 

which is driven through the rock in front of the two main tubes. For the exploratory 

tunnel, Herrenknecht supplied a gripper TBM with a diameter of 7.9 meters. On March 

30th 2018, the TBM in the Ahrental exploratory tunnel drove through 10,000 meters of 

rock in 2.5 years, A new world record: 61.04 meters in 24 hours in quartz phyllite rock 

(BBT-SE; Skuk & Wegscheider, 2015; Skuk & Schierl, 2017). 

In this chapter, a brief description of parameters that impact performance of TBM will 

be offered.  The results of previous studies from different researchers regarding the ef-

fects of different geological and geomechanical parameters on TBM performance are 

also examined. Besides, the principle of the rock fragmentation process in TBM tunnel-

ling and effective parameters is discussed. 

3.2 Definitions of Machine Operating Parameters  

In order to examine machine performance and effective parameters, it is important to 

offer a definition of the terms and parameters including, penetration rate, utilization 

coefficient, advance rate, thrust force, torque, and rotation. Correct understanding and 

method of calculation of these parameters. Hence, in this section, these parameters are 

briefly described.   
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3.2.1 Advance Rate, Penetration Rate, and Utilization 

Among the machine performance parameters, the most important one is the advance 

rate. The advance rate is the ratio between excavated length and total available time. 

The advance rate of boring machines depends on two major activities in tunnelling, rock 

excavation and installation of ground support system and completion of the other ac-

tivities. Rock boring with TBM is represented by penetration rate. Penetration rate is 

defined as the ratio of the length of tunnel excavated to the actual boring time during a 

continuous boring cycle which can be calculated using the following formula: 

( )
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=                                                                                                                     (3.1) 
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where ROP is the rate of penetration in (m/h); l is boring length (m); t is boring time (h);

P is cutter penetration per each cutterhead revolution (mm/rev) and RPM is cutterhead 

rotational speed (rev/min). Utilization refers to the percentage of the shift time that ac-

tual boring activity occurs, i.e., it refers to the ratio between actual penetration time and 

total available time in percent. Thus, the advance rate of TBM can be calculated as fol-

low: 

( / ) ( / ) (%)AR m h ROP m h U Hrs=                                                                                          (3.3)  

Hrs refers to the number of working hours per day. It is worth to note that, installation 

of the support system (segment installation) and the other operations such as repair and 

maintenance, other downtimes (electricity breaking off, delay in haulage system, etc.) 

results in a reduction of the average advance rate. This reduction is defined as the utili-

zation coefficient which can vary between 0 to 55%. TBM utilization depends on job site 

settings and the contractor’s experience. 

3.2.2 Thrust 

Thrust or propel force of the machine is one of the critical parameters which has a major 

impact on the performance of TBM. As can be seen from Figure 3.1, by increasing the 

thrust, rotating the cutterhead, and rolling disc cutters on the tunnel face (rock), differ-

ent forces act on disc cutters including:   

• Normal force  NF  
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• Rolling force   RF  

• Side force        SF    

The normal force is defined as a force acting under a disc perpendicular to the face and 

constitutes the thrust requirement of a machine. The rolling force acts on the disc along 

the cutting direction and determines the torque and power requirements of a machine 

to rotate the cutterhead at a certain penetration of the cutters. Side force is usually ran-

dom since chips can form on either side while the pressure is maintained on the opposite 

side. 

 

Figure 3.1: Cutting forces acting on a disc (modified from Rostami & Ozdemir, 1993) 

The interaction of NF and RF , and the penetration is illustrated in Fig.3.2. The changing 

slope corresponds to a transition in dominance between crushing and chip formation 

and has been called the “critical thrust”: unless the force of this magnitude can be ap-

plied, chipping between grooves will not occur. The critical thrust is directly related to 

rock strength or hardness and increase with cutter spacing and tip width of the disc.  
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Figure 3.2: Interaction of NF and RF with penetration for high and low strength rocks 

(modified from Nelson, 1993) 

Although these force/penetration relationships are known to be non-linear, several pa-

rameters have been defined on ratios derived from force/penetration plots. The ratio of 

RF to NF  has been defined as the cutting or rolling coefficient ( CC , CR ), and the ratio of 

NF  to RevP is defined as the penetration index ( FR ) or if measured in the field, it is called 

Field Penetration Index (FPI) which is calculated as follows: 
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where RF is rolling force, NF is the normal force, CC is cutting coefficient, FR  is penetration 

index, and RevP  is penetration per revolution. 

The thrust force of the machine and cutting force per cutter on the rock are very im-

portant parameters in the performance of the machine. Thus, they can be calculated as 

follow: 
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where hT is total thrust force, CP is hydraulic oil pressure in the cylinder (MPa), Cd is the 

diameter of the cylinder (mm), CN is the number of the cylinder, NF is cutting force per 

cutter (kN/cutter), fT is the friction force between shield and tunnel wall (kN), towT is tow 

force or resistance of back-up system (kN) and TBMN is the number of disc cutters. To 

calculate the friction force, a series of in situ penetration tests as explained by Bruland 

need to be employed. This test consists of 4 main steps. As a common practice, the cutter 

head rotation speed is fixed and simultaneously the excavation thrust force is applied 

at different levels. The basic testing procedure (start-stop test) can be found in Frenzel 

et al. (2012). Before performing the test, it should be ensured that the tunnel face is stable 

and disc cutters are in good condition so that the cutter tip width of mounted cutters is 

not varying too much. These requirements are often met after daily cutterhead inspec-

tions/maintenance. Generally, it is recommended to opt for the base thrust force accord-

ing to machine consideration with respect to the operator's opinion and then to reduce 

10 percent of this force in each step. Subsequently, the value of penetration rate in a 

specific period of time is determined according to thrust forces in each step and lastly, 

the average value of torque is also recorded. In addition to the aforementioned steps, it 

is essential to gather excavation mucks in that step together with the previous and next 

steps of excavation. The required minimum time for a single test is approximately equal 

to 30 number of cutter head rotations. In this period of time, it is necessary to maintain 

the thrust force in a specific value.  The friction force follows the contact area between 

the shield and surrounding rock and is dependent on the rock mass quality and weight 

of the cutterhead. High friction values caused by low rock mass strength and blocking 

of the annular gap by rock fragments reduce the applied thrust force respectively the 

force per cutter significantly. Since different tunnel routes (straight line or curve) and 

machine types cause varying friction values, this parameter must be considered to en-

sure comparability of different prediction models. Therefore, a friction stroke has to be 

performed where the cutterhead rotates in unobstructed space without touching the 

tunnel face and performing active excavation. During the friction test stroke, the shield 

of a TBM is in full contact with the surrounding rock mass. But not the entire cutterhead 

is, since the TBM is not penetrating the face and only gauge cutters are affected by the 

testing procedure. Consequently, measured values reflect the friction of the shield. 

Therefore, the cutterhead can be retracted from the tunnel face by approximately 40 cm 

and then pushed again forward with the average rotation speed and an advance rate of 

the previous strokes. If the thrust was reasonably constant over a distance of 10 cm, the 

friction stroke could be finished and the cutterhead could be pushed forward close to 

the tunnel face without touching it (Frenzel et al. 2012; Wilfing, 2016). The proposed 

procedure is as follows: 
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– Retract the cutterhead by 400 mm. 

– Rotate the cutterhead at the average speed of the previous strokes. 

– Push the cutterhead forward at the average advance rate of the previous strokes. 

– If for a distance of 100 mm a reasonably constant thrust force is established, increase 

the speed and move the cutterhead close to the tunnel face without touching it. 

More information about the site penetration test and related subjects can be found in 

Bruland (2000) and Villeneuve (2005) as well as Gong et al. (2007). 

3.2.3 Torque 

Torque of TBM cutterhead can be calculated from equations which are proposed by the 

machine manufacturer. Equation 3.7 is an example of this formula which is introduced 

by Robbins Company for calculation of open type of TBMs. 
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By estimation of torque, rolling force can be determined as follow: 
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 
                                                                                                          (3.8)  

Where qT  is cutterhead torque (kN-m), TU is machine voltage (v), TI  is amperage (A)

cos is coefficient of efficiency, mn is number of motors, TBMd is machine diameter, RF is 

rolling force of disc cutter (kN), mcr is the average weight of cutter distance from the 

center of rotation ( mcr = 0.592m), TBMN is number of cutters on cutterhead and RPM is 

cutterhead rotational speed (rev/min). Torque can be calculated from the rolling force 

as well to be compared to the available torque on the machine as: 

0.3 TBM R TBMT d F Nq =                                                                                                                                        (3.9) 

3.2.4 Composite Indices for TBM Performance 

In addition to parameters such as, penetration rate, thrust, and torque which can be 

determined directly during the excavation in tunnel site, there are some parameters 

which are calculated by the combination of parameters and have been suggested by 

researchers, for example; power, specific energy, field penetration index and specific 

excavation rate. These indices can be calculated by the following formulas: 
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where Po is power of machine (PW), SE is specific energy defined as the energy require-

ment of disc cutters to cut the unit volume of rock, FPI is field penetration index (kN/cut-

ter/mm/rev), SP is specific penetration which is inverse of FPI and SER is specific exca-

vation rate defined as the excavation per revolution divided by thrust per cutter to com-

bine SP and the tunnel cross-sectional area (m3/rev)/(kN/cutter). 

In equation 3.10, the power of the machine is estimated by torque and RPM . In equation 

3.11, in addition to torque, P is applied, and RPM is eliminated. This issue indicates that 

specific energy ( SE ) is a function of RF (torque or power) as well as P .      

3.3 Rock Fragmentation Process   

Since the introduction of mechanical excavation technology, there have been numerous 

studies to explain the interaction between rock and mechanical cutting tools as well as 

the rock fragmentation process. In terms of the developed idea in Colorado School of 

Mine (Rostami, 1993), rock fragmentation under disc cutter includes different proce-

dures such as; Crushing, Chipping, Fracturing. Each of these phenomena is represent-

ing one of the physical properties of rock and in combination with each other indicates 

the boreability of rock. The indentation tests and numerical modeling results showed 

that beneath the indenter three different zones can be distinguished, namely, the 

crushed zone, the fracture zone, and the elastic zone. Given of stresses distribution 

scheme, three zones can be considered just beneath the disc cutter as can be seen from 

figure 3.3.      
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Figure 3.3: Indentation process and different zone (Heydari et al. 2019) 

In brief, the process of rock fragmentation (indentation of cutter into rock) can be cate-

gorized into two categories: 

• Building a highly concentrated stress field and formation of the crushed zone. 

• Formation of sub-surface fracture propagation and chipping. 

The observations made by nearly all the researchers have confirmed that, as the disc 

cutter penetrates the rock, it creates a crushed zone or the so-called pressure bubble 

under a disc cutter. This zone provides the means for the transfer of stresses into the 

rock medium (Figure 3.3). The exact configuration of this zone is not known, but it is 

assumed to be circular. This zone consists of some fine-grained crushed rock that is de-

veloped due to high-stress concentrations in the area immediately under the cutter. The 

size of particles increases from the center towards the rock media surrounding the pres-

sure bubble. The extension of this zone is a function of cutter tip geometry and rock 

properties. The exact pressure distribution in this zone is not clearly/definitely known. 

Rostmai (2013) has simulated pressure distribution zone in the contact area between the 

disc and rock surface via finite element model (FEM) code. The results indicated that, 

the pressure within the contact zone is more concentrated, and the actual pressurized 

area is smaller than the size of the contact zone that has been assumed by previous mod-

els. This indicates that higher stresses could be experienced in this zone, beyond what 

was previously expected and used in many of the models. Furthermore, rock cutting 

with a TBM disc cutter has been simulated by Discrete/Finite Element Modelling (Labra 

et al. 2017). The model has been applied to the simulation of the laboratory test of rock 

cutting with a single TBM (tunnel boring machine) disc cutter. The results have con-
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firmed a non-uniform contact pressure distribution revealed in experimental investiga-

tions and shown that a uniform pressure distribution in theoretical models is a simpli-

fied assumption (Figure 3.4). Li et al. (2018) have simulated the cutting processes when 

a cutter and disc cutter are cutting rock and soil masses using finite element models, 

ABAQUS software. The simulation demonstrated that, in the penetration process of the 

disc cutter, the closer the location is to the action area, the bigger the stress is. On the 

contrary, the further it is from the acting force, the smaller the stress is. In addition, the 

stress at the two side faces of the cutting edge is strongest, but it is getting smaller grad-

ually towards the middle. Also, it was concluded that, at the initial stage of penetration, 

stresses concentrate at the contact surface, and the failure zone appears on the rock sur-

face. Because the stress is very high, some parts of the rock mass crush or obvious plastic 

deformation is created in the failure zone. With penetration depth increasing, the max-

imum Von Mises stress of the rock increases almost linearly, and plastic strain accumu-

lates constantly, resulting in the stress growing as well. 

Also, the effect of confining pressure on the rock breakage efficiency on the TBM cutter 

has been studied by different researchers (Yin et al. 2014a & b; Innaurato et al. 2011; Ma 

et al. 2016). It been has proved that, in general, with increasing confining pressure, the 

crack initiation force and the crushing area gradually increase; in addition, rock frag-

ments form more easily due to the increase of the confining pressure, so the rock break-

age efficiency of the TBM cutter is higher. Ma et al. (2011) used the finite element pro-

gram RFPA2D to study the effect of the limiting stress on the rock fragmentation perfor-

mance of a TBM cutter and concluded that, the confining pressure can change the direc-

tion of crack propagation and the length of the effective crack, which was consistent 

with the conclusions of Liu et al. (2002), who used the R–T2D (Rock–Tool interaction) 

program. Ma et al. (2011) also calculated the specific energy (SE) required for different 

confining pressures and found that when the confining pressure is less than a critical 

value, the specific energy increases with increasing confining pressure. When the con-

fining pressure is greater than the critical value, the SE decreases as the confining pres-

sure increases. 
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Figure 3.4: Schematic figure of the fragmentation process during rock excavation with 

disc cutters (Rostami, 1997; Wilfing, 2016) 

As can be seen from Figure 3.4, radial cracks are created by the induced stresses in this 

zone. At the cutter edge, Gong et al. (2005) proved that a conical crack (Hertzian crack) 

is initiated which agrees with the theory of contact mechanics between a rigid indenter 

and brittle material. Furthermore, radial cracks and a median crack develop. If these 

cracks grow and coincide with cracks from adjacent cuts reaching free rock surface, rock 

chips are formed and chipping takes place. Besides that, Li et al. (2016) studied the effect 

of the confining pressure on crack propagation during TBM rock breakage using the 

PFC-2D software. They concluded that the confining pressure plays a negative role in 

the median crack propagation and that a higher confining pressure consumes more en-

ergy. Lin et al. (2018) employed an experimental investigation of jointed rock breaking 

under a disc cutter with different confining stresses. The results indicated that, peak 

indentation force increases with the increase in confining stress during the indentation 

process. The median crack is well developed at low confining stress. However, the me-

dian crack is restrained, and the rock chip formation is mainly caused by side crack 

propagation when the confining stress increases. Moreover, Liu et al. (2015) also used 

PFC-2D to study the geometric features of the fragments generated by indentation tests 

under different confining pressures and concluded that the fragment width decreases 

with increasing confining pressure. The reason for this phenomenon is that the confin-

ing pressure increases the deflection angle of the crack initiation, which is consistent 

with experimental results (Cook et al. 1984) and finite element numerical simulation 

results (Liu et al. 2002; Ma et al. 2011). 

Regarding to chipping, it is not definitely known whether the formation of rock chips is 

contingent on the development of shear or tension cracks or a combination of both. 
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Nowadays researchers tend to prefer the mechanical approach of tension cracks since 

the cutter induces high stresses on a single spot at the tunnel face which is more likely 

compared to tensile or point load forces than to shear forces (Rostami, 1997; Barton, 

2000; Li et al. 2018).  Numerical simulation of rock fragmentation process induced by 

two TBM cutters and optimization of cutter spacing has been investigated by Gong et 

al. (2006). The results show that, in the beginning, each cutter indents the rock inde-

pendently and similarly to a single cutter indentation process. The stress field is also 

independent. After the formation of the crushed zone, cracks are initiated from this 

zone, and then the side cracks propagate along a certain direction due to the interaction 

of two cutters. With increasing penetration, the side cracks between two cutters propa-

gate to each other and coalesce, and form the rock chip. The chip formation is greatly 

dependent on the cutter spacing and the critical cutter load. Also, the critical cutter 

stress required for chipping increases with increasing cutter spacing. The fact is that, the 

interaction between the cracks from two adjacent cuts guides the propagation of frac-

tures. When two or more cracks from neighboring cuts meet or cracks reach the free 

surface, chipping occurs. It is noteworthy that, the length of the cracks is a function of 

the pressure in the crushed zone. In addition, the cut interaction depends on the spacing 

between the cuts, the angle, and the extension of cracks between the adjacent cuts. Ac-

cording to fracture mechanics principles, a crack may propagate in any direction which 

provides the least surface energy and continues to grow as long as the stress intensity is 

higher than the critical stress factor of rock. This propagation can continue until stress 

intensity drops below the critical value or the crack meets a free surface (that can be 

another surface). This means that chips can be formed by cracks at any angle (Xia et al. 

2017; Cho et al. 2006 & 2010; Tumac & Balci, 2015). 

In practice, during excavation, TBM cutters roll across the tunnel face and continuously 

expand the crushed zone immediately beneath themselves. Then, cracks are initiated 

from the crushed zone and propagated downwards and sideways. One or more cracks 

under the action of the rolling cutter may reach the free surface or propagate to meet 

the cracks of the neighboring cuts. In these two cases, chipping occurs. The first case is 

similar to the chip formation of a single cutter indentation process. The latter is the in-

teraction between two adjacent cuts. It is directly relevant to the design of TBM cutter-

head and the efficiency of TBM excavation (Figure 3.5) (Gong et al. 2006). 
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Figure 3.5: Rock chipping by TBM cutters (Zhao et al. 2019) 

Snowdon et al. (1982) performed a series of liner cutting tests utilizing the Linear Cut-

ting Machine (LCM). The results showed that, the specific energy of cutting (cutting 

efficiency) is strongly affected by cutter spacing and cutter force. Also, the influence of 

cutting geometry on chip formation in the linear cutting tests was investigated by 

Rostmi and Ozdemir (1993). The results indicate that, the size of the crushed zone im-

mediately under the cutter is affected by cutter tip geometry. Besides that, the cutter 

spacing, and cutter force affect the induced cracks propagation and rock chip formation 

between adjacent cuts. Using numerical simulations on the cutter indentation process 

and rock chipping between adjacent cutters, Gong and Zhao (2007) deduced that the 

thrust force, the cutter diameter and cutter tip width affect the stress field in rock and 

then the indentation process.  

It is worth to note that, in general, the rock breakage process is closely related to the 

machine parameters, such as TBM diameter, cutter line spacing, cutter diameter, and 

tip width, total thrust, and torque- power requirement of the cutterhead. 

3.4 Parameters Affecting TBM Performance 

During the rock excavation process, many factors affect TBM performance Table 3.1 lists 

the important factors influencing TBM performance. Some factors directly and some pa-

rameters indirectly influence the penetration rate. For example, net penetration is influ-

enced mainly by rock material and rock mass properties and machine parameters such as 

thrust and cutter spacing. However, if there is a lack of transport capacity, the operator 

may run the TBM below its capacity instead of pushing it to its limits. The most important 

factors with major impacts on TBM penetration rate can be classified as follow: 

1. Intact rock properties 
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2. Rock mass properties 

3. Ground conditions along the tunnel alignment 

4. Machine characteristics (Power, thrust force, torque, shape, and size of disc cut-

ters, etc.) 

5. Site management and logistics 

Among these parameters, except for the last one; all parameters have a direct impact on the 

penetration rate of TBM in rock, while the last parameter mainly influences machine utili-

zation. 

Table 3.1: Factors influencing TBM performance (Blindheim, 2004) 

Geological/Geotechnical Machine and Operation Organization 

Rock material properties TBM specifications Work arrangements 

1.Strength: compressive, ten-

sile, shear 

1.Thrust, net and total including fric-

tion 

1. Available hours, work regulations 

2. Crushing strength, tough-

ness strength 

2. RPM, rolling speed 2. Shift schedule, buffer time 

3. Elasticity, rebound, hard-

ness 

3. Torque capacity, installed and usa-

ble power 

3. Crew organization authority of 

shift bosses, autonomous groups 

4. Anisotropy 4. Number diameter, edge width, ma-

terial 

4. Crew training and experience 

5. Porosity 5. Cutterhead diameter, shape, and 

stiffness 

5. Crew remuneration, bonus system 

6. Abrasivity 6. Cutter change mode: front or back-

loaded 
 

Rock mass features 
7. Re-gripping principle: thrust on 

walls/roof or on segmented lining 
Services 

1.Type of weakness planes; 

joints, fissures, partings, bed-

ding planes  

1. Electricity, water etc 

2. Spacing  2. Ventilation, cooling 

3. Orientation  Safety 

4. Persistence  1. Dust control  

 2. Fire control 
 

 3. Light, vibrations, noise 

Ground conditions Operation Management principles 

1.Mixed face conditions 1. Thrust and torque 1. Authority of TBM manager, fore-

men 

2. Rock stresses 2. utilization 2. Procurement conditions 

3. Fault zones 3. Steering, friction  
4. Water 4. Cutter change sequence  
5. Gas   
Ground control Backup system Location 

1.Water control measures Transport system for muck and sup-

plies 

1. Tunneling traditions Labor qualifi-

cations 

2. Rock support measures 

 

2. Supply of goods Local laws, regula-

tions 

3. Lining   
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3.4.1 Intact Rock properties   

Rock material strength is used as an important parameter in many rock classification 

systems as well as predicting boreability and drillability of rock. Rock strength affects 

rock behavior under compression. It is certainly true that, when the rolling cutter in-

dents the rock, the stress exerted must be higher than the rock strength. Thus, the rock 

strength is directly relevant to the performance of TBM. Hence, the Uniaxial Compres-

sive Strength of rock (UCS) is one of the most important engineering properties of rocks. 

In fact, UCS can be used to evaluate the resistance of the rock against the indentation of 

the cutting tool into the rock surface. It should be noted that, prediction models relying 

only on the UCS of intact rock may provide inaccurate results. So, the other intact rock 

strength tests should be taken into account to increase the accuracy of TBM perfor-

mance. 

Tensile strength is another common rock property that is used in making boreability 

predictions. Brazilian Tensile Strength (BTS) is generally intended to provide an indica-

tion of rock brittleness from a viewpoint of crack propagation between adjacent cutter 

paths. The fact is that, the compressive strength was used to describe the rock crushing 

beneath the cutter tip while the tensile strength accounted for the chip formation be-

tween adjacent cuts. 

It is noteworthy that, great attention should be paid how to the sample failed during 

UCS or BTS testing. Figure 3.6 illustrates a typical structural and non-structural failure 

of UCS and BTS samples. Those samples, which were observed to fail along with exist-

ing rock defects, such as joints, fractures, bedding, or foliation, must be classified as a 

structural failure. Where the sample failure was not controlled by any defects and oc-

curred in an “intact” manner, the sample was noted as having failed in a non-structural 

manner. 

  

Figure 3.6: Failure types for UCS (left) and BTS (right) (Cigla et al. 2001) 
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Another rock property, which affects boreability is the brittleness or the ductility, which 

the rock exhibits as subjected to the mechanical forces generated by the cutting action 

of an excavator. In general, the rock cutting efficiency of any mechanical tool improves 

with increasing brittleness (ease of fracture initiation and propagation) exhibited by the 

rock formation. Thus, brittleness is a highly desirable feature of the rock from a bore-

ability standpoint. Even though brittleness is one of the necessary properties of rock, 

there is no agreement in the engineering rock mechanics community to describe or 

measure it. There are several different methods used for the determination of rock brit-

tleness; however, two common methods include the Punch penetration test and Brittle-

ness value S20 were found to influence brittleness and boreability of rock when evaluat-

ing TBM potential performance (Kahraman, 2002; Gong and Zhao 2007; Yagiz, 2009).  

Also, the brittleness index of rock has different definitions and it has been investigated 

by some researchers to estimate the measurement of brittleness index value obtained 

from uniaxial compressive strength and Brazilian tensile strength. Among them, three 

common definitions of brittleness indices are presented as follow:   
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                                                                       (3.14) 

Where c and t are uniaxial compressive strength and Brazilian tensile strength, respec-

tively. Results of investigations have proved that, by increasing the brittleness index; 

the indentation process of disc cutter in rock comes easier. Gong and Zhao (2007) inves-

tigated the influence of rock brittleness on the rock fragmentation process induced by 

TBM cutters by utilizing numerical simulation (UDEC). The ratio of uniaxial compres-

sive strength to Brazilian tensile strength ( 1B ) was adopted to quantify the rock brittle-

ness. The results show that, with the decrease in brittleness index, the size of the crushed 

zone decreases, and the number and length of the main cracks outside the crushed zone 

also decrease, this means that, with the increase of the rock brittleness index the cutter 

indentation process gets easier. 

Besides these rock properties, another factor that influences on boreability, as well as 

the penetration rate of TBM, is abrasivity (cutter life). This parameter is typically ex-

pressed in terms of average cutter life in hours, meter travelled on the face, cutters per 

meters of the tunnel, or cutters per cubic meter of excavated rock. Obviously, increased 

cutter consumption will impact maintenance time and machine utilization, but this item 

will not be discussed in this thesis. Abrasiveness is mainly affected by various factors 

such as mineral composition, the hardness of mineral constituents, and grain character-

istics such as size, shape, and angularity. Tool wear is an important parameter in mech-

anized tunneling and is highly affected by rock abrasiveness. Abrasive wear leads to the 
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removal of material from the tool surfaces while it is moving against the rock. This phe-

nomenon is the function of the hardness difference between interacting bodies. It is 

caused by direct contact of tool and hard particles in the rock or contacts between tools 

and particles in between rock and tool. There are numerous tests to identify rock abra-

sivity. The most commonly used are: 

I. The Vickers test, or the Vickers Hardness Number – VHN 

II. The Cerchar test, yielding the Cerchar Abrasivity Index – CAI 

III. The LCPC abrasimeter test, or the LCPC abrasivity index – ABR 

IV. The NTNU abrasion test, offering the Abrasion Value - AV/AVS 

3.4.2 Rock Mass Properties 

In addition to intact rock properties, joint conditions of rock mass have great effects on 

machine performance. The main characteristics of rock mass that have a significant in-

fluence on TBM performance include: 

• Discontinuity spacing   

• Joint orientation relative to tunnel axis 

• Joint characteristics (conditions) 

In the following section, the impacts of these parameters on machine performance are 

investigated based on previous studies that have been presented by different research-

ers. 

3.4.2.1 Discontinuity Spacing 

Undoubtedly, this parameter is the most important property of rock mass which has a 

great role to play on machine performance. Rock masses are composed of rock material 

and joints, the existing joint conditions surely can affect the rock breakage process. It is 

easy to realize that discontinuity can facilitate rock breakage because cracks induced by 

disc cutters easily develop along the existing discontinuities as compared to extending 

across the grains. Rock quality designation- RQD (Deere et al. 1967), the volumetric joint 

count- vJ (Palmström, 1995), and joint spacing ( Js ) are three frequently used parameters 

to describe the discontinuity spacing. Joint frequency is one of the important parameters 

in the NTNU model to estimate the penetration rate of TBM. The past investigations by 

the Norwegian University of Science and Technology (NTNU), decreasing joint spacing 

means the fracture factor ( SK ) increases which has a direct impact and leads to an in-

creased penetration rate of TBM. Figure 3.7 shows the effects of joint spacing on fracture 

factor ( SK ). It should be noted that, the smaller the distance between the fractures, the 

greater the influence on the penetration rate of the machine. 
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Figure 3.7: Influence of joint spacing and orientation on fracture factor (modified from 

Movinkel & Johannessen, 1986) 

Barton (2000) in the QTBM model, used modified RQD , namely 0RQD (it must be oriented 

in the tunneling direction) for performance prediction of TBM. In this model, 0RQD has 

a direct relationship with QTBM and an inverse relationship with the penetration rate. 

The effects of joint spacing on TBM performance have been analyzed by Gong et al. 

(2006). In their investigation, rock indentation by a single TBM cutter is simulated by 

using the discrete element method (DEM-UDEC). Based on the field observations and 

statistical analysis of over 250 km of TBM excavated tunnels in hard rock conditions for 

more than 20 years, Bruland (1998) divided the discontinuities into two sorts, namely 

joint and fissure, and five classes as listed in Table 3.2. He summarized the effect of 

every fracture class and its orientation on the TBM penetration rate. For each 

discontinuity class and its orientation, a fracturing factor graph was drawn and the 

factor SK has been estimated as shown in Figure 3.7 above. 
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Table 3.2: Fractures classes with distance between planes of weakness (Bruland, 1998) 

Fracture class 

(joints = Sp, fissure = St) 

Distance between planes 

of weakness (mm) 

0 – 

0–I 1600 

I– 800 

I 400 

II 200 

III 100 

IV 50 

The simulated results of Gong et al. (2006) are plotted in Figure 3.8 and have been 

compared with Brulnad’s studies. The simulated values are smaller than the in situ 

measured values in rock masses with different fissure spacings, and also much smaller 

than those from in situ measurements in rock masses with different joint spacings. The 

main reason is that, in numerical modeling, fillings and aperture of the joints are not 

taken into account, and the simulation also does not consider the continuous boring 

process. But the shapes of these curves show good agreement.  

 

Figure 3.8: Effects of joint spacing on penetration rate (Gong et al. 2006) 

In the above plot, PS denotes penetration rate in different fracture spacings and P0 

denotes penetration rate in rock mass without fractures. It is certainly true that, 

whatever the ratio of PS/P0 is bigger, the effect of joint spacing on penetration rate is 

greater. This figure is plotted when the angle between the tunnel axis and the fracture 

plan is 900. It is interesting to note that, when joint spacing is 500 mm, its effect on 
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penetration rate is very small while, penetration rate increases at joint spacing less than 

100 mm. The main reason is that, when the joint spacing is less than 100 mm, the side 

cracks can propagate to the joint plan and improve the yield of rock chipping. 

3.4.2.2 Joint Orientation 

In foliated/bedded rock, foliation can play a significant role in rock fracture propagation 

between cuts, depending on the foliation direction with respect to the direction of 

machine advance. In recent years, the influence of the joint orientation on TBM 

penetration rate is widely observed in tunneling projects. For example, Aeberli & 

Wanner (1978) observed that, the advance rate of TBM increases with the increase of the 

angle between the TBM axis and the planes of schistosity in a homogeneous zone of 

schistose phyllite. In this regard; a 3.5 m diameter sewer tunnel passed through syncline 

for about 140 m (Figure 3.9) during which the angle between the tunnel axis and 

foliation planes changed continuously from 600  through 00 and back to 600 . When the 

angle   was 900, a PR of about 1 m/hr was recorded, and when 300 , PR had increased 

to 2.3 m/hr. Similar phenomena were also observed by Thuro and Plinninger (2003) 

(Figure 3.10). 

 

Figure 3.9: Graphic effects of foliation angle on penetration rates (average per day) in a 

3.5 diameter TBM tunnel in Switzerland (modified from Aeberli & Wanner 

1978) 
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Figure 3.10: Mean values of specific penetration rate in phyllite (continuous line) and 

phyllite-carbonate-schist inter-stratification (dashed line) versus angle of 

foliation. Schönberg tunnel (Austria) (Thuro & Plinninger, 2003) 

Besides that, a theoretical analysis of the interaction between cutter and rock with a fo-

liation by Sanio (1985) showed a similar tendency. Sanio (1985) used 7 rock types [Salte, 

Gneiss, Sandstone, and limestone] with varying degrees of anisotropy. The purpose of 

this study was to develop predictor equations for rocks with bedding or schistosity since 

anisotropies influence the penetration. The author conducted wedge indentation and 

full-scale cutting tests on rock samples with certain orientations of the bedding or schis-

tosity. The influence of different orientations on the penetration force has been analyzed 

by accounting for two different angles (Figure 3.11) 

• 
' : the angle between the momentary rolling direction of the cutter and the ap-

parent strike of the anisotropy on the tunnel face. 

• 
' : the angle between the anisotropy planes (bedding, schistosity) and the tunnel 

face. 
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Figure 3.11: Definition of α‘ & β‘ determining the orientation of anisotropy planes 

(Wilfing, 2016; Sanio, 1985) 

 

According to Sanio (1985), penetration rates six times faster were recorded when the 

tunnel axis impingement angle  was 00 compared to 900. Bruland (1998) summarized 

the effects of joint orientation of different classes of joints and showed a similar trend 

(Figure 3.7). His investigations showed that the maximum penetration rate occurred 

when the angle was equal to 600. For a single joint, whereas the maximum penetration 

is expected in tightly fissured rocks at = 90 degree. Also, Figure 3.12 shows the influ-

ence of bedding planes angle (  = 90 - ) (normal to tunnel axis) on the penetration rate 

of the disc cutter. As can be seen, with an increase of angle; the penetration rate de-

creases significantly (Barton, 2000).   is the angle between foliation and the horizontal 

plane measured perpendicular to the tunnel face and is the smallest angle between the 

foliation and tunnel axis. The definition is also shown in Figure 3.13. 

 

Figure 3.12: Effects of bedding planes angle on penetration rate of disc cutter (modified 

from Barton, 2000) 
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Figure 3.13: Definition of and  (Entacher, 2013) 

The reason for this phenomenon is that, when machine advance is parallel to foliation 

planes (Figure 3.14); crack propagation is forced to occur across the foliation planes. This 

reduces machine penetration because of the increased difficulty of rock breakage. When 

the foliation is perpendicular to the direction of machine advance, rock failure occurs 

along foliation planes as indicated in Figure 3.15. This case generally, refers to the most 

favorable boreability as foliation planes assist crack initiation and growth between 

adjacent cuts. 

 

Figure 3.14: Cutting direction parallel to foliation (Yagiz, 2002) 
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Figure 3.15: Cutting direction perpendicular to foliation (Yagiz, 2002) 

Gong et al. (2005) simulated effects of joint orientation on rock fragmentation by TBM 

cutters with series of two-dimension numerical modelling using the discrete element 

method (DEM-UDEC). To configure the numerical model, a granite block with a dimen-

sion of 1.2   1.2 m, a joint spacing of 200 mm was set where the load applied over a 15 

mm wide contact area with a fixed spacing of 200 mm had been conducted. The dip 

angle of the joint was varied between 0° to 90° and the rock chipping process and effi-

ciency for each angle examined. The results demonstrate that, the rock chipping angle 

increases as the angle between the tunnel axis and the joint plane increases, except when 

 = 0° and 90°, since the crack initially propagates like in unjointed rock mass. As the 

angle increases the penetration rate increases until a reach 60°, then the penetration 

rate decreases with the increase . The modelling results conclude that the smaller the 

angle , the easier the fragmentation of the rock mass. The results show good agreement 

with Bruland’s result. Moreover, simultaneous effects of joint spacing and joint orienta-

tion on the penetration rate of a single disc cutter studied by Bejari et al. (2011) via com-

putational numerical modelling named “Universal Distinct Element Code (UDEC)”. To 

deal with this area of research, seven joint orientation (0°, 15°, 30°, 45°, 60°, 75°, and 90°), 

on the block of sandstone with the dimension of 1   1; 1.5   1.5 and 2.5   2.5 with three 

joint spacings, 150, 200, and 300, respectively were considered. The cutter was modelled 

in a similar method applied by Gong et al. (2005). This was a new contribution since 

previous studies only considered the effect of one of the joint conditions on rock frag-

mentation by a disk cutter: either spacing or orientation. The effect of joint spacing and 

orientation on TBM penetration was investigated by calculating the ratio of the chipping 

area to chipping stress, which indicates the frequency of chips in terms of cutting force 
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units. The optimum disc spacing of 75 mm in sandstone was considered when calculat-

ing the chipping area. For this reason, the chipping area was calculated according to the 

crack propagation pattern in the rock and the rock cutting type under different joint 

conditions (Figures 3.16 & 3.17). 

 

 

Figure 3.16: Chipping stress versus joint orientation and spacing (Bejari et al. 2011) 

 

Figure 3.17: Effect of joint orientation and spacing on TBM penetration rate (Bejari et al. 

2011) 

The study shows that, increasing the joint spacing for a given joint orientation causes 

the TBM penetration rate to decrease. The gradient of increasing penetration is higher 

between 45° and 75° than it is between 0° and 30°. In addition, for any joint spacing 
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penetration increases when the joint orientation changes from 0° to 75° but decreases as 

the joint orientation changes from 75° to 90°.  

The results also demonstrate that an optimum joint orientation, from the viewpoint of 

TBM penetration, is about 60-75° which has a similar tendency with previous investiga-

tions. In addition, extensive experimental investigations have been carried out by Lin et 

al. (2018) to explore the effect of different confining stress (0, 2.5, 5, 7.5, and 10 MPa) on 

the rock breaking induced by the disc cutter respecting to different joint angles (0°, 30°, 

60°, and 90°). The cement mortar sample is taken into account for simulating rock dam-

age, since the main framework of the material is cement and sand, the cement is the 

adhesive material, and the sand can provide the frictional behaviour of the modelling 

material. This feature is similar to the actual rock failure. The rock-like specimens with 

dimensions of 150 150 30 and to create the existing joint, a mica sheet (70mm long 

30 mm wide 0.4 mm thick) was inserted into and remained in the specimen. During 

the curing process, the temperature and humidity were maintained at 25 degrees and 

90%, respectively. The dip direction of the joint set was assumed to be identical to the 

cutting load direction and the distance between the position of indentation and the cen-

ter of the joint was 55 mm (Figure 3.18). 

 

Figure 3.18: Joint geometry in the specimens (Lin et al. 2018) 

Figure 3.19 shows the crack propagation and failure modes of rock breaking under the 

disc cutter when the joint angle is 0° and the confining stress varies from 2.5, 5, 7.5 to 10 

MPa. Fig.3.18 displays that the medium cracks initiate from the crushed zone and grad-

ually propagate along the jointed plane. Meanwhile, two cracks initiate at the upper tips 
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of the jointed plane and propagate towards the free surface. With further increase in the 

indentation depth, the cracks coalesce with the side cracks and finally form rock chips. 

 

Figure 3.19: Effect of the confining stress on the final failure modes ( = 0°); Confining 

stress: a=2.5 MPa; b=5 MPa; c=7.5 MPa; d=10 MPa. (Lin et al. 2018) 

Figure 3.20 & 3.21 exhibit when is 30° & 60°, respectively. When the confining stress is 

low, the cracks propagate along with certain directions; medium and side cracks initiate 

and propagate from the crushed zone and terminate at the joint plane. Meanwhile, some 

cracks initiate from the joint plane and propagate upward to the free surface. When 

those cracks coalesce with the medium and side cracks, the rock chips are formed. How-

ever, when the confining stress increases to 7.5 and 10 MPa, the initiation and propaga-

tion of the median crack are restrained, as shown in Figs.19c and 19d. It should be noted 

that, the existence of joints has no obvious effect on the failure mode when the confining 

stress increases to a certain value. 
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Figure 3.20: Effect of the confining stress on the final failure modes ( = 30°); Confining 

stress: a= 2.5 MPa; b= 5 MPa; c=7.5 MPa; d=10 MPa. (Lin et al. 2018) 

 

Figure 3.21: Effect of the confining stress on the final failure modes ( = 60°); Confining 

stress: a=2.5 MPa; b=5 MPa; c=7.5 MPa; d=10 MPa. (Lin et al. 2018) 

When the joint angle increases to 90°, the median crack is initiated immediately in 

front of the crushed zone, propagates along the induce way, and finally terminates at 

the joint surface. The side cracks initiate immediately in front of the crushed zone and 

propagate symmetrically, as shown in Figure.22a and b. The analysis showed that the 

joint plane significantly affects the rock failure modes when the confining stress is low. 
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However, when the confining stress increases to a certain value, the presence of the 

joints has no effect on the failure mode of the specimens. 

 

Figure 3.22: Effect of the confining stress on the final failure modes ( = 90°); Confining 

stress: a=2.5 MPa; b=5 MPa; c=7.5 MPa; d=10 MPa. (Lin et al. 2018) 

The failure modes of rock breaking at low confining stress can be summarized as fol-

lows: 

• when the joint angle is 0°, the crack initiates at the upper tips of the jointed plane 

and coalesces with the side crack; then, rock chips are formed. 

• when the joint angle is 30° and 60°, the crack initiates under the crushed zone 

and propagates downward the joint plane; then, rock chips are formed. 

• when the joint angle is 30° and 60°, the crack initiates at the joint plane and prop-

agates upward the free surface; then, rock chips are formed. 

• when the joint angle is 90°, the crack initiates from the crushed zone, propagates 

towards the joint plane, and finally terminates at the joint plane; then, rock chips 

are formed. 

The change in peak indentation force with different joint orientations and confining 

stresses is presented in Figure 3.23 where the peak indentation force increases with the 

increase in confining stress. In particular, when the confining stress is 2.5 MPa, the peak 

indentation force is significantly different, which indicates that the joint orientation con-

siderably affects the peak indentation force when the confining stress is low. Specifi-

cally, when the joint orientation is 30°and 60°, the peak indentation force is lower than 

that of the other specimens. The experimental results of the final failure modes also 
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prove that the joint orientation has a considerable effect on the rock-breaking process 

when the confining stress is low. However, there is no obvious difference when confin-

ing stress increases to 10 MPa. 

 

Figure 3.23: Peak indentation force of rock-like specimens with different confining 

stresses and joint orientations (Lin et al. 2018) 

The above analysis indicates that when the confining stress is not notably high, and the 

rock mass with a certain joint angle is more easily broken. In addition, the peak inden-

tation force increases with the increase in confining stress, which indicates that the TBM 

cutter requires a high thrust force in a high-confining-stress condition. 

Besides that, Zhao et al. (2018) simulated the rock-breaking process of the TBM by the 

laboratory rolling boring tests on the sandstone specimen with the dimensions of 160   

160   100 mm. Prefabricated joints with different forms are made in rock samples. Spe-

cifically, rock mass samples with different joint orientations ( = 0°, 30°, 45°, 60°, and 

90°) and a 20 mm joint spacing were selected to study the effect of joint orientation on 

the cutting efficiency and cutter wear and for the purpose of investigating the influence 

of joint spacing, rock samples with different joint spacings (10, 20, 30, 40, and 50 mm) 

and a joint orientation of 45° are prepared for the tests (Figure 3.24). The specific energy 

is utilized to assess the cutting efficiency of the TBM. In addition to experimental tests, 

three-dimensional finite element models of rock mass and cutters are established in AN-

SYS software to study the effect of jointed orientations and jointed spacings on cutting 

efficiency numerically. 
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Figure 3.24: Schematic of rock specimens with different orientations and spacings: a rock 

specimens with different orientations (0, 30, 45, 60, 90°) with a 20-mm joint 

spacing, b rock specimens with different spacings (10, 20, 30, 40 50 mm) 

with a joint orientation of 45°, c oblique view of rock specimens with 45° 

joint orientation and 20-mm joint spacing (Zhao et al. 2018) 

It was found that experimental results reach the minimum value when is approxi-

mately 30°. Thus, this angle can be considered as the optimal dip angle for rock-breaking 

in the experiment. Hence, the phenomena are mainly caused by joint orientation. When 

disc cutters that are oriented at 0° roll on the surface of rock samples, the penetration 

process is practically similar to that performed on the intact rock sample until a pene-

tration depth that exceeds the thickness of the rock slice is reached. Therefore, the spe-

cific energy and cutter wear are large, and as a result, the cutting efficiency is relatively 

low under this condition. However, for rock blocks oriented at 30°, the initiation and 

propagation of cracks exhibit a different mode. At this orientation, tensile cracks firstly 

occur at the joint plane and then propagate upwards to the free surface. The rock chip-

ping angle (the angle between the tunnel face and rock damage plane) reaches the max-

imum value (Gong et al. 2006), which is most conducive to the formation of big rock 

chips. As a result, the minimum specific energy and wear values are achieved, and the 

cutting efficiency reaches the maximum. However, as varies from 30° to 90°, the rock 

chipping angle decreases and hinders crack propagation, as well as chip formation. As 

the joint orientation increases, a larger normal force is required to cut with the same 

penetration depth, and fewer rock chips are formed. Therefore, cutter wear and specific 

energy are increased. When = 90° the cutting efficiency is reduced to the minimum 

(Figure 3.25).  
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Figure 3.25: Variations of cutter wear and specific energy with joint orientation; joint 

spacing = 20 mm, normal force = 1.5 kN (Zhao et al. 2018) 

In addition, in Fig. 3.25, it was observed that the specific energy obtained using ANSYS 

software reached a minimum when the joint orientation is approximately 30°, whereas 

the minimum numerical value is 24.5% larger than the experimental result. However, 

when the joint orientation is larger than 45°, the trend of numerical results is not in good 

agreement with that of experimental results. The errors mainly emanate from the lack 

of information on cutter wear, contact between cutters and rock mass in ANSYS, and 

measurement error in the tests. Therefore, the finite element simulation can only be used 

to predict the optimal joint orientation. 

Furthermore, the influence of orientation and spacing of joints on the performance of 

TBM in hard rock by simulation of cutterhead in real dimension has been analysed nu-

merically using PFC-3D (Afrasiabi et al. 2019). To assess the effect of orientation on the 

TBM penetration, different angles are considered between each joint set related to the 

advance axis (the spacing is considered constant and equal to 500 mm). The sensitive 

analysis has been performed on 7 angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°), and the 

required thrust and torque for 10 cm penetration in different joint orientation have been 

estimated. Based on Fig. 3.26, the required mean thrust and torque decrease when the 

 angle between the joint set and advance axis increases. This trend will be changed 

from angel 60 to 90 and these forces are increased. It is worth noting that, the value of 

required mean thrust and torque is less than of these values in intact rock, which indi-

cates the effect of jointing on ease of the rock cutting process. Based on these results, the 

convenience of rock cutting is increased by 30–70% depending on the joint orientation. 
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Figure 3.26: Required thrust (left side) and torque (right side) for different orientations 

(Afrasiabi et al. 2019) 

To check the effect of joint spacing on TBM performance, since, in the joint orientation 

analysis, the zero angle between the joints and advance axis has the least effect on the 

performance of TBM, this angle has been used to analyse the effect of the joint spacing. 

The analysis has been performed at 100, 200, 300, 400, and 500 mm spacing (Figure 3.27). 

 

Figure 3.27: Thrust (left side) and torque (right side) required for different spacing 

(Afrasiabi et al. 2019) 

It was found that, the presence of the joints has a significant effect on the performance 

of TBM as noted by many others, but the amount of this effect varies with different 

conditions of the joint’s orientation and spacing. Based on the results, in the angle 60° 

(this angle is between joint sets and the advance axis of the tunnel) the best performance 

of TBM is achieved for single joints at larger spacings of >150-200 mm. On the other 

hand, by increasing the joint spacing from 100 mm to 400 mm, the positive effect of joint 

spacing on the TBM performance is reduced, but when the joint spacing is increased 
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more than 400 mm, no change occurs in the machine performance. Therefore, 400mm 

spacing is considered as a critical spacing of joint on the ease of excavation. Generally, 

due to the joint orientation and spacing parameters, the ease of cutting in the jointed 

rock block is increased 30-70 percent (depending on the orientation of the joint), related 

to the intact rock block. 

3.4.2.3 Joint Characteristics (Conditions) 

Obviously, joint characteristics have some impact on machine performance. 

Theoretically, when the joint filled with softer material and has an open aperture, and 

smoother surface as well as highly weathered conditions, the boreability of rock mass 

and penetration of cutters become easier. Although, till now there is no comprehensive 

research to address this conflict, but Khademi et al. (2010) considers joint condition ( Jc

, partial rating in RMR classification) as an input parameter for prediction of TBM FPI. 

Jc in RMR is the sum of five factors, including persistence/continuity; aperture; 

Roughness of discontinuity surface; Infillings, and weathering discontinuity of joint 

surface. The results showed that, an increase of Jc causes an increase in FPI, meaning 

rock masses with less weathering become more difficult to bore. However, due to the 

lack of real proper information, there is no investigation to address this matter in detail 

and examine the joint characteristics, such as weathering degree or aperture, separately. 

3.4.3 Geological Conditions 

It is certainly true that, geological conditions such as; faults and underground water 

inflows have a great role to choose the type of machine, applicability, the performance 

of the machine, and production rate. Unfavorable ground conditions have a major role 

in decreasing the utilization of the machine. In brief, rock masses can be classified into 

four groups in terms of geological conditions including; blocky and jointed rock mass, 

massive hard rock, squeezing rock mass, and faulted rock mass (Figure 3.28). For more 

illustration of geological conditions and their effect on machine performance, it is 

noteworthy that, there is a high risk of tunnel convergence and TBM jamming as well 

as machine break down in squeezing ground conditions and the need for over-boring, 

use of lubricators such as bentonite, grease and increasing thrust of longitudinal jacks 

to remedy the conditions and also need for heavy support. Also, the crossing of fault 

zones in TBM tunneling represents, in general, a problematic event and is often 

associated with a slow-down of progress rate when a blockage of the TBM head and 

wear of disc cutters occurs. In fact, boring through faulted rock mass needs probe 

drilling, ground improvement, drilling drainage holes (high water pressure present) to 

mitigate the potential risks. Besides, excavation of high-stress conditions presents many 
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difficulties, such as face instability and TBM jamming due to tunnel convergence. Also, 

in porous jointed rock masses, excavation is easy, thus penetration rate high but lower 

advance rate could be experienced due to low utilization rate compared to the massive 

hard rock where disc cutters wear is an issue and they need to be changed frequently. 

 

Figure 3.28: Four main types of geological conditions in Tunneling (modified from 

Barton, 1999); 1- Blocky and jointed rock mass; 2- Massive hard rock; 3- 

Squeezing rock mass; 4- Faulted rock mass 

3.4.3.1 Influence of In-situ Stress 

It seems like in-situ stresses have an effective role in machine performance. Klein et al. 

(1995) analyzed four hard rock tunnels in California. The uniaxial compressive strength 

(UCS ) of the rock ranged from 70 to 489 MPa, TBM diameter raged from 3.4 to 4.3 m, 

and tunnel lengths varied from 2 to 5 km. These researchers utilized the field 

penetration index (FPI) as a performance parameter. A high value of FPI indicates the 

greater difficulty of boring, usually due to high values of thrust needed for a given 

depth of penetration. The result did not show a satisfactory trend withUCS and the ratio 

of overburden ( v ) to the uniaxial compressive strength of rock mass ( rmUCS ) 

determined from Hoek & Brown (1980) formula (see Figure 3.15) to examine the impact 

of rock mass and in situ stresses on FPI. 

2
rmUCS S UCS=                                                                                                                           (3.15) 
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For high strength intact igneous rock S =1 and for other rock types S was selected from 

the suggested table by Hoek & Brown (1980). As can be seen from Figure 3.29, with an 

increase of /v rmUCS , boring of rock mass gets easier. In spite of the above analysis of 

Klein et al. (1995), Barton (2000) believed that, when rock is massive and highly stressed 

it will not be easier to bore, unless limited stress-fracturing occurs during the boring 

process. Tarkoy and Marconi (1991) describe an early case study from the Mont Cenis 

tunnel, where delays were attributed to ‘popping’ of the rock during pauses for re-

gripping, made very difficult boring somewhat easier. However, in another case at the 

Star Mine in Idaho, stress-induced slabbing caused problems at the cutterhead, and 

penetration rates were only about 0.1 m/hr. In this case, the TBM was inadequate for 

hard quartzite, and TBM tunneling was abandoned. 

 

Figure 3.29: Field penetration index versus /v rmUCS for four hard rock tunnels (modified 

from Klein et al. 1995) 

3.4.3.2 Mixed Face Condition 

One of the critical parameters in the performance of rock TBM is the presence of hard 

and weak rocks at the tunnel face. The existence of this kind of conditions at tunnel face 

means that some disc cutters roll on the stronger rock, while others run on weaker 
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material and at the same depth of penetration, discs running on harder material require 

higher forces and can fail. This leads to increasing disc cutter change. Also, steering 

problems are frequently reported in such conditions. 

3.4.3.3 Influence of Water Inflows 

Water inflows cause various degrees of difficulties in TBM tunneling. Excessive water 

inflows (underground water) often causes delays and can influence on advance rate of 

TBM.  This parameter has a lower impact on penetration rate but dominates machine 

utilization. 

3.4.3.4 Gas Emission 

High gas emission by decreasing the utilization coefficient and cause serious problems 

with tunnel crew and TBM components such as, decreasing the ability of personnel, 

reducing the working shift, shutdown of tunneling operations as well as negative effect 

on electronic devices of the machine. The fact is that, gas emission has a great negative 

role on the performance of the machine. 

3.4.4 Machine Specifications 

The machine specifications, such as thrust and power are the key to provide a sufficient 

amount of forces and torque to support the excavation operation. Machine thrust 

provides enough force to efficiently penetrate the rock surface. Also, the cutterhead 

torque and power enable the head to rotate at a designated penetration rate to overcome 

the rolling resistance. Generally, tougher rocks with less fractures and joints require 

more thrust and relatively low torque/power (due to low penetration), compared to 

soft/jointed rock where low thrust and high torque are expected (as a result of high 

penetration). 

3.4.4.1 Cutter Geometry 

Cutting tools provide for the transmission of energy generated by the machine to the 

rock in order to cause fragmentation. As a result, the geometry and wear characteristics 

of the cutting tool have a significant effect on the efficiency of energy transfer to the rock 

and the attainable rate of penetration.  However, except for the diameter and tip width 

of the new cutters put on the cutterhead, it is almost impossible to track the real 

diameter and tip width of the disc cutters during the mining operation as they tend to 

vary across the face because of the wear process.  Moreover, to reduce the frequency of 

cutter changes in hard and abrasive rocks, larger discs with wider tip have been used 
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which requires higher cutting forces for the given penetration.  As such, the impacts of 

the cutter geometry on the performance of the machine in the field is not well explored, 

despite the fact that these are the key parameters in CSM performance prediction 

models for hard rock TBM application.  

3.4.4.2 Cutting Geometry 

The cut spacing and the depth of cutter penetration into rock per cutterhead revolution 

define the efficiency of the cutting by disc cutters. As expected, the spacing of cutters 

has a significant impact on the chipping mechanism and the efficiency of the cutting 

process. As shown in Figure 3.30, there is an optimum spacing for a given cutter 

penetration where the interaction between adjacent cuts is maximized. This optimal 

spacing is usually expressed as the ratio of spacing to penetration ( )S P . Above this 

optimum ratio, ridges start forming and all material between cutters cannot be taken 

out. At S P ratios below and above the optimum S P , cutting less efficient (Figure 3.31) 

as indicated by higher specific energy.  Comprehensive studies and field data analysis 

have shown that for optimal cutting efficiency, this ratio should be between 10 to 20; 

with lower ratios in tougher rocks and higher ratios in harder and brittle rocks. 

 

Figure 3.30: Effects of S P ratio on cutting efficiency (modified from Rostami et al. 

1996) 
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Figure 3.31: Chip formation in different cutting situations (modified from Rostami & 

Ozdemir, 1993) 



Chapter 3  Parameters Affecting Performance of Rock TBMs 

66 

3.4.5 Oprational Constraints 

In every TBM operation, there are some operational constraints, such as the haulage 

capacity, ground support requirements, water handling, etc. that limit the productivity 

of the machine. In addition, other factors such as tunnel grade and curvature impact 

machine utilization and consequently productivity. All these factors must be taken into 

account when the application of a mechanical excavator to a particular operation is 

considered. 
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Chapter 4 TBM Performance Prediction 

Models 

4.1 Introduction 

TBMs have become the method of choice in the tunneling industry, in a variety of tunnel 

sizes, and ground conditions from soft ground and soil to rock tunnels. The advantages 

of these machines include the rapid excavation and advance rates compared to 

alternative methods, while offering a safe working condition. Some of the restrictive 

issues with the application of TBMs in tunneling projects i.e., inflexibility of machines 

in coping with variable ground conditions and the high capital cost of the machines 

have been mitigated in recent years. This was due to the new machine capabilities which 

allows them to work in various ground conditions. The rise in the cost of skilled labors 

involved in alternative methods, offsets the initial capital cost of the machine. 

The complexity of interaction between rock mass properties and machine means that, 

performance prediction of TBM and finding the correlation, is not an easy. During the 

past three decades, numerous TBM performance prediction models have been 

introduced by many researchers which in some cases were successful with pinpoint 

accuracy, and in other instances, off by a good margin. A better understanding of 

machine-rock interaction and a more accurate model for performance estimates of hard 

rock TBMs has been a subject of interest. As noted before, TBM performance prediction 

models can be divided into two distinguished approaches, namely, theoretical and 

empirical models. Table 4.1 is a summary of the advantages and disadvantages of these 

modeling concepts. 

Currently, three different models including Colorado School of Mines (CSM), 

Norwegian University of Science and Technology (NTNU), and field penetration index 

(FPI) models are the most recognized TBM performance prediction and prognosis 

models use around the world. Also, many efforts have been carried out by different 

researchers to determine the TBM performance based on rock mass classification 

systems. 
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In this chapter, some of the TBM performance prediction modes have been examined in 

more detail in an effort to evaluate their ability to correlate TBM performance and rock 

mass conditions.  

Table 4.1: Advantages/disadvantages of different types of models for performance 

prediction of rock TBMs (Rostami, 2016a) 

Model 

Type 

Advantages Disadvantages 

Theoretical Flexible with cutter geometry and ma-

chine specifications 

Unable to easily account for rock mass pa-

rameters 
 

Can be used in tradeoff between thrust 

and torque optimization 

Lack of accounting for joints 

 

Can be used for cutterhead design and 

improvements 

Can be off by a good margin in jointed 

rock 
 

Can explain the actual working condition 

of discs and related forces 

Inability to account for required filed ad-

justments 
   

Empirical Proven based on observed field perfor-

mance of TBMs in the field 

Lower accuracy when used in cases when 

input parameters  

are beyond what was in the original filed 

performance database 
 

Accounts for TBM as the whole system Unable to account for variations in cutter 

and cutter head 

geometry, i.e., Cutter tip width, diameter, 

spacing, gage arrangement 
 

Many of field adjustments (i.e., average 

cutter conditions) are implied 

Extremely sensitive to rock joint proper-

ties 
 

Ability to account for rock joints and rock 

mass properties 

 

4.2 TBM Performance Prediction Models 

There has been a lot of studies on the development of accurate prediction of machine 

performance in given ground conditions. Some models are based on one or two rock 

parameters, while others are based on a combination of comprehensive laboratory, field, 

and machine data. Figure 4.1 shows a timeline of commonly developed performance 

prediction models within the last 40 years. The new model which is the outcome of this 

thesis has been already included. Some of the recent & main TBM performance 

prediction models (input and output parameters) are also listed in Table 4.2. 
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Figure 4.1: Timeline of the common prediction models developed during the last 40 

years  
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Table 4.2: Review of some TBM performance models containing their input & output 

parameters 

Prediction value Model Rock mass factors Machine factors 

Penetration rate (m/h) 

Advance rate (m/h) 

Some TBM parameters 

CSM model 

(Rostami 

,1997) 

Uniaxial compressive strength,  

Tensile strength 

Cutter spacing, cutter 

tip width, cutter radius, 

cutter force, TBM diam-

eter, RPM 

Penetration rate 

(mm/rev) 

Gerhing (1995) Uniaxial compressive strength, 

correction factors for joints, 

specific fracture energy, etc. 

Cutter force, Fn 

Penetration rate (m/h)  

Advance rate (m/h)  

NTNU (Bru-

land, 1998) 

Uniaxial compressive strength, 

drilling rate index (DRI), num-

ber of joint sets, joint fre-

quency and joint orientation, 

porosity 

Cutter force, RPM, cut-

ter spacing, cutter size 

and shape, installed cut-

terhead power 

Penetration rate (m/h) 

Advance rate (m/h) 

QTBM (Barton, 

2000) 

RQD0, Jn, Jr, Ja, Jw, SRF, rock 

mass strength, cutter life index 

(CLI), quartz content, induced 

biaxial stress at the face, poros-

ity 

Cutter force 

Penetration rate (m/h) 

Advance rate (m/h) 

Specific energy (kJ/m3) 

RME 

(Bieniawski et 

al., 2006) 

Uniaxial compressive strength, 

abrasivity, rock mass jointing 

at the face, stand-up time, wa-

ter flows 

TBM diameter, Total 

cutter head   thrust, 

RPM and torque 

Boreability index BI 

(kN/mm/rev) 

Gong and 

Zhao (2009) 

Compressive strength, volu-

metric joint count, brittleness 

index, angle between main dis-

continuities and tunnel axis 

Cutter force  

Field Penetration In-

dex FPI (kN/mm/rev) 

Khademi et al., 

(2010) 

Uniaxial compressive strength, 

RQD, Joint condition, angle be-

tween main discontinuities 

and tunnel axis  

Cutter force, RPM 

Field Penetration In-

dex FPI (kN/mm/rev) 

Hassanpour et 

al., (2011) 

Uniaxial compressive strength 

and RQD 

Cutter force, RPM 

Penetration rate (m/h) Farrokh et al., 

(2012) 

Tunnel diameter, Rock-type 

code, uniaxial compressive 

Strength, RQDc 

Cutter force, RPM 

Penetration rate 

(mm/rev) 

Benato and 

Oreste (2015) 

Uniaxial compression strength, 

GSI 

Fn 

Penetration rate 

(mm/rev) 

Alpine model 

(Wilfing, 2016) 

Uniaxial compressive strength, 

tensile strength, LCPC breaka-

bility coefficient, correction 

factor for joints, etc. 

Cutter force, Fn 
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As can be seen from Table 4.2, the most commonly used input parameters in the 

previous studies for prediction of TBM performance are: the uniaxial compressive 

strength of intact rock (used by 70% of the models), distance, and the orientation of 

discontinuities (used by 50% of the models), the assumed thrust per cutter (used by 40% 

of the models) and the cutter diameter (used by 30% of the models). One important issue 

worth noting is, these models established very different approaches, and their input 

parameters, especially based on rock mass properties, exhibit considerable variation. 

This makes balanced comparisons problematic. However, in terms of ordinary and 

common conditions, the results of the models may present satisfactory agreement and 

results. Following is a brief review of these models, the advantages and disadvantages 

of the models also discussed. 

4.2.1 CSM Model 

This model is the most famous theoretical model developed by the Colorado School of 

Mines (CSM). The first version of this model was developed by Ozdemir (1977) and 

Ozdemir et al. (1998) using shear failure for performance prediction of V–shape disc 

cutters. This model was updated by Rostami (1993, 1997) to estimate the cutting force 

requirement of CCS disc cutters at a given cut spacing and penetration in a rock of 

known properties based on tensile failure.  In fact, the CSM model estimates the cutter 

forces for a given penetration (mm/rev), based on rock properties, and cutter and cutting 

geometry. 

The formula can be used to estimate forces for a given penetration or maximum 

obtainable penetration for a given set of machine specifications in a given rock, through 

iterations. The model is based on a large database of full-scale linear cutting tests 

performed on rock samples in the CSM laboratory. Full-size cutting tests are performed 

in several places and take all the parameters affecting the rock cuttability, such as rock 

strength, toughness, and cutting geometry into account. Obviously, laboratory cutting 

tests have proven to have some shortcomings when it comes to simulating field 

conditions, especially the effects of joints and discontinuities. The CSM model does not 

systematically incorporate rock mass fracturing in the prediction model, but later some 

modifications have been offered for taking into account the effect of rock mass 

conditions for the prediction of TBM performance by Cheema (1999) and Yagiz (2002) 

as well as Ramezanzadeh (2005). 

Based on the assumption and deduced functions by Rostami (1997), the total estimated 

resultant cutting force demonstrated in Fig. 4.2 was derived as follows: 
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 

= = =   
+ 

                      (4.1)  

where tF is total resultant force,T is cutter tip width, R is cutter radius and  is angle of 

contact area between rock and cutter, 

oP P





 

=  
 

  and   
1cos

R P

R
 − − 
=  

 
                           (4.2) 

where P is the pressure of the crushed zone,  is the power of pressure function, oP is 

base pressure in the crushed zone at the point directly underneath cutter and is 

position angle. 

 

Figure 4.2: General Shape of Pressure Distribution with Power Function (Rostami, 

1997) 

In these equations,T and R are cutter geometry parameters, which are known. The angle 

can also be calculated once the penetration is known. The power of the pressure function 

varies between 0.2 for V-shape and very sharp cutters to -0.2 for wider tip cutters and 

often can be set to 0.1. The base formula was a force as a product of pressure and area 

of contact. Yet the equation for estimation of the pressure of crushed zone oP was 

derived by regression analysis on available data within the CSM database. As such, this 

equation was not dimensionally correct and was a linear or polynomial combination of 

several variables. Therefore, if a logarithmic regression was to be used, the right 

combination of parameters could be derived. The results of the later analysis performed 
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over an extended database by Rostami (1997) produced equations which are very close 

to the right dimension, and subsequently were rounded off to offer a dimensionally 

correct equation. Using the equations derived from regression analysis of measured 

forces by Rostami (1997), base pressure oP can be estimated as follows: 

0

2
3 c tS

P C
R T

 



 
=

 
                                                                                                              (4.3) 

WhereC is constant ~2.12, S is spacing between the cuts, C is the uniaxial compressive 

strength of rock, and t is the tensile strength of rock. 

In either case, to estimate the normal and rolling forces, the following formula can be 

used: 

cos
2

n tF F



 

=  
 

 and sin
2

r tF F



 

=  
 

                                                                                  (4.4) 

where nF is normal force and rF is rolling force. This is based on the assumption of uni-

form pressure distribution ( 2 = angle of the resultant force from the normal) in the 

contact area, which has been proved to be true. 

tan tan
2

r

n

F

F




 
= =  

 
                                                                                                               (4.5) 

The following steps to complete the performance prediction with this method are as 

follows: 

1. Calculate the total thrust requirements as: 
1

n
T F n Fn nh

=                                    (4.6) 

2. Calculate torque as: 
1

0.3 TBM TBM

n
T F R D N Fq rri i=      (4.7) 

3. Calculate rotational speed as: max

TBM

v
RPM

D
=


 (4.8) 

4. Calculate power requirement of the head: 
T RPMq

HP
K


=   (4.9) 

5. Calculate installed thrust and power by using an efficiency factor  (i.e., h hT T = ) 

where D is TBM diameter, N total number of disc cutters, and V is the linear velocity of 

the cutters (i.e., 150 m/min = 500 ft/min for 17” cutters).  
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For TBM performance estimates, with all parameters fixed in a certain rock type using 

a specific machine, penetration is the only variable that can be increased till one of the 

limits (i.e., cutter load, thrust, power, etc.) is reached. In other words, the penetration 

rate of the machine is the maximum penetration per revolution that can be achieved 

within the available machine parameters (Rostami, 1997; Hassanpour, 2009).     

Discussion 

The CSM model is based on linear cutting tests and theoretical force formulations, rather 

than empirical data, and as such is more capable of adapting to rock conditions that 

have not previously been encountered. The model is able to be used for the design of 

cutterhead and evaluation of disk geometry (diameter and tip width) since, it considers 

the geometry of the problem in its formula including, cutter/ cutting geometry and ma-

chine specifications, however, there are many assumptions necessary to relate data ob-

tained from a linear cutting test to the actual performance of a TBM cutter head where 

the cutters are rolling in a circular fashion and are subjected to imperfect loading due to 

heterogeneity of the tunnel face. Besides, the main drawback of the CSM model is, it 

does not originally consider the influence of joints on TBM PR (because it includes just 

physical/mechanical properties of the intact rock containing UCS , BTS ) which has a 

great role to play as noted by many others.   

4.2.2 Modified CSM 

As mentioned earlier, in the CSM model; the penetration rate of the machine is the max-

imum penetration per revolution that can be achieved within the available machine pa-

rameters. It established that existing joint conditions certainly affect the rock breakage 

process and can control the rock breakage. In this regard, some investigations have been 

conducted to find adjustment factors to enhance and modify the CSM model. In this 

section, some attempts to mitigate this problem will be introduced and discussed. 

A. Modified CSM Model 

The first attempt to modify CSM was done at the earth mechanics institute (EMI) of 

CSM by utilizing existed data to develop adjustment factor FI as follow1: 

1 1.0 (100 /150)F RQD= + −        when UCS  <110 MPa (4.10) 

 

1 It was adapted from Hassanpour (2009) with some modifications. 
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1 1.0 ( / 75)F RQD= +                   when UCS  >110 MPa (4.11) 

B. Cheema (1999) 

Cheema (1999) presented a new index as RMBI (Rock Mass Boreability Index) for esti-

mation of boreability of rock masses. In his new model, the conditions of rock mass in 

the CSM model for the prediction of the performance of TBM was considered for hard 

schistose rock masses. In this investigation, a database including rock mass specifica-

tions and physical properties of intact rock, during the construction of one tunnel in 

Boston were collected. By analyzing data, the following formula is introduced as: 

0.097 0.444 0.066
26900 E SRRMBI 

−
=                  (R2 = 0.85)                             (4.12) 

where RMBI  is rock mass boreability index (psi), E is elasticity Modulus (ksi), SR is the 

reduction factor, and is Poisson’s ratio. 

Although there was good agreement between the actual performance of the machine 

and the suggested formula, but it is worth to note that, this modification was resulted 

in analyzing of collected data from one tunnel project. Also, joint conditions were not 

utilized in this equation. 

C. Yagiz (2002) 

Yagiz (2002) presented two indexes for considering the influence of discontinuities on 

TBM performance. For this purpose, the data collected from the hard rock TBM tunnel 

(the Queens Water Tunnel # 3, Stage 2) was analyzed. This tunnel was about 8 km long 

and was mined in New York City, USA, through hard jointed formations of varying 

rock types, including biotite-hornblende gneiss intermixed with granite gneiss, amphib-

olite, pegmatite, and biotite schist. In this investigation, the relationship between geo-

logical and rock mechanic properties alignment of tunnel plus actual TBM performance 

and predicted TBM penetration rate with CSM model was analyzed and finally by uti-

lizing regression analysis; a formula for TBM performance in jointed rock mass was in-

troduced as follow: 

( / ) 0.859 0.0969 ( )AR ft hr RFI BI CSM b AR= + + + −          (R2 = 0.66) (4.13) 

As can be seen, in this equation two parameters including RFI -Rock Fracture Index- 

and BI -Brittleness Index- are used. These parameters are described as follow: 

1.44log( ) 0.0187RFI Fs= −                                                                                               (4.14) 

0.0157BI PTI=                                                                                                                    (4.15) 
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where AR is modified advance rate, ( )CSM b AR− is basic advance rate based on CSM 

model, Fs is spacing between the plane of weakness or fracture, α is the angle between 

planes of weakness to tunnel driven direction and BI is brittleness index calculated from 

a punch penetration test. In fact, the applicability of the suggested formula is very lim-

ited due to its limited original dataset. Although there is a good agreement between the 

actual performance of the machine and the suggested formula, but this modification 

comes from analyzing of collected data from one tunnel project. Another weakness of 

the proposed formula using punch penetration test which is not commonly used in 

many rock mechanics laboratories which end up in the sophistication of BI estimation. 

So; it can be used in similar conditions with similar TBM specifications and to mitigate 

the BI calculation, a proposed conversion formula provided by Yagiz (2009) could be a 

solution for this problem. Besides that, as can be seen, the penetration rate coefficient 

for the CSM model in the formula is around 0.1.  

As a result, in the proposed equation the other parameters are more important than 

CSM, and hence; the CSM model can be eliminated without a major impact on the result.  

This means that the impact of the all the input parameters in the CSM model has been 

ignored. 

D. Ramezanzadeh (2005) 

Ramezanzadeh in 2005 analyzed data based on information from 11 projects (more than 

60 km) and modified the CSM model as follow: 

0.37Re Re exp(1.8 0.0031 0.0065 )P v P v Js
CSM

= − −    (4.16) 

where ReP v  is penetration per revolution, Js is joint spacing and α is the angle between 

discontinuities to tunnel driven direction. 

4.2.3 Gerhing (1995) 

The prediction model, proposed by Gehring in 1995, is based on information from pre-

ceding literature and the author’s observations in four cases from Voest-Alpine with a 

certain machine setup (17’’ cutters, 80 mm spacing). From the literature, several curves 

relating the TBM penetration rate to the intact rock’s uniaxial compressive strength have 

been drawn (Figure 4.3) by applying the following input parameters (Gehring, 1995): 

• Cutter spacing = 80 mm 

• Cutter diameter = 430 mm 

• Cutter load Fn = 200 kN 
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Figure 4.3: TBM basic penetration recalculated from different sources (Gerhing, 1995) 

For rock with mean strength in the range of 100 to 250 MPa, the curves can be approxi-

mated by a linear relationship, expressed by Equation 4.17 (Delisio, 2014). 

( / ) 4
F

NP mm rev
c

=                                                                                                              (4.17) 

where P is the penetration per revolution, NF  is the mean cutter force, and c is the un-

confined compressive strength. Equation 4.17 is then expanded to Equation 4.18 by pre-

senting several correction factors: 

, , ,
50 1 2 3 4( / )

K K K K K K F
NP mm rev

c

 
=                                                                         (4.18) 

where . . . .
0 1 2 3 4 5

K K K K K KiK = are correction factors.  

The first correction factor (
0

K ) is constant and equal to 4.0. This is due to the initial linear 

relationship expressed by Equation 4.17. The other factors reflect the influence of other 

parameters and have been derived by comparing Equation 4.18 with the observations 

made in the four cases analyzed by the author. Specifically, the correction factor
1

K re-

lates to the so-called “specific fracture energy”, which is defined as: 

W
f

w
f

c
=                                                                                                                              (4.19) 
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where fW is the fracture energy for a 200 kN cutter load.
1

K can be estimated from fw by 

using Figure 4.4. 

 

Figure 4.4: Correlation between specific fracture energy
f

W and correction factor
1

K   

(Wilfing, 2016) 

The correction factor
2

K is very important as it accounts for the influence of the rock mass 

discontinuities. The formulation takes into consideration the joint spacing and the incli-

nation of the principal discontinuity planes. The latter is described by an angle . Ac-

cording to Bruland (1998), the orientation is described by the smallest angle between 

the tunnel axis and plane of weakness (Equation 4.20). The proposed
2

K values are listed 

in Table 4.3 (Delisio, 2014). 

Table 4.3: Correction factor
2

K for the Gehring model (Gehring, 1995) 

Average joint spacing Correction factor K2 as a function of   
 

0 ˚ 30 ˚ 60 ˚ 90 ˚ 

>50 cm 1 1 1 1 

10-50cm 1.2 1.3 1.6 1.3 

5-10 cm 1.4 1.8 2.3 1.6 

< 5 cm 1.7 2.3 3 2 

 

1sin (sin sin( ))stf
   −=  −                                                                                             (4.20) 
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where is the smallest angle between tunnel axis and discontinuity,
f

 is dip angle 

discontinuity, s is strike angle discontinuity, and t is tunnel direction [all in degree °].   

Finally, the factor
3

K accounts for the state of stress at the face, but no correlation formula 

or diagrams are provided.
4

K is correction factor regarding to cutter diameter which is 

not equal to 432 mm (17”). He performed a regression analysis for constant section cut-

ters with diameters of 432 mm (17’’) and cutter tip widths of 15.875 mm (5/8’’). Field 

data showed that the relation between cutter diameter and penetration rate is linear 

displayed in Equation 4.21.  

4

430
K

cd
=                                                                                                                               (4.21) 

where cd is the cutter diameter. The last correction factor,
5

K is related to cutter spacing 

≠ 80 mm. This correction factor is based on research at the NTNU concerning the relation 

between cutter spacing and penetration (Wilfing, 2016). The suggested correlation dia-

gram for
5

K considers the influence of cutter spacing ≠ 80 mm, depending also on the 

cuttability of the rock. 

 

Figure 4.5: Correlation diagram of correction factor 5K and cutter spacing as a function 

of drillability (Wilfing, 2016) 

Discussion  

The fact is that, the principal approach of the model seems very objective and reasona-

ble. The model and respected formula has a transposable and modular structure and 
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contains a simple linear function with independent correction factors that takes into 

consideration of rock mass properties, as well as different cutterhead types and associ-

ated geometries. But, as noted by Wilfing (2016), it considers spacing and orientation 

only of the major plane of weakness and not of intersecting discontinuity systems, 

which might not reflect actual rock mass characteristics. Furthermore, only spacing less 

than 50 cm were considered to impact on TBM penetration rate. By contrast, the NTNU 

model counts for spacing up to 160 cm. In addition, as expressed by Gerhing (1995), 

another limitation of the model is that, it is based on a limited number of cases (four 

tunnels) which cover a small range of lithologies (granite, amphibolite, sandstone, and 

agglomerate) in the range c t  = 10 to 15.   

4.2.4 Alber (2000) 

The empirical model of Alber (2000) is focused on the probabilistic estimation of pene-

tration rate, utilization, and an advance rate of TBM.  In this model, the advance rate is 

affected by two factors including boreability and stability of rock mass. Boreability has 

a direct relationship with penetration rate, while behavior of rock mass upon excavation 

(ground support) as well as machine maintenance, cutter change, drainage system, 

backup system and so on which results in decreasing the utilization coefficient. The 

penetration rate of TBM in this model is expressed in terms of rock mass strength ( cm

) which includes both c and discontinuity features and covers thus the main rock mass 

characteristics that influence the penetration rate of a TBM. The uniaxial rock mass 

strength ( cm ) estimated by characterizing a rock mass with the RMR-System 

(Bieniawski, 1989) and using the Hoek-Brown failure criterion (Eq. 4.22). Using the RMR 

index has the advantage that discontinuity spacing, surface condition, and groundwater 

inflow are already included. 

Scm c =                                                                                                                          (4.22) 

where cm is rock mass strength (MPa), c is uniaxial compressive strength (MPa), and 

S is Hoek-Brown failure criterion calculated by: 

100
exp

9

RMR
S

− 
=  

                                                                                                             (4.23) 

In this model, in order to compare the penetration rate of TBMs with different specifi-

cations, Alber introduced a specific penetration rate SP defined as: 
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( )

N

P cm
SP

RPM F
=


                                                                                                                        

(4.24) 

where P is penetration depth (cm/min), RPM is cutterhead rotation head (rotation/mi-

nute) and NF  is cutter thrust. This relationship (Eq.4.24) is depicted in figure 4.6b. As 

expected, the specific penetration of TBM increases as the uniaxial rock mass strength 

decreases. This holds true down to a rock mass strength of about 15 MPa. Rock masses 

in the low range of strength are often dominated by closely spaced discontinuities. The 

formation of rock chips between two discs may be hindered in those very blocky rock 

masses. Single blocks may be ripped out of the face and reground. In summary, the 

penetration rate may rise considerably in weak rock masses. 

Although estimation of the TBM utilization rate is so difficult because it depends on 

many factors; Alber assumes that, utilization rates were mainly seen as a function of 

support installations (mainly through for open TBMs). In fact, the necessary ground 

support is a function of the rock mass behavior upon excavation. Hence, the respective 

behavior depends on the ratio of rock mass strength to induced stresses at the tunnel 

wall.  This ratio is expressed by the Factor of Safety FS : 

cmFS






=                                                                                                                              (4.25) 

where FS is a factor of safety, cm  is rock mass strength (MPa), and  is tangential stress 

at the sidewall (MPa). 
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Figure 4.6: A) TBM utilization as a function of the factor of safety at roof centreline; B) 

Relationship between specific penetration rate and uniaxial compressive 

rock mass strength (modified from Alber, 2000) 

The relation between the Factor of Safety at the roof centerline and the TBM utilization 

was found by Alber by the analysis of more than 100 km TBM tunnels. Figure 4.4a shows 

this relationship. As may be seen in this figure, in stable rock mass behavior the TBM 

utilization ranges from 25 to 50% and averages at 40%. For FS between 1.25 and 2, the 

average utilization decreases to 35%. For FS < 1.25, the TBM's utilization is well below 

35% and may even drop to zero in tunnel sections in which FS approaches zero.  Thus, 

the finding about the relations between the strength of a rock mass and the specific pen-

etration of a TBM as well as between rock mass behavior and TBM-utilization allows 

estimating TBM advance rates.  In this regard, by considering the variability in rock 

mass strength, Alber suggests classifying rock masses in three broad groups of low, me-

dium, and high rock mass strength, respectively. Also, it seems necessary to classify the 

rock mass behavior into three groups, namely, stable, friable, and squeezing behavior. 

So, a rock mass to be tunneled by a TBM may thus be described by three behavioral 

classes (Table 4.4), which gives nine possible combinations of tunneling conditions or 

advance classes. For practical tunneling purposes, it is sufficient to classify a rock mass 

in those nine classes. By analyzing the variability of respected parameters, the probabil-

ity functions can be estimated for each class of advance rate. (Fig. 4.7). Based on this 

figure, the end-user can assess the minimum and maximum, as well as the most proba-

ble advance rate for the given ground conditions. 
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Figure 4.7: Probability functions of the nine recommended advance rate classes (Wilfing, 

2016; Alber, 2000) 

Discussion 

The prediction model proposed by Alber is not commonly utilized in practical ap-

proaches, since the determination of the parameters encounter uncertainties. Besides, 

the results only assess a range of advance rates. As such, the model is not a very useful 

way to reflect the operating issues in the field.  

Table 4.4: Classification of the rock mass factors influencing the main tasks in TBM 

tunnelling 

Task: Penetration Task: Support 

Rock mass strength class Characteristics value Stability class Characteristics value 

I 

low rock mass strength 
𝜎𝐶𝑀  < 20 MPa 

A 

squeezing 
FS < 1.25 

II 

medium rock mass strength 
20 MPa < 𝜎𝐶𝑀 < 80 MPa 

B 

friable 
1.25 < FS < 2 

III 

high rock mass strength 
80 MPa < 𝜎𝐶𝑀 < 140 Mpa 

C 

stable 
FS > 2 
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4.2.5 Yagiz (2008) 

Yagiz in 2008 presented a model to predict the penetration rate of TBM in hard rock 

conditions. To achieve this aim, the database composed of actual measured TBM pene-

tration rate and rock properties was established using the data collected from hard rock 

TBM tunnel (the Queens Water Tunnel # 3, Stage 2). In terms of this investigation, the 

best correlation was achieved between PSI and ROP (r = 0.58). The results of this inves-

tigation are demonstrated in Figure 4.8 and Table 4.5. 

 

Figure 4.8: Correlation between Rock properties and ROP (Yagiz, 2008) 

Table 4.5: Relations between rock properties and measured ROP with achieved equa-

tions 

Relations of rock properties 

with ROP 

An empirical equation Coefficient of correlation 

r 

Measured ROP 

vs. PSI 
1.19 0.0247ROP PSI= +  0.58 

Measured ROP 

vs. DPW 
2.31 0.260ROP DPW= −  0.45 

Measured ROP 

vs. a 
21.50 0.0003 0.0273ROP  = −  +   0.47 

Measured ROP 

vs. UCS 
1.413 0.0042ROP UCS= +   0.26 
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Measured ROP 

vs. BTS 
1.66 0.040ROP BTS= +   0.1 

It is worth to note that, although theUCS of the rock is one of the most crucial parameters 

for TBM performance estimation; however, as the rock mass demonstrates heavily joint, 

faults,UCS and BTS of intact rock cannot be enough alone for predicting machine per-

formance, because intact rock strengths are barely representing the actual rock mass 

condition in the field. As can be seen that from table 4.4, the relationship betweenUCS  

and BTS of rock with the ROP was found very weak with a correlation coefficient (r) of 

0.26 and 0.10 respectively. Finally, by utilizing the multivariable regression analysis 

equation 4.26 was suggested (r = 0.82).  

As can be seen from the below equation, in the performed statistical analysis; BTS was 

excluded due to a very weak correlation with measured ROP . 

( / ) 1.093 0.029 0.003 0.437 log( ) 0.219ROP m h PSI UCS DPW= + − + −  (4.26) 

Discussion 

It should be mentioned that, the introduced equation is just related to the conditions of 

Queens Water Tunnel and belonged TBM; hence it can’t be a reliable model to predict 

the performance of the machine. Furthermore, the proposed formula using a punch pen-

etration test, which is commonly applied and used in North America, but not available 

in many rock mechanics laboratories around the world. Also, sensitivity analysis and 

examination of the effects of variation in the input parameters on the results indicate 

that, the model dedicated to the changes of PSI which end up in alteration of penetration 

will be substantial if the parameter is not appropriately calculated (Fatemi et al. 2016).   

4.2.6 Gong and Zhao (2009) 

Gong and Zhao in 2009 have presented a model to predict the performance of TBM with 

the analysis of collected database including Rock mass properties, TBM specifications 

and the corresponding TBM performance during the construction of two tunnels in Sin-

gapore nominal T05 (12.6 km in length with a finished diameter of 3.6 m) and T06 (9.6 

km in length with a finished diameter of 3.3 m) excavated through Granite with differ-

ent weathering grades. In this study, to develop a model, nonlinear regression analysis 

was used to carry out the multi-variables regression analysis. The best combination of 

rock mass parameters to predict the performance of the machine is as follow: 

0.05 0.09sin( 30)0.26 0.137.06 (0.84 )
(1)

JvBI UCS Bi e e
− − +−= +

                                     (4.27) 
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where (1)BI is specific boreability index (kN/cutter/mm/rev) which is equivalent to FPI, 

UCS is rock uniaxial compressive strength (MPa), Bi is rock brittleness index ( /UCS BTS

), vJ  is volumetric joint count, and is the angle between the tunnel axis and the joint 

plane.  In this study, to eliminate the influence of machine specifications and TBM op-

eration parameters; a specific rock mass boreability index (SRMBI) defined as a bore-

ability index at the PR equal to 1 mm per revolution, was proposed to evaluate the rock 

mass boreability in different rock mass conditions. The relationships between the rock 

mass boreability index, the specific rock mass boreability index, and TBM PR are esti-

mated as follows:   

0.75
(1)

BI BI P−
                                                                                                                  (4.28) 

where BI is the rock mass boreability index, (1)BI is the specific rock mass boreability in-

dex, and P is the penetration per revolution. Also, the parametric studies of the new 

model showed that the rock uniaxial compressive strength and the volumetric joint 

count have predominantly effects on the penetration rate. 

Discussion 

The main limitation of the model is that, it is based only on one tunnel project where an 

EPB machine is used to excavate granite. Therefore, the other rock types such as sedi-

mentary formations are missing.  All machine parameters (e.g., cutter diameter, cutter 

tip width, cutter spacing) are considered constant. Hence, the model might not be ap-

plicable to predict the penetration in tunnel projects that are not in granite, and not us-

ing 17” cutters. In addition, the brittleness index ( Bi ) in this model is obtained by di-

viding uniaxial compressive strength by tensile strength, resulting in substantial inter-

dependence of these two variables and therefore, the model sensitivity to brittleness 

index is low, perhaps due to its dependence on compressive strength. This subject re-

flects the marginal impacts of Bi associated with respected results (Fatemi et al. 2016).  

4.2.7 Farrokh et al. (2012) 

Farrokh et al. (2012) have presented a new model based on an analysis of a comprehen-

sive database of more than 300 TBM projects records.  In order to develop a new equa-

tion, two separate databases were compiled from the review of various technical 

sources. The first database (general database) was assembled with the objective of de-

veloping a new performance model. The second database was developed to support 

model validation work. The general database contains different levels of information 

which define the tunnel, rock mass conditions, and TBM performance parameters over 



4.2  TBM Performance Prediction Models 

87 

the full length of a tunnel drive, within discrete geological zones, or short tunnel 

reaches. The general database contains over 300 data sets. Besides, to verify the predic-

tive capability of existing or new models, a testing database including 17 hard rock TBM 

projects with a total length of 73.6 km was selected and then evaluated. These projects 

provided detailed information for TBM performance in each geological zone. TBM di-

ameter for these projects ranged from 2.6 m to 11.8 m. Figure 4.9 shows a histogram of 

TBM diameters in the database. As can be seen, the 3-6 m diameter range is common for 

a large number of projects, and it is the most popular range in the database. The graphs 

in Figs. 4.10-11 and 12 show tunnel diameters related to TBM characteristics and perfor-

mance. 

 

Figure 4.9: Histogram of tunnel diameter in the database (Farrokh et al. 2012) 

In this study, Core fracture frequency (CFF) data was the only rock mass parameter that 

was available for all the records from and some of the records of the general database. 

Basically, this factor is in close relationship with RQD and refers to the frequency of rock 

mass fractures. Table 4.6 shows the approximate relationship between CFF and RQD  

and the numerical codes used for subsequent analyses. Besides, due to different rock 

textures (cementation and grain size and shape) affect the penetration rate, seven rock 

type categories, as proposed by Hoek and Brown (1980) and Stevenson (1999), were 

utilized. These rock types are listed in Table 4.7. The first four classes are for ‘‘Sedimen-

tary Rocks.’’ The fifth, sixth, and seventh classes are for ‘‘Metamorphic Rocks, Granitic 

Rocks, and Volcanic Rocks’’, respectively. It should be noted that, Gneiss (GN) is inher-

ently metamorphic, but it is typically closer to granite in terms of its behavior, especially 

where foliation is less pronounced. For this reason, it was categorized as GN in this 

analysis. 
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Figure 4.10: Relationship between in-

stalled torque and tunnel 

diameter (Farrokh et al. 

2012) 

           Figure 4.11: Relationship between 

nominal RPM and 

tunnel diameter (Far-

rokh et al. 2012) 

 

Figure 4.12: Relationship between installed thrust and tunnel diameter (Farrokh et al. 

2012) 

Table 4.6: CFF categorization (Farrokh et al. 2012) 

CFF Code Description Corresponding RQD range 

Less than 8 fractures/m S or 1 Low frequency 90–100 

8–12 fractures/m M or 2 Medium frequency 60–90 

12–16 fractures/m H or 3 High frequency <60 
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Table 4.7: Rock-type categorization in database (Farrokh et al. 2012) 

Rock type Code 

Claystone, mudstone, marl, slate, phyllite, argillite C 

Sandstone, siltstone, conglomerate, quartzite S 

Limestone, chalk, dolomite, marble L 

Karstic Limestone K 

Metamorphic rocks such as gneiss and schist M 

Coarse igneous such as granite and diorite G 

Fine volcanic such as basalt, tuff, and andesite V 

 

As can be seen from Figure 4.13, when the rock type is taken into consideration in the 

analysis, a good relationship can be established between rock strength and RePR P v . 

The graphs show that in general a higher RePR P v is achieved in sedimentary rocks, 

and a lower RePR P v is achieved in igneous rocks.  

 

Figure 4.13: Correlation between PR/PRev and other parameters (Farrokh et al.2012) 

Finally, multivariable regression analysis with RePR P v as the objective parameter was 

performed. To correct for normality in the regression model, Ln( ReP v ) and Ln(PR) 

were used as response and new equations were introduced as follows: 

2Re (0.41 0.404 0.027 0.0691

0.00431 0.0902 0.000893 )n

P v Exp D D RTc

UCS RQD Fc

= +  − +  −

 +  + 
                     (R2=63%) (4.29) 

0.186 0.133 0.183 0.363 5.47 2exp(0.046 )

0.2485.64 exp(1.58 )

Fn RQD RT RPM D Dc cPR
UCS D

     
=

 
  (R2=58%) (4.30) 
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where D is tunnel diameter in m, RTc is rock type numerical code (1 for G and GN, 2 for 

MV, 3 for SLK, 5 for C),UCS is uniaxial compressive strength in MPa, RQDc is RQD nu-

merical code (Table 4.6), and
n

F is disc cutter normal force in kN. 

Discussion 

Although the correlation coefficient of the proposed model is comparatively low, the 

introduced models offer better accuracy than existing models. It is worth noting that, in 

addition to some effective factors such asUCS and nF this model considers two factors 

that have a major influence on PR. It is obvious that, different rocks have a different 

texture (grain size, cementation, and shape) that should be considered, hence in the pro-

posed model seven rock types categories which was presented by Hoek and Brown 

(1980) and Stevenson (1999) were considered. In this regard, the results show that, in 

general, a higher / RePR P v is achieved in sedimentary rocks and lower ePR PR v is 

achieved in igneous rock. In addition to rock texture, tunnel diameter also is taken into 

account. It is interesting to note that, maximal power and the maximal torque, as well 

as maximal RPM, depend mainly on the diameter of the tunnel. In fact, the RPM (revo-

lution per minute) is limited by the size of the tunnel. It means that, the cutterhead RPM 

is inversely proportional to cutterhead diameter. In general, it can be stated that the 

penetration rate decreases with increasing TBM diameter. However, the proposed 

model may produce higher errors in estimating PR values in highly jointed (fractured) 

rock masses due to lack of accounting for RQD value or lack of other rock mass param-

eters such as joint orientation or joint conditions. 

4.2.8 Benato and Oreste (2015) 

Benato and Oreste in 2015 presented a new model which can be used to estimate the 

penetration-per-revolution for TBM tunneling. An analysis has been performed on sev-

eral TBM operating Parameters of TBMs used for the excavation of two tunnels (overall 

length of about 6 km) in metamorphic rock in the Western Alps. The penetration of the 

disks per revolution of the head (the depth of pass p) was obtained from the net propel-

ling speed, while the contact force acting on each disk ( NF ) was obtained from the total 

force applied to the head. Basic geomechanical parameters (GSI “Geological Strength 

Index” of the rock mass and the compressive strength c of the intact rock) were corre-

lated with the mean Np F− Values of each section. Finally, multivariable regression anal-

ysis was performed, and a new equation was introduced as follows: 

5 2[( 14) (0.0132 0.00009 ) (100 ) ]
8 NP F GSIc  − + −   −                                                    (4.31) 
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where P is the penetration per revolution (mm/rev), NF in the contact force on the disc 

(in tonsf), c is the uniaxial compressive strength of intact rock (MPa) and GSI is the 

Geological Strength Index. 

Discussion 

One main limitation of the model is that, it is based on only two tunnels excavated in 

metamorphic rocks and the other rock types such as sedimentary are missed. In addi-

tion, in the proposed model, the rock mass conditions are taken into account by GSI 

which is based on the visual impression on the rock mass and the surface characteristics 

of discontinuities. Meaning that, the effect of joint spacing is not considered directly; as 

shown by many researchers for having a key role to play on TBM performance. Another 

problem, is the issue of the machine size which not addressed in this model. Ignoring 

machine size can interject huge errors in the analysis of machine performance when 

comparing different projects. 

4.2.9 NTNU Model 

The NTNU model has been originally introduced in the later 1970s and continuously 

revised and improved, as new tunneling data and TBM modifications become available. 

The 1998 version of the NTNU model (Bruland, 1998) is based on data from about 230 

km of bored tunnels. Contrary to many other models the uniaxial compressive strength 

is not considered as a significant factor in this model. In fact, the boreability is expressed 

by drilling rate index DRI, which is a combination of rock brittleness value “ 20S ”and 

Siever’s miniature drill test ( SJ ). The SJ value expresses rock surface hardness. The brit-

tleness test “ 20S ”value includes the effect of rock brittleness and therefore grain size and 

grain boundary strength.   

Input parameters of this model can be divided into two main groups including 

rock/rock mass parameters, and machine parameters. These parameters also depend on 

various individual factors which include as follow: 

Rock Mass Factors: 

• Fracturing degree which describe based on rock fracture class (spacing between 

the joints) and orientation of planes of weakness with tunnel axis 

• Drillability, represented by the drillability index (DRI) 

• Abrasiveness, represented by Cutter Life Index (CLI) and quartz content in 

percentage 

• Porosity which important in some rocks 
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Machine Factors: 

• Cutter thrust 

• Cutter spacing 

• Cutter diameter 

• Cutterhead speed (rev/min) 

• Installed cutterhead power 

Among all rock mass parameters, the degree of fracturing is the most important pene-

tration rate parameter for tunnel boring. In the NTNU model, all parameters which are 

related to rock mass represented by Equivalent Fracturing Factor (
ekv

K ), and all ma-

chine parameters represented by Equivalent Thrust (
ekv

M ) (kN/cutter). In NTNU 

model basic penetration rate is calculated as follow: 

1

( / )o

b
M

ekvi mm rev
M

 
=  
 
 

                                                                                                      (4.32) 

where oi is penetration rate of disc cutter (mm/rev), 1M is critical thrust (the thrust needed 

to bore 1.0 [mm/rev]). This parameters and penetration coefficient ( b ) depends on 

Equivalent Fracturing Factor or
ekv

K (Fig. 4.14). Therefore, as mentioned earlier, in 

equation 4.32 penetration rate depends on two major factors including the Equivalent 

Fracturing factor and Equivalent thrust.  
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Figure 4.14: Relationship between critical thrust ( 1M ) and Penetration coefficient (b) 

with Equivalent Fracturing Factor or 
ekv

K , respectively (Macias, 2016) 

4.2.9.1 Equivalent Fracturing Factor 

Equivalent fracturing factor is the combination of some parameters like type of discon-

tinuity, fracturing degree, angle between tunnel axis and the planes of weakness as well 

as rock drillability index which estimated as follow: 

K K K K pors tot DRIekv
=  −                                                                                                 

(4.33) 

where s totK − is total fracturing factor, DRIK and porK are the coefficient which depends on 

drillability index and porosity of the rock. porK can be calculated from Figure 4.15. DRIK  

is the correlation factor for DRI≠50 which can be estimated from Figure 4.18. 
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Figure 4.15: Correlation coefficient for porK (Macias, 2016) 

Also, the value of s totK − (when there are more than one joint set and maximum three joint 

sets) can be calculated as follow: 

1

( 1) 0.36
n

K K ns tot sii
= − − −
=

                                                                                            (4.34) 

where siK is fracturing factor for set no.i, and n is the number of fracturing sets.     

In order to estimate siK , it is necessary to determine the fracture class. In fact, rock mass 

fracturing is characterized by a degree of fracturing (type and spacing) and the angle 

between the tunnel axis and the planes of weakness. In the NTNU system, discontinui-

ties are classified into two major groups including joints (includes continuous joints that 

can be followed all around the tunnel profile, they can be open like bedding joints in 

granite or filled with clay or weak minerals such as; calcite, chlorite, or similar minerals) 

and fissures (includes non-continuous joint-can be followed partly around the tunnel 

profile-filled joints with low shear strength and bedding planes fissures such as in mica 

schist or mica gneiss). The degree of fracturing is systematically fractured rock mass is 

divided into class for practical use (see table 4.8).  
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Table 4.8: Fracture classes with distance between the planes of weakness (Macias, 2016) 

Fracture class 

(Sf) 

Average spacing 

between fractures (cm) 

Range class 

(cm) 
Degree of fracturing 

0   480 -  Non-fractured 

1 320 240 - 480 Extremely low 

2 160 120 - 240 Very low 

3 80 60 - 120 Low 

4 40 30 - 60 Medium 

5 20 15 - 30 High 

6 10 7.5 - 15 Very high 

7 5 4 - 7.5 Extremely high 

 

The next step to determine siK is a calculation of Alpha angle ( ) (the angle between 

the plane of weakness and the tunnel axis) which can be calculated as follow: 

1sin (sin sin( ))stf
   −=  −                                                                                             (4.35) 

where is the smallest angle between tunnel axis and discontinuity, f is dip angle dis-

continuity, s is strike angle discontinuity, and t is tunnel direction [all in degree °].  By 

calculation of fracture classes and the angle between the plane of weakness and the tun-

nel axis, the fracturing factor for each set of discontinuity can be determined by Figures 

4.16 & 4.17. 
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Figure 4.16: Rock mass fracturing factor ( sK ) as a function of the angle between the 

tunnel axis and the fractures. (Macias, 2016) 

 

Figure 4.17: Rock mass fracturing factor ( sK ) as a function of the angle between the 

tunnel axis and the fractures (for detailed calculations of rock masses with 

low degrees of fracturing) (Macias, 2016) 
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Figure 4.18: Correction factor for DRI≠50 value (Macias, 2016) 

Drilling Rate Index 

Rock drillability is evaluated on the basis of the drilling rate index-DRI. As it is 

expressed earlier, DRI is a combination of rock brittleness value “ 20S ” and Siever’s 

miniature drill test ( SJ ). Here these two tests briefly are described. 

Swedish Brittleness 20S  

The brittleness test method, utilized by NTNU/SINTEF, was originally developed in 

Sweden by Matern and Hjelmer (1943). The original test was initially intended for the 

determination of strength properties of aggregates, but several modified versions of the 

test have later been developed for various purposes. The version of the 20S test 

developed for the determination of rock drillability has been used since the end of the 

1950s. The brittleness test gives a measure of the ability of the rock to resist crushing 

from repeated impacts (Figure 4.19). The volume of test material corresponds to 500 

grams of specific gravity 2.65 g/cm3 of the fraction 16 – 11.2 mm. The Brittleness Value (

20S ) is defined as the percentage of material passing the 11.2 mm sieve after 20 impacts 

of a 14 kg weight, taken as the mean value of 3-4 parallel tests (Bruland and Nilsen, 

1995). 
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Figure 4.19: Outline of the Brittleness Value ( 20S ) test (Bruland, 1998) 

The 20S is influenced by the mineralogical composition of the rock as well as grain size 

and grain binding, but also to a great extent by the degree of weathering/alteration, 

microfracturing, and foliation. Classification of rock brittleness is shown in table 4.9. 

Table 4.9: Classification of rock brittleness, or the ability to be crushed by repeated 

impacts (Dahl et al. 2011) 

Category – brittleness S20-value (%) 
Cumulative percentage 

(%) 

Extremely high ≥ 66.0 95–100 

Very high 60.0–65.9 85–95 

High 51.0–59.9 65–85 

Medium 41.0–50.9 35–65 

Low 35.0–40.9 15–35 

Very low 29.1–34.9 5–15 

Extremely low ≤ 29 0–5 

 

Siever’s Miniature Drill Test ( SJ ) 

This test was originally developed by Sievers in 1950. SJ constitutes a measure of the 

rock surface hardness or resistance to indentation. SJ is defined as the mean value of the 

measured drillhole depths in 1/10 mm, after 200 revolutions of the 8.5 mm miniature 
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drill bit, see Figure 4.20. The standard procedure is to use a pre-cut surface of the sample 

which is perpendicular to the foliation of the rock. SJ is hence measured parallel to the 

foliation. The SJ test is normally performed as 4–8 drilling tests, depending on 

variations in the texture of the sample. The SJ values may however in some specific 

cases show a variability, which necessitates more than 8 drillings in order to achieve a 

representative average value. Classification of rock surface hardness “ SJ ” is shown in 

table 4.10. 

 

Figure 4.20: Outline of the Sievers’ J-Value ( SJ ) miniature drill test (Dahl et al. 2011) 

Also, it should be mentioned that, SJ is influenced by the same factors as the 20S . The 

mineralogical composition has however normally the most significant influence on the 

surface hardness and hence on the SJ . 

Table 4.10: Classification of rock surface hardness, or resistance to indentation  (Dahl 

et al. 2011) 

Category – surface hardness SJ value (mm/10) Cumulative percentage (%) 

Extremely high ≤ 2.0 0–5 

Very high 2.1–3.9 5–15 

High 4.0–6.9 15–35 

Medium 7.0–18.9 35–65 

Low 19.0–55.9 65–85 

Very low 56.0–85.9 85–95 

Extremely low ≥ 86.0 95–100 
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4.2.9.2 Equivalent Thrust 

As it was expressed before, in the NTNU model all machine parameters represented by 

Equivalent Thrust ( M
ekv

) is calculated as follow: 

M M K KaBekv d
=                                                                                                              (4.36) 

where BM is the gross average thrust per cutter, not the available thrust capacity of the 

machine, but the actual thrust used (kN/cutter), aK is a correction factor for average 

cutter spacing as given in Figure 4.21 and dK is a correction factor for cutter diameter as 

given in Figure 4.22.                  

 

Figure 4.21: Correction factor aK for mean spacing of the cutters (Bruland, 1998) 
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Figure 4.22: Correction factor dK for the size of cutters (Bruland, 1998) 

4.2.9.3 Penetration Rate 

In the NTNU model, after estimation of two major factors including equivalent fractur-

ing factor and equivalent thrust; the basic penetration rate oi in mm/rev can be calculated 

from Figure 4.23. As can be seen, the basic penetration rate is known as mm per cutter-

head revolution is independent of TBM diameter. Net penetration rate I based on m/h 

is calculated by the following equation: 

60

100
o rpmI i RPM K=                                                                                                                  (4.37) 

where RPM is cutterhead revolution per minute and rpmK is the correction factor for ap-

plied cutterhead rpm which can be found in Figure 4.24. As remarked by Macias (2016), 

the cutterhead velocity correction factor is based on limited information and must be 

applied with caution. The optimal cutterhead velocity appears to be influenced by rock 

drillability, rock mass fracturing, and/or thrust level. Low values of and applied cutter 

thrust indicate a lower optimal cutterhead velocity.  

Also, the procedure to achieve penetration values is shown in Figure 4.25 graphically. 

 

Figure 4.23: Estimation of penetration rate based on rock mass properties and machine 

(Macias, 2016) 
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Figure 4.24: Correction factor for cutterhead velocity (rpm) illustrating where it differs 

from the recommended value (Macias, 2016) 

 

Figure 4.25: Flow chart of the procedure of predicting penetration rate in the latest 

version of NTNU (modified from Macias, 2016) 
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Discussion 

The NTNU model is based on a vast database of TBM performance in a variety of geo-

logical settings and machine conditions. The model also focuses on whole-system pro-

cesses, rather than single cutter processes, and their effect on machine performance and 

can therefore better take rock mass properties into account. However, extrapolation of 

machine performance into geological conditions that have not been encountered could 

be unreliable, as with all empirically based models. The main limitation of the model is 

related to some input parameters originated from NTNU/SINTEF drillability test and 

related tests are available through a limited number of laboratories, and therefore not 

commonly recorded and available by the typical geotechnical site investigations unlike 

other test methodologies such asUCS & BTS . As noted by Macias (2016), the machine 

type assumed by the model is a hard rock TBM (open or shield). However, the model is 

based on data derived from a large number of open TBM types tunneling in rock mass 

conditions summarized in the foregoing. No distinction is made between machine 

types. Also, a cutter diameter of 483 mm (19 inches) and 508 mm (20 inches) are cur-

rently used in hard rock tunneling and the NTNU model incorporates cutter diameter 

by makes no distinction between cutter ring design or quality and assumes in all cases 

that cutter ring quality is tailored to the rock conditions.  

4.2.10 Hassanpour et al. (2011) 

Hassanpour et al. (2011; 2009a, 2009b) developed an empirical prediction model based 

on a database including four different tunnels in medium to hard rock (shale, limestone, 

tuff, schist, gneiss, gabbro, diorite) totaling 158 data points. They recognized the Field 

Penetration Index (FPI), defined as the ratio between the average cutter load and the 

penetration rate (Barton, 2000; Klein et al. 1995), as the TBM performance parameter 

having the best correlation with the observed rock mass conditions. They also high-

lighted the important effect that the rock mass fracturing degree has on the rock mass 

boreability and developed an equation for the estimation of FPI based on the uniaxial 

compressive strength of intact rock and the Rock Quality Designation ( RQD ). 

exp(0.008 0.015 1.384)FPI RQDc=  +  +                                                                         (4.38) 

where c is the uniaxial compressive strength of intact rock and RQD is the Rock Quality 

Designation. 

Based on Equation 4.30, the authors developed charts for FPI estimation (Figure 4.26) 

and for rock mass boreability prediction (Figure 4.27). In the other words, the new bo-

reability classification system based on FPI has been presented. In this model, six rock 
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mass boreability classes from the most difficult for boring or B-0 class (Tough) to easiest 

for boring or B-V class (excellent) were defined (Table 4.11). It is worth to note that, 

higher values of FPI are usually recorded in strong and massive rock masses typically 

higher than 70 KN/cutter/mm/rev. On the other hand, in poor quality rock masses, there 

is no need to apply high thrust values (contrary to massive strong rock masses) and 

therefore FPI values are small and typically less than 10 KN/cutter/mm/rev. 

 

 

Figure 4.26: Empirical chart for the estimation of FPI (Hassanpour et al. 2011) 

Table 4.11: Summary of ground conditions for various boreability classes, Hassanpour 

et al. (2011) 

Bore-

ability 

class 

FPI range 

(kN/mm/ 

rev) 

Rock mass 

boreability 

Stability con-

dition 

TBM excavability 

(relative difficulty of 

ground for TBM use) 

Example 

B-0 > 70 Tough 
Completely 

stable 
Tough 

Very strong and massive 

quartzitic veins, intrusive and 

metamorphic rocks 

B-I 40–70 Fair-tough Stable Fair 
Massive igneous and meta-

morphic rocks 

B-II 25–40 Good-fair 
Minor instabil-

ities 
Good 

Blocky and jointed Tuffs, Tuf-

fites, Limestones 

B-III 15–25 Good 

Only local 

structural in-

stabilities 

Very good 
Alternations of Sandstones, 

limestones and Shales 

B-IV 7–15 Very good 
Some major 

instabilities 
Good 

Alternations of thin-bedded 

Shale and Sandstone layers 
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B-V < 7 Excellent 

Collapse, grip-

per problems, 

squeeze, etc. 

May be problematic 

Highly foliated and schistose 

metamorphic rocks (Slate, 

Phyllite, Graphite schist), 

Shale, Marlstone, thick fault 

zones 

 

Figure 4.27: Rock mass boreability prediction chart based on FPI (Hassanpour et al. 

2011) 

The conclusion is then made that low TBM advance rates may be observed in high 

strength, massive rock due to low boreability/penetration rates. On the contrary, low 

advance rates are experienced in more fractured/unstable grounds due to stability prob-

lems and increased support requirements.  

Discussion 

The Formula and associated chart introduced by Hassanpour et al. (2011) are very ap-

plicable/constructive and reflect the practical approach in an early stage of tunnel de-

sign and construction, since it has been developed based on two commonly available 

inputs including,UCS and RQD which are most often available in many tunneling pro-

jects around the world. Besides, the model considers the most influential operational 

machine parameters, containing thrust and RPM. Also, the variations of parameters 
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consisted of various rock types such as sedimentary and igneous with a different range, 

and as such, it can be used to assess TBM performance in different types of rocks. In 

addition, the usage of FPI to be representative of rock mass boreability makes it possible 

to compare and apply the model on different tunnels with different diameters. How-

ever, as noted by authors, the model shows better results when FPI is less than 70 

(kN/cutter/mm/rev), and for the strong massive rock masses with UCS approximately, 

more than 200 (MPa), it displays a higher error, the reason could be the RQD limitation 

since, it is an index with the maximum value of 100 which indicates the discontinuity 

spacing/frequency. Perhaps, this is why Gong & Zhao (2009) and Delisio (2014) consid-

ered vJ being representative of joint frequency in their developed models. 

4.2.11 Delisio et al. (2013; 2014) 

Delisio et al. (2013; 2014) developed a new empirical equation for the prediction of TBM 

performance in blocky rock conditions which is the only FPI introduced for blocky con-

ditions. The term “blocky rock conditions” is associated in the literature to face instabil-

ities in blocky/jointed rock masses, where the combined effect of rock mass structure 

and in-situ stresses may lead to a degradation process of the tunnel face that may be-

come “blocky”.  

To quantify the performance of TBMs in two rock tunneling projects including the Lö-

tschberg Base tunnel and Manapouri second tail race tunnel, FPI was selected to repre-

sent the TBM performance. As noted by the authors, if the excavation face is not regular 

and flat, as in the case of a blocky face, not all the cutters are in contact with the rock. 

So, a transfer of loading from those cutters, which are not in contact with the face may 

take place, with a concentration of loading on the neighboring cutters in contact with 

the rock. In this case, the entire thrust force is distributed over a smaller number of discs 

and the force acting on each single cutter cannot be considered to be constant anymore. 

For this reason, the thrust per cutter ( nF ) is substituted by the total applied thrust force 

for the calculation of the FPI (Equation 4.39). 

FPI TF P
blocky

=                                                                                                                 (4.39) 

whereTF is the total applied thrust force, i.e., as measured at the thrusting cylinders, 

expressed in kN, and P is penetration rate per cutterhead revolution (mm/rev). The au-

thors developed an equation for the estimation of FPIblocky based on the uniaxial com-

pressive strength of intact rock and the volumetric joint count ( Jv ) (Equation 4.40).  

6.04 0.82 0.17FPI e Jv cblocky
−=                                                                                         (4.40)  
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where vJ is the volumetric joint count (joint/m3) and c is the uniaxial compressive 

strength (MPa). The correlation between volumetric joint account ( vJ ) and uniaxial 

compressive strength with FPIblocky is depicted in Figure 4.28. As can be seen, in terms of 

the regression coefficient (R2) of the two relationships, it is clear that stronger correlation 

exists between the FPIblocky and the volumetric joint count than between the FPIblocky and 

the uniaxial compressive strength.  

This means that the variability of FPIblocky is better explained by vJ rather than c .This in-

dicates that, when dealing with blocky rock masses, the fracturing of the rock seems to 

be the most important factor influencing the TBM performance.  

     

Figure 4.28: Correlation between FPIblocky with vJ and c (Delisio and Zhao, 2014) 

The developed database is composed by data of gripper/open TBMs. To such that, the 

authors noted that the friction force which builds-up between machine and surrounding 

ground is much lower with respect to shielded machines, but the front shoes of the ma-

chine are pressed against the walls and can impose a substantial amount of pressure 

and thus friction. In addition, when different TBMs with different sizes are used the 

installed/ applied thrust force strongly depends on the size of the machine being con-

sidered. For this reason, the total thrust force has been scaled by the TBM diameter D . 

One could consider the ratio TF D as a sort of ‘‘thrust density’’. However, machines of 

the same size may have a different number of cutters on the cutterhead. Based on these 

statements, the ‘‘expanded’’ Field Penetration Index for blocky rocks, becomes as fol-

low: 

( )TF f D
FPI

blocky P

−
=

                                                                                                     (4.41) 
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where f (kN) is the friction force to be subtracted from the applied thrust (TF ) and D  

is the TBM diameter. Also, the authors noted that, for gripper TBMs, the friction f can 

be estimated by considering about 20% of the machine weight which by considering the 

weight of machines (1000 tons); a friction f of about 2000 kN. Furthermore, to make a 

comparison with other prediction models using the original FPI formulation, the author 

proposed the following equation:   

D
FPI FPI

blockyc
=                                                                                                              (4.21) 

where D is the TBM diameter and c is the number of cutters installed on the cutterhead. 

Finally, the following equation is presented to estimate penetration per revolution and 

the rate of penetration in blocky rock conditions. 

( ) ( )TF f D TF f
P
blocky a b cFPI D e J UCSvblocky

− −
= =

  
                                                                         (4.43) 

60

1000

P RPM
blocky

ROP
bocky

 
=                                                                                            (4.44) 

where blockyP is the penetration per revolution, expressed in mm/rev and blockyROP is the 

rate of penetration in m/h and a, b, c are 0.604, -0.82, 0.17, respectively. The author also 

mentioned that, the applied thrust force and RPM need to be reduced in blocky condi-

tions to limit excessive cutterhead/cutter wear, and extensive cutterhead vibrations. To 

address this matter, an attempt is made to express the TBM thrust force and cutterhead 

RPM as a function of the volumetric joint account to obtain an indication of the needed 

reduction of TF and RPM. Therefore, the Equation 4.45 is presented to compute a suita-

ble value of thrust force. 

523 ln( ) 2312 328
TF

Jv
D

=−  +                                                                                             (4.45) 

Also, two different relationships for the calculation of an adjusted RPM in blocky rock 

conditions (during operation) are introduced due to the difference between the recom-

mended RPM (6.0 for LBT and 5.1 for the SMTT). One should note that these are 

site/TBM specific formulas and not universal for use in other projects. 

1

2

0.8 ln( ) 6.9 0.5

1.7 ln( ) 7.0 0.7

RPM Jv

RPM Jv

= −  + 

=−  + 
                                                                                           (4.46) 
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Discussion 

The main limitation of the proposed model is that the model is only evolved and devel-

oped based on two tunnels excavated mainly old crystalline gneiss, granodiorite, gran-

ite rock types (massive hard rock). Also, the model has been developed for blocky rock 

conditions and cannot be employed for other geology conditions, although the author 

proposed a formula to compare other prediction models using original FPI formula-

tions. 

4.2.12  Alpine model (Wilfing, 2016) 

The Alpine model derived from the research project group “ABROCK” which has been 

formed in 2006 and was the collaboration between five universities (Technische Univer-

sität München, Montanuniversität Leoben, Universität Innsbruck, ETH Zürich, EPF 

Lausanne), clients, contractors, TBM manufacturers, and TBM experts. ABROCK ap-

proaches the analysis and prediction of TBM performance by improving the existing 

prediction model of Gehring (1995) and consequently develop a new model called the 

“Alpine model” which improved and validated by two correction factors ( 1K & 2K ) in 

Gehring’s model. The factor for specific failure energy includes the term of rock tough-

ness, whereas the factor for rock mass fabric describes characteristics of discontinuity 

systems. To achieve the aims and enable the investigations on the influence of toughness 

as well as a discontinuity on the boreability (penetration rate), extensive laboratory and 

in-situ penetration tests were conducted. To define the toughness of rock, different ap-

proaches such as, the ratio of uniaxial compressive strength to Brazilian tensile strength 

( 1 2 3, ,B B B ); ratio of uniaxial compressive strength to point load index ( c sI ), LCPC 

breakability coefficient ( LBC ), and LCPC abrasivity coefficient (LAC) were employed. 

A database of TBM field performance from two hard rock tunneling projects including 

Koralm tunnel project in Austria (by double shield TBM with a diameter of around 10 

m, length of study area 13 km) and Røssåga tunnel project in Norway (by open gripper 

TBM with the diameter of around 7 m, with the length of the study area, the first 2.5 

km) has been used to develop the model. The geology of the study area for the Koralm 

tunnel project consisted of schistose gneisses and mica schist, but also cutting the unit 

of fine and coarse-grained gneisses and for Røssåga tunnel comprised mica schist (cal-

careous), granite and quartzite.  

In addition to extensive laboratory tests which has been performed on several different 

rock samples from 25 locations to primarily investigate the deformation behavior of 

rocks under load in terms of rock toughness, more than 28 penetration tests on-site 

(start-stop test) as well as geological back-mapping at the Koralm tunnel and the 

Røssåga hydropower project were performed and analyzed to validate the results of 
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penetration prediction models. The emphasis was on conducting penetration tests at 

construction sites to analyze the interaction of tunnel boring machines and excavated 

rock mass, as well as the influence of discontinuities on the performance and penetra-

tion rate of hard rock TBMs. In addition to the actual test, a detailed geological mapping 

and sample acquisition were done at each chainage where penetration tests have been 

conducted. 

Several examinations were conducted to obtain the best definitions to classify rock 

toughness and the best correlation was achieved by the ratio of LBC to Brazilian tensile 

strength ( BTS ) with a threshold equal to 5 and named LBCT LBC BTS= , since it defines 

rock toughness by the ratio of LBC & BTS . Ratios higher than five are related to tough 

rocks, whereas lower ratios correspond to brittle rocks. Since the relation between the 

normal force and resulting penetration is not a linear function, the original FPI was 

transferred to the point, at which the relationship becomes linear. This was the fact at 

the threshold of subcritical penetration, which is set at 3 mm/rev (FPI3mm) in that study. 

The relationship between FPI3mm with uniaxial compressive strength (UCS ), Brazilian 

tensile strength ( BTS ), and LCPC breakability coefficient ( LBC ) and performed pene-

tration tests at the Koralm tunnel reveals that, the two geotechnical rock properties af-

fect the “critical stress” (the stress under the disc cutter at 3 mm/rev penetration rate 

called critical stress) are the BTS & LBC . Therefore, these parameters were considered 

for further analysis to develop a model. The actual relation between the applied force 

and resulting penetration can be described by a linear function with a certain y-intercept 

specified by the threshold of subcritical penetration. The magnitude of the offset highly 

depends on the LCPC breakability and subordinated on the Brazilian tensile strength, 

whereas uniaxial compressive strength, failure and destruction work, and point load 

strength revealed no significance. Though, the LBC appears to be much more accurate 

for the determination of the y-axis offset in terms of critical stress under the cutter. A 

regression analysis reveals that the relation of stress and penetration can be described 

either by an exponential or linear function. Since both regressions resulted in similar 

coefficients, the linear function was considered for the sake of simplicity. Although 

LBC shows a very high correlation, the parameter bears one weakness. The test is not 

used as a standard laboratory test during pre-investigations of tunnel projects up to now 

(Figure 4.29). 
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Figure 4.29: Stress under disc cutter at subcritical penetration plotted against uniaxial 

compressive strength, destruction work, point load index, Brazilian tensile 

strength, and LCPC breakability coefficient (Wilfing, 2016) 
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To allow further analysis on the y-intercept in terms of penetration prediction models, 

the above-mentioned regression functions are back-transformed to the normal force per 

cutter. Since the Brazilian tensile strength and the LBC result in moderate and significant 

correlation, the y-intercept at subcritical penetration was determined for both parame-

ters, resulting in Equations 4.47 & 4.48. 

(3 ) (3 )

0.08 4.1
interceptBTS mm BTS mm

tb e y
 +

= = −                                                                             (4.47) 

(3 ) (3 )1.3 194.7 interceptLBC mm LBC mmb LBC y= −  + = −                                                              (4.48) 

where (3 )BTS mmb is y-intercept BTS  approach at penetration 3 mm/rev, t is Brazilian ten-

sile strength (MPa), (3 )LBC mmb is y-intercept LBC approach at penetration 3 mm/rev and 

LBC is LCPC breakability coefficient (%). The incorporation of suggested y-intercepts 

into the Gehring model is achieved by transforming the linear function. Since the pa-

rameter is based on the threshold of subcritical penetration, the value of 3 mm/rev pen-

etration rate must be accounted for in the new prediction model and results in a basic 

linear equation depending on the “slope a ” and the “y-intercept b ”.  

( 3)NF a p b=  − +                                                                                                                  (4.49) 

where NF is normal force per cutter (kN), p is penetration rate (mm/rev), a  is the slope of 

the line and b is the y-intercept of the line. The y-intercept has been defined above by 

two possibilities. The slope of the force-penetration graph appears to depend on rock 

mass parameters such as discontinuities and in-situ stress. These parameters are already 

included in the Gehring model by correction factors that reduce the slope of the basic 

Gehring function. 

Also, it is well-recognized that, the discontinuity pattern in a rock mass (spacing & ori-

entation) plays a significant extent in TBM penetration rate. Due to, in original Gerhing’s 

model, only the major plane of weakness with spacing less than 50 cm was taken into 

account, the improved obtained by extending the table 4.3 to distances between planes 

of weakness up to 160 cm, since 2K is based on observation by Bruland, 2K was directly 

substituted by s totK − . The total fracturing factor results in much higher value of s totK − = 3.3 

as it considers spacing up to 160 cm, the interaction of different discontinuity sets among 

each other, and single marked joints like faults. Finally, a newly developed modified 

Gehring model, so-called “Alpine Model”, is proposed that includes the important pa-

rameter of the y-intercept. 

/
0 2 3N BTS LBC

i

c

F b
P K K K



−
=    +                                                                                         (4.50)  
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Where P is penetration rate (mm/rev), NF  is normal force per cutter (kN), /BTS LBCb is y-in-

tercept BTS or LBC approach, c is uniaxial compressive strength, 0K is basic penetration 

factor = 4.0, 2K is a correction factor for discontinuity pattern and iK is further correction 

factors for geotechnical/machine properties. More information about the model and re-

spected procedures can be found in a Ph.D. thesis written by Wilfing (2016). 

Discussion 

The ‘Alpine model’ strongly improves the existing version of 1995 by Gehring, since the 

y-intercept is of major importance to reflect the actual relation between the applied force 

and resulting penetration. However, one must bear in mind that these findings rely only 

on one tunnel project with a very narrow range of rock types (schistose gneiss, fine-

/coarse grained gneiss, siliceous marble). Further investigation with several more rock 

types such as limestone with sedimentary layering, homogeneous granite, etc. is inevi-

table and must be validated by further data. Besides that, the LCPC test is rarely used 

in the tunnel industry compared to other tests such as,UCS or BTS , and as a such, LBC  

(LCPC breakability coefficient) is not commonly available in many tunneling projects.  

4.3 TBM Performance and Rock Mass Classification  

One of the useful methods to predict and estimate TBM performance is, utilizing the 

relationship between geomechanical parameters, such as strength parameters of rock 

mass and parameters which are related to rock mass classifications with machine per-

formance. Until now, many efforts have been conducted by different researchers. In this 

section, some classification methods which were utilized in TBM performance analysis 

will be briefly reviewed. 

4.3.1 Cassinelli et al. (1982) & Innaurato et al. (1991) 

Cassinelli et al. (1982) used a correlation between Rock Structure Rating (RSR) system 

and actual TBM performance to evaluate TBM penetration rate. The tunnel with 2 km 

long and section of 5.2 m2 excavated in granitic gneiss in the western Alps, Italy was 

investigated. The authors presented the following equation for evaluation of TBM PR: 

0.0059 1.59PR RSR= − +                                                                                                       (4.51) 

The RSR was originally developed for the determination of the appropriate steel rib 

tunnel wall support. Afterward, Innaurato et al. (1991) investigated the potential appli-
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cation of the first four parameters in the Q-system ( / nRQD J )  ( /r aJ J ) with the perfor-

mance of TBM was analyzed. The penetration rate, rock strength ( c ), Q-value, and 

RSR correlations shown in Figure 4.30 were derived from measurements in 3.5 m diam-

eter tunnels, 3000 m long in three lithological types including an Oolitic limestone, a 

grey limestone, and dolomite. Also, the authors modified Cassinelli’s (1982) model by 

including the uniaxial compressive strength ( c ) in the model as follow: 

0.437 0.047 3.15cPR RSR −= − +                                                                                             (4.52) 

The fact is that, Innaurato’s formulation considers the effect of both the intact rock and 

of the rock mass, but the latter is characterized with a by now infrequently used geome-

chanical quality index which is rarely available in the geotechnical characterization of a 

tunnel. In addition, the penetration rate is estimated without any reference to the force 

acting on discs which has a major impact on penetration rate. 

 

Figure 4.30: Correlation of PR with c , RSR and approximate Q-value for 3.5 m diameter 

tunnel (modified from Innaurato et al. 1991) 

Discussion 

The fact is that, Innaurato’s model considers the effect of intact and rock mass, but the 

latter is characterized by an infrequently used geomechanical quality index which is 
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rarely available in the geotechnical characterization of a tunnel. Moreover, the penetra-

tion rate is estimated without any reference to the force NF acting on each disc in which 

caused a huge error in the assessment of TBM PR as indicated by many researchers 

before. 

4.3.2 Mitani et al. (1987) 

Mitani et al. in 1987, analyzed data from two small diameter TBM tunnels predomi-

nantly granite, sandstone, slate, and porphyry. The authors showed quite a significant 

relationship between penetration rate (m/hr) and P- wave velocity PV (km/s) obtained 

from refraction seismic measurements performed along the tunnel wall. The data trend 

is shown in Figure 4.31. 

5.6 0.8PR Vp −
                                                                                                                (4.53) 

By the combination of two equations (4.53 and 4.54), (the relationship between seismic 

velocity and Q-value which has been presented by Barton, 1991) then the following ap-

proximate trend for PR (m/hr) can be derived from equation 4.55 (Barton, 2000). 

3.5 log( )PV Q +                                                                                                                    (4.54) 

2.7 0.8log( )PR Q −                                                                                                             (4.55) 

Note that, this simple empirical relationship gives PR values in excess of 2.7 m/hr when 

Q-value is less than 1.0, and smaller values when Q-value is more than 1.0. When no 

joints are present and Q =1000, a PR value of 0.3 m/hr is anticipated. It would be more 

realistic if the rock is also hard and abrasive as well as being massive (Barton, 2000). 
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Figure 4.31: Correlation between PR and PV  at two small diameter TBM tunnels in Japan 

(modified from Mitani et al. 1987) 

4.3.3 Palmström (1995) 

Palmström (1995) developed another model base on the Rock Mass index (RMi). This 

model is to be considered the closest relation to the NTNU model with its parameters 

but has some differences. The NTNU model uses the drilling rate index (DRI)-which 

requires some special laboratory equipment to determine DRI- to present the properties 

of intact rock. Instead of using DRI as representative of intact rock properties, the cor-

relation between the DRI and the compressive strength of rock material can be used as 

follow: 

0.6

CDRI E =                                                                                                                      (4.56)                                                                                                              

where E  is a factor representing various groups of rocks. It has the following values: 

• E = 1000 for most non-schistose, hard rock (compressive strength c > 40 MPa) 

• E = 750   for metamorphic schists ( c = 30 - 150 MPa) 

• E = 500   for argillaceous rocks ( c = 10 - 100 MPa) 

The system for applying the RMi to evaluate the TBM boring capacity is shown in Figure 

4.32. 

Palmström (1995) believes that, SK (fracture factor) in the NTNU model does not fully 

include the effect of the three-dimensional occurrence of joints; this issue can be solved 
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by considering block volume ( bV ). The correlation between block volume ( bV ) and 

jointing factor (KS) which has been found by Palmström as follow: 

0.33

01.6S bK C V −=                                                                                                                   (4.57) 

where bV is the block volume in m3 and 0C  is a factor representing the orientation of the 

main joint set with tunnel axis. 0C can be estimated from Table 4.12. 

 

Figure 4.32: Layout of a method to predict TBM penetration using RMi parameters 

(Palmström ,1995) 

Table 4.12: Rating of the joint orientation factor for TBM (Palmström, 1995) 

Angle between tunnel 

axis and joint set 

0-15 o 15-30 o 30-45 o 45-75 o 75-90 o 

Average value of 0C  1 1.25 1.5 1.75 2 

 

Also, Equation 4.57 can be expressed in terms of PJ (jointing parameters) as follow: 

00.43 pK C Js =                                                                                                              (4.58) 
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In the NTNU model for the calculation of machine performance parameters, it is neces-

sary to covert fracturing factor ( sK ) to equivalent fracturing factor (
ekv

K ). On the basis 

of Palmström’s suggestion, it can be expressed as following equations: 

0.14DRIK DRI=                                                                                                                  (4.59) 

S DRIekvK K K=                                                                                                                       (4.60) 

0.6

CDRI E  −=                                                                                                                       (4.61) 

0

0.3

0.06
ekv

P C

C E
K

J 
=


                                                                                                                  (4.62) 

In order to estimate TBM performance by this model, other steps are exactly similar to 

the NTNU model which was described in detail before. Also, the above parameters are 

discussed in section 4.2.9. in the description of the NTNU method.   

4.3.4 Grandori et al. (1995) 

Grandori et al. in 1995 by analyzing the data from two tunnels in Hong Kong estimate 

the relationship between IMS classification with TBM performance. The first tunnel was 

7.4 km long with 3.6 m diameter in predominantly fine and coarse granites, granodio-

rites, and intrusive dykes, and the second tunnel was 5.4 km long also in granites were 

excavated. It should be mentioned that, the IMS classification is on the basis of joint 

spacing and weathering degree. In very approximate terms, the five IMS joint spacing-

weathering classes can be compared to Q-value in the following manner: 

Table 4.13: Adaption of two classification systems (IMS, Q) (Barton, 2000) 

IMS class 1 2 3 4 5 

Q-value ≥ 50 ≈ 10 ≈ 1 ≈ 0.1 ≤ 0.01 

 

These analyses are shown in Figures 4.33. As can be seen from Figure 4.33 in the first 

tunnel; it showed consistent trends for PR, U, and AR and average cutter thrust F with 

IMS classification. It can be seen that, machine utilization as well as average cutter thrust 

decrease with the decrease of rock mass quality. In the second tunnel (Figure 4.34), the 

PR value is seen to fall in the poorest rock classes due to difficulties with the grippers. 

While in the first tunnel; only the advance rate falls in the lowest classes due to reduced 

utilization and increased rock support needs. Note how the utilization falls successively 
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with lower rock mass qualities, likewise, the necessary thrust grows for achieving gen-

erally faster penetration rates. 

 

Figure 4.33: Relationship between IMS classification with machine performance param-

eters in 7.4 km long tunnel in Hong Kong granites, granodiorites, and in-

trusive dykes (modified from Grandori et al. 1995) 

 

Figure 4.34: Relationship between IMS classification with machine performance param-

eters in 5.4 long tunnel in Hong Kong granites (modified from Grandori et 

al. 1995) 
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4.3.5 Sundaram et al. (1998) 

Sundaram et al. (1998), analyzed the correlation between five machine performance pa-

rameters (included; Field penetration index, penetration rate, specific energy, torque, 

and utilization coefficient) with some rock mass parameters which were collected in a 

tunnel with 2825 m, excavated in medium to coarse-grained granite with C  = 130 to 246 

MPa (mean 182 MPa). The results of this investigation are shown in Table 4.14. The four 

strongest correlation coefficients for the field penetration index were the volumetric 

joint account JV (Palmström, 1982) from which RQD was estimated, the ratio / nRQD J , 
' ( / ) ( / )n r aQ RQD J J J=  and the Q-value itself. These correlations are indicated in Figure 

4.35 together with joint spacing ( Js ) and Schmidt rebound ( R ). Also, it should be noted 

that, RQD derived from vJ showed a good correlation with field penetration rate, but in-

sufficient sensitivity below an RQD of about 75% (Barton, 2000). 

Table 4.14: Correlation values (r) of machine parameters with average rock mass prop-

erties 

Machine 

parameters 

Schmidt re-

bound value R 

Discontinuity 

alteration 

Aper-

ture 

Infill 

material 

Rough

ness 

Joint ori-

entation 
RQD 

FPI 0.33 0.53 0.22 0.17 -0.35 -0.19 0.72 

ROP 

(mm/rev) 
-0.29 -0.043 -0.16 -0.21 0.23 0.21 -0.54 

Specific en-

ergy 
-0.21 0.2 0.15 -0.04* -0.21 0.28 0.26 

Torque -0.09* 0.12 -0.01* -0.09* -0.19 0.15 0.11 

Utilization 0.15 0.29 0.25 0.09* -0.20 0.11* 0.37 

 

Machine 

parameters 
Fissure 

Joint 

volume 

Conti-

nuity 

Rock 

mass al-

teration 

Joint 

spacing 

Strength 

estimate 

(RQD

/Jn) 

(RQD/ 

Jn).(Jr/Ja) 

Q-

value 

FPI 0.61 -0.76 -0.55 0.55 0.64 0.56 0.70 0.69 0.68 

ROP 

(mm/rev) 
-0.55 0.63 0.46 -0.43 -0.52 -0.43 -0.57 -0.55 -0.54 

Specific en-

ergy 
0.23 -0.24 -0.24 0.19 0.27 0.20 0.23 0.24 0.30 

Torque -0.05* -0.06* -0.07* 0.15 0.10 0.17 0.11 0.14 0.12 

Utilization 0.34 -0.37 -0.34 0.25 0.32 0.24 0.38 0.39 0.46 

* Insignificant correlation 
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Figure 4.35: Correlation between TBM performance parameters with Q-value, vJ , joint 

spacing, R (modified from Sundaram et al. 1998)  
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4.3.6 Barton (2000) 

The QTBM model (Barton, 2000) is based on an expanded Q-system in which the factors 

relevant to TBM performance have been introduced, such as the orientation of joints or 

joint structures, the strength and abrasiveness of the rock, and so on. The model starts 

from the observation that, when dealing with TBM tunneling, both extremely good (Q 

up to 1000) and extremely bad conditions (Q down to 0.001) are unfavorable for TBM 

advance, one slowing the average progress due to multiple cutter changes and low pen-

etration rate, the other stopping the machine for long periods and requiring heavy “pre-

treatment” and support. Starting from these considerations, Barton (2000) identified 

general trends for the penetration rate (PR) with uninterrupted boring, and the actual 

advance rate (AR), as a function of the rock mass quality (Figure 4.36). 

 

Figure 4.36: Conceptual relation between Q index, penetration rate (PR) and advance 

rate (AR) (Barton, 2000) 

The QTBM (Equation 4.63) is based on the familiar Q-parameters but has additional rock-

machine-rock mass interaction parameters. Together, these factors give twelve potential 

orders of magnitude for the QTBM range. 

0
10 9

20

20 520

RQD JJ SIGMA qwrQ
TBM J J SRF CLIFn a


=         (4.63) 

where oRQD  is RQD (%) interpreted in tunneling direction; , , ,n r a wJ J J J  are joint param-

eters in Q-system; SRF is the strength reduction factor, SIGMA is the rock mass strength 

expressed as: 
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1/35SIGMA Qcm c=                                                                                                            (4.64) 

and cQ is equal to: 

0
100

cQ Qc


=                                                                                                                          (4.65) 

where 0Q is oriented along the tunnel axis; F is the average cutter load (tnf) through the 

same zone, normalized by 20 tnf;CLI is the cutter life index; q is the quartz content (%);

  is the induced biaxial stress on tunnel face in the same zone, normalized to an ap-

propriate depth of 100 m (Barton, 2000; Delisio, 2014). 

The relationship between PR (m/hr), AR (m/hr), and QTBM is shown in Figure 4.37.  

 

Figure 4.37: Suggested relationship between PR, AR, and QTBM (Barton, 2000) 

Usually, PR is related to AR with the utilization factor U (Equation 4.66), defined as the 

ratio between the machine utilization time and the total shift time. 

AR PR U=                                                                                                                           (4.22) 

Barton (2000) introduced an alternative format for AR (Equation 4.67): 

mAR PR T=                                                                                                                          (4.23) 
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whereT is the time (hours) and m is a negative gradient (LT-2 - deceleration) that ex-

presses the decelerating average advance rate which is observed as the unit of time 

(hours, days, weeks, months) increases (Figure 4.38). Barton (2000) observed this trend 

by the analysis of 145 tunnel case histories totaling more than 1000 km. 

The gradient m includes the abrasiveness of rock via the cutter life index CLI , and so 

includes the cutter wear. It also includes the percentage of quartz (%), rock porosity, 

and tunnel dimension via the tunnel diameter (Equation 4.68).  

0.20 0.15 0.10 0.05

1

20

5 20 2

D q n
m m

CLI
 

       
        

       
                                                                       (4.68) 

where 1m is a factor depending on the Q-value, D  is the tunnel diameter,CLI is the cutter 

life index, q is the quartz content (%) and n is the porosity. Suggested 1m values are listed 

in Table 4.15. 

 

Figure 4.38: Decelerating average advance rate observed as the unit of time (day, week, 

month) and tunnel length increase (Barton, 2000) 
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Table 4.15: Decelerating gradient 1m , and its approximate relation with Q-value (Barton, 

2000) 

Q 0.001 0.01 0.1 1 10 100 1000 

m1 -0.9 -0.7 -0.5 -0.22 -0.17 -0.19 -0.21 

Unexpected events or expected bad 

ground. Many stability and support re-

lated delays and gripper problems. Op-

erator reduces the thrust force (i.e., the 

cutter load F). This increases QTBM. 

Most variation of m may be due to rock 

abrasiveness. CLI, quartz content and po-

rosity are important factors. PR depends 

on QTBM. 

  Note: the subscript (1) is added to m for evaluation of Equation (4.68) 

The development of a relationship between PR, AR, and QTBM was based on a process 

of trial and error using case records from literature. The following relationships are ob-

tained (Barton, 2000):  

0.25PR Q
TBM

−
                                                                                                                  (4.69)  

0.25 mAR Q T
TBM

−                                                                                                           (4.70) 

Finally, the timeT to bore a length of tunnel L with an average advance rate of AR is 

obviously L AR . Therefore, Equation 4.71 can be derived.  

1
1L m

T
PR

+ 
=  
                                                                                                                         (4.71) 

Discussion 

Although the proposed equations are rather simple, and the concepts behind the theory 

mediate and attribute in the right direction, but the model has many input parameters, 

consisted of parameters of the Q system in addition to input parameters for the NTNU 

TBM prognosis mode. Besides that, technical points of view the implementation of the 

model is complicated and expensive in practice. Also, the model involves and utilized 

some parameters which are not commonly assessable outside of Norway, for example, 

the cutter life index (CLI ). In this regard, as pointed out by Wilfing (2016), QTBM did not 

gain acceptance in the construction industry in Central Europe. 
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4.3.7 Sapigni et al. (2002) 

Sapigni et al. (2002) related the TBM performance to the Rock Mass Rating (RMR) based 

on the analysis of three tunnels (the Maen, Pieve, and Varzo tunnels for a total length of 

14 km and 733 sets of data) in the Alps driven in medium to hard metamorphic rocks. 

They also identified a correlation between RMR and Q (Figure 4.39), thus indirectly re-

lating the TBM performance to Q (Einstein et al. 2006). 

As represented in Figure 4.40, a quadratic relationship between the penetration rate (ex-

pressed in m/hr) and RMR is derived. The relation follows a bell-shaped curve. How-

ever, a high dispersion of the data is noted which is attributed to (Delisio, 2014): 

• Cumulative analysis of different rocks (less significant effect). 

• Intrinsic feature of penetration data which arises from the difficulty of maintain-

ing a constant thrust (significant effect). 

 

Figure 4.39: Correlation between RMR and Q values logged in the three tunnels consid-

ered in the study. Dotted line includes 80% of the 111 case histories ana-

lysed by Bieniawski (Bieniawski, 1989) (Sapigni et al. 2002) 
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Figure 4.40: Correlation between penetration rate and RMR for the three tunnels con-

sidered in the analysis. The excavated rocks include serpentinite, 

metabasite, chlorite schist, talc, schist. calc schist, metagabbro, mica schist, 

metadiorite, metagranite, and gneiss. (Sapigni e al. 2002) 

Sapigni et al. (2002) stated that the correlation depicted in Figure 4.40 is significant in 

terms of the shape of the curve, but it cannot be used for numerical predictions. The 

RMR does not account for rock-machine interaction parameters, so any empirical rela-

tionship based on this system is inevitably limited to the rock-machine combinations 

considered in the original dataset. The work is very interesting because the authors also 

provide a relationship between the TBM utilization factor, defined as the fraction of total 

construction time in which the TBM has been used for boring, and RMR (Figure 4.41). 

The three lines in Figure 4.41 show that even in favorable conditions the utilization co-

efficient is less than 55% and that values as low as 5-10% may be observed in poor rock 

mass conditions. 
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Figure 4.41: Correlation between TBM utilization factor derived from daily average data 

and RMR (modified from Sapigni et al. 2002) 

Finally, Sapigni et al. (2002) highlighted the strong dependence of TBM performance on 

the rock type. Even considering the same TBM and the same RMR class, lower penetra-

tion rates are experienced in stronger rocks, indicating that rock-related factors (jointing, 

tensile strength, joint or fabric orientation) may dominate the mechanism of rock crush-

ing and chip formation in hard rock. They concluded that the conventional RMR system 

is inadequate for TBM performance prediction. They suggested a logical development 

as to define a normalized RMR index with reference to the basic factors affecting pene-

tration rate, for example, uniaxial compressive strength, tensile strength, brittleness, 

abrasiveness, hardness, etc., which are factors controlling rock resistance to cutter pen-

etration and fracture propagation. 

4.3.8 RME Model (Bieniawski et al. 2007a; 2007b; 2006) 

The Rock Mass Excavability (RME) Indicator is presented by Bieniawski et al. (2006) is 

based on five basic input parameters as listed in Table 4.16 with the aid of a methodol-

ogy called “Linear Discriminant Analysis” the authors found that the parameters with 

the strongest influence on the TBM advance rate (AR) are the rock abrasiveness (ex-

pressed via the Drilling Rate Index), the joint spacing and the stand-up time (Bieniawski 

et al. 2006).  
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In addition, the authors also included in the model the uniaxial compressive strength of 

intact rock and the water inflows because of the great effect that they may have on TBM 

performance (Bieniawski et al. 2006). Excavability is defined as the rate of excavation 

expressed in machine performance in meters per day. A weighted distribution was then 

performed to associate a rating to each parameter. 

Table 4.16: Input parameters and rating for the RME index (Bieniawski et al. 2006) 

Uniaxial compressive strength of intact rock (0–25 points) 

c (MPa) < 5 5-30 30-90 90-180 > 180     

Rating 4 14 25 14 0     

Drillability — Drilling rate index (0–15 points) 

DRI < 80 80-65 65-50 50-40 < 40     

Rating 15 10 7 3 0     

Discontinuities in front of the tunnel face (0–30 points) 

Homogeneity Number of joints per meter 
Orientation with respect to tunnel 

axis 

 Homogeneous Mixed 0-4 4-8 8-15 15-30 > 30 Perpendicular Oblique Parallel 

Rating          10 0 2 7 15 10 0 5 3 0 

Stand-up time for TBM excavated tunnels (0–25 points) 

Hours < 5 5-24 24-96 96-192 >192   
  

Rating 0 2 10 15 25   
  

Groundwater inflow (0–5 points) 

Liter/sec >100 70-100 30-70 10-30 < 10  
   

Rating 0 1 2 4 5  
   

 

With the exception of the stand-up time, all the remaining four parameters may be de-

termined from standard site exploration programs. The stand-up time may be estimated 

from the well-known RMR chart (Figure 4.42) which relates it to the unsupported active 

span, as a function of the RMR (Bieniawski, 1989). 
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Figure 4.42: Stand-up time as a function of RME and unsupported span (Bieniawski, 

1989) 

The data used to derive the chart of Figure 4.35 were all from drill and blast tunnels. 

Therefore, a correlation for TBM tunnels has been introduced (Alber, 1996):  

  &0.8 20TBM D BRMR RMR=  +                                                                                               (4.72) 

The authors correlated the RME to the average rate of advance ARA, computed as the 

ratio between the length of a given tunnel section and the total time needed to excavate 

that section. The dataset was composed by data coming from three tunnels excavated 

by double shield machines. The proposed relationship is represented in Figure 4.43 

(Delisio, 2014).  

 

 

Figure 4.43: Correlation between ARA and RME (Bieniawski et al. 2006) 
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The above correlation is valid for tunnel diameter around 10 m. For different tunnel 

dimensions, a coefficient DF has to be applied to ARA. 

3 20.007 0.163 1.2859 4.5158
D

F D D D=− + − +                                                                   (4.73) 

The correlation between ARA and RME for different tunnel diameters is represented in 

Figure 4.44. 

 

Figure 4.44: Correlation between ARA and RME for different tunnel diameters 

(Bieniawski et al. 2007a) 

Then, based on the TBM performance observed during the excavation of the Guadar-

rama tunnels (Spain), Bieniawski et al. (2007a) introduced other correction factors which 

incorporate the length of the tunnel already excavated and the effect of the crew skills. 

The adjusted ARA becomes:  

R T D L CARA ARA F F F=                                                                                                        (4.74) 

where TARA is the predicted value of ARA from the correlation with RME, DF  is the cor-

rection factor for the tunnel diameter, LF is the correction factor for the already exca-

vated length (Table 4.17), and CF is the correction factor for the crew skills (Table 4.18). 
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Table 4.17: Correlation factor for tunnel excavated length (Bieniawski et al. 2007a) 

Tunnel length excavated (km) Adaptation factor (FL) 

0.5 0.68 

1 0.8 

2 0.9 

4 1 

6 1.08 

8 1.12 

10 1.16 

12 1.2 

Table 4.18: Correlation factor for the efficiency of the tunnel crew (Bieniawski et al. 

2007a)  

Effectiveness of the crew handling 

TBM and terrain 
Crew factor (FC) 

Less than efficient 0.88 

Efficient 1 

Very efficient 1.15 

 

Besides that, the authors also compared the performances of double shield TBMs and 

gripper TBMs for the two cases of c < 45 MPa and c > 45 MPa (Figures 4.45 and 4.46) 

based on a dataset of 49 tunnel sections of the San Pedro tunnel (Spain). It was con-

cluded that, for c < 45 MPa, double shield TBMs always provide better results than 

open TBMs. For c > 45 MPa and RME > 75, the use of gripper TBMs gives the best per-

formance. If 65 < RME < 75, double shield TBMs and open TBMs provide similar results. 

Finally, if 50 < RME < 65, double shields generally register better performances than 

open machines (Bieniawski et al. 2007a; 2007b). 
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Figure 4.45: Comparison of the performance of double shield and open TBMs for 

c  < 45 MPa (Bieniawski et al. 2007a) 

 

Figure 4.46: Comparison of the performance of double shield and open TBMs for  

c > 45 MPa (Bieniawski et al. 2007a) 

Discussion 

The RME index is very similar to the better known RMR, and it can therefore be obtained 

quite easily on the basis of elements that are generally known from the geotechnical 

characterization of the rock masses encountered along with the tunnel layout. However, 

force ( NF ) acting on disc cutters is not considered. Such a force, as noted by Rostami 
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(1996), can have a very important effect on the performance of TBM. Furthermore, the 

estimation of the stand-up time involves uncertainties in the model. This parameter 

needs to be estimated from an RMR chart, which has been developed and presented by 

Bieniawski for drill and blast tunneling, although an equation established from case 

studies must be used to convert &D BRMR to TBMRMR proposed by Alber (1996). 

4.3.9 Khademi et al. (2010) 

Khademi et al. (2010) have presented a model to predict the performance of TBM by 

employing a multiple linear-regression analyses on field data collected from 8.5 km of 

the bored section of Zagros long tunnel in a sedimentary rock which is located in Iran, 

an attempt was made to provide a predictor equation of the TBM field penetration index 

(FPI) by use of RMR rock mass classification system. The range ofUCS in this study was 

20 to 150 MPa; RQD , 30-95%; RMR Jc rating of 10-22. The relationship between FPI and 

the five basic RMR input parameters plus tunnel depth and the angle of the joints with 

tunnel axis (Alpha) was conducted. It should be mentioned that, in this investigation, 

the α angle plays an alternate role for adjustment factor for discontinuity orientation in 

RMR89 system. Also, the tunnel depth is an indicator of in situ and, consequently con-

fining stress on tunnel face was considered as input parameters. According to regression 

analysis, tunnel depth and groundwater ( Gw ) condition showed meaningless correla-

tions with the FPI and eliminated. Figures 4.47 and 4.48 illustrate the correlations be-

tween the individual independent variables and the actual measured FPI in this inves-

tigation. 

 

Figure 4.47: The relationship between measured FPI and two additional parameters 

(tunnel depth and α angle), (Khademi et al. 2010) 
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Figure 4.48: The relationship between measured FPI and RMR five input parameters 

(Khademi et al. 2010) 

Also, inter-correlation between theUCS and joint spacing ( Js ) led to exclusion of Js  

from the subsequent analysis thus; new equation was introduced as follows (R = 0.87): 

4.161 0.091 0.077 0.117 1.077 log( )FPI UCS RQD Jc = + + + +   (4.75) 

Discussion 

It should be mentioned that, the main problem of the introduced equation is that; it is 

just related to the conditions of Zagros Tunnel and a double shield TBM; hence it can’t 

be a reliable model to predict the performance of the machine in different geological 

conditions. In addition to this limitation, the bivariate analysis shows thatUCS by itself 

accounted for 70% of the variation of the FPI. Adding three more parameters led to only 

a marginal increase in R2 from 0.7 to 0.77. This means that the effects of the additional 

parameters were largely overshadowed byUCS . This matter has been also assessed by 
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Fatemi et al. (2016) which the results of sensitivity analysis demonstrated that, the great-

est sensitivity belongs to compressive strength. Despite great changes in the nature of 

the joints, lower sensitivity was detected due to perhaps the score of joint conditions in 

the RMR classification system, and the low range of variations of these parameters in 

the original database. Therefore, it is natural that the model sensitivity to this parameter 

is low. In this model, the log (alpha- ) is also presented in the equation, and owing to 

the log function, despite the changes of alpha from 1° to 70°, the range of variations in 

output results is very minimal. Thus, the model sensitivity to alpha is low, as is the case 

with Jc , where even the 100% change in the value of Jc shows minor effects on FPI. 

4.4 Conclusion Remarks 

Various approaches for predicting the penetration rate of hard rock tunnel boring ma-

chines (TBMs) have been studied by researchers since the early stages of TBM applica-

tions in the 1950s. These studies ended up in the development of several prediction 

models for predicting TBM performance with versatile inputs/tests. Among the geolog-

ical/geotechnical factors, on one side, there are parameters associated with the intact 

rock strength such as the uniaxial compressive strength, the drilling rate index, the ten-

sile strength, etc.; on the other side, there are parameters related to the rock mass con-

ditions, and notably to the rock mass fracturing, which may be expressed and presented 

via the RQD , the volumetric joint count, the joint spacing and orientation, etc.  

Based on the common understanding and definition of the phenomenon, it can be con-

cluded that the TBM advancement in hard rock masses may be explained, to some ex-

tent, by these recursive rock/rock mass parameters. If the attention is now focused on 

the TBM side, the machine factors generally used for performance estimation include 

the cutter spacing, the cutter tip width, the cutter diameter, the average thrust per cutter, 

and the cutterhead rotation speed (RPM). In the majority of the cases, the combined 

ground parameters and machine parameters are employed to describe/predict the TBM 

performance in terms of penetration rate. Table 4. 19 offers a brief review and discusses 

the capabilities of some of the more commonly used TBM performance prediction mod-

els. 

In brief, estimation of TBM PR must include the affective parameters including rock 

material and rock mass parameters, machine characteristics, and operational parame-

ters as well as in-situ boundary conditions. However, developing a predictive model 

which can take into account all these parameters all together has been always a hard nut 

to crack. This is why over three decades after its conception; no single universal model 

has been proposed for TBM performance prediction. However, according to the litera-

ture survey and previous investigations in this respect, some of the most important TBM 
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prognosis models include CSM (Rostami, 1997), NTNU (Bruland, 1998), QTBM (Barton, 

2000), and Hassanpour et al. (2011). 

The brief and non-exhaustive description and explanation of the most relevant TBM 

performance prediction models presented in this chapter may help to define the back-

ground of the work described in the next chapters. Specifically, this overview highlights 

the most important rock/rock mass factors and TBM factors which are commonly used 

for performance estimation and recursive in many described models. The conclusions 

derived from the cases analyzed in the previous studies are also important.  

Table 4.19: Overview of TBM performance prediction models and their advantages and 

disadvantages 

Prediction 

model 

Required input parameters Output  Advantage Limitations 

Rock mass param-

eters 

Machine parame-

ters 
   

CSM  UCS, BTS, (CAI) 

Cutter load capacity, 

cutter spacing, cut-

ter diameter, cutter 

tip width, TBM 

thrust, and torque. 

PR, AR, 

U 

adaptability to rock 

conditions not previ-

ously encountered, 

used for design of 

cutterhead 

Based only on intact rock 

properties 

Gehring 

UCS, correction 

factors for joints, 

specific fracture 

energy, etc. 

Cutter force, Fn P 

Easy to apply,  

independent correc-

tion factors  

Spacing and orientation of 

the major plane of weak-

ness, limited number of 

cases (Tunnels) 

NTNU 

DRI, no. of joint 

sets, joint fre-

quency and joint 

orientation, CLI,  

Cutter thrust, cutter 

spacing, cutter di-

ameter 

PR, AR, 

U 

Accounting for both 

rock mass & TBM 

specifications 

Determination of input pa-

rameters needs special 

tests; Database is mainly 

limited to strong rocks 

QTBM 

RQD0, Jn, Jr, Iw, 

SRF, rock mass 

strength, (CLI), 

quartz content, in-

duced biaxial 

stress 

Average cutter load, 

TBM diameter 

PR, AR, 

U 

Relying on good da-

tabase 

Many input parameters, 

needs uncommon tests, 

some inputs parameters 

are overlapped, complex 

relationships 

RME 

UCS, abrasivity, 

rock mass jointing 

at the face, stand-

up time, water 

flows 

TBM diameter, Total 

cutter head thrust, 

RPM and torque 

PR, AR Easy to apply 

Force on disc cutters is not 

considered, Lack of some 

basic parameters (e.g., tun-

nel diameter), Limited da-

tabase 

Yagiz (2008) 
DPW, rock brittle-

ness, UCS,  
- PR - 

Limited database (one tun-

nel project), requires spe-

cial/uncommon test 

"punch penetration 

test" 
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Prediction 

model 

Required input parameters Output  Advantage Limitations 

Rock mass param-

eters 

Machine parame-

ters 
   

Gong & Zhao 

(2009) 
UCS, Jv, Bi,  Cutter force BI 

Eliminate the influ-

ence of the operative 

uncertainties on the 

rock mass boreabil-

ity 

Limited database (one tun-

nel project) 

Khademi et al. 

(2010) 

UCS, RQD, Joint 

condition,   
Cutter force, RPM FPI 

Capability to be 

used across different 

TBM diameters 

Limited database (one tun-

nel project), UCS by itself 

accounted for 70% of the 

variation of the FPI 

  

Hassanpour et 

al. (2011) 
UCS and RQD Cutter force, RPM FPI 

Easy to apply, capa-

bility to be used 

across different TBM 

diameter rely on 

good/various data-

base 

Higher error in strong 

massive rock masses "i.e., 

UCS more than 200 MPa" 

Farrokh et al. 

(2012) 

Tunnel diameter, 

Rock-type code, 

UCS, RQDc 

Cutter force, RPM PR 
Relying on good da-

tabase 

The proposed model may 

produce higher errors in 

estimating PR values in 

highly jointed (fractured) 

rock masses  

Delisio, 2014 UCS, Jv Cutter force, RPM FPIblocky 

Mitigating the lack 

of the model/investi-

gations for blocky 

rock conditions 

Limited database (only 

two tunnel projects); lim-

ited application, i.e., 

blocky rock conditions 

Alpine model 

BTS, LCPC break-

ability coefficient, 

correction factor 

for joints, etc 

Cutter force, Fn FPI3mm 

Mitigating the short-

ages of Gerhing's 

model 

Rely only on one tunnel 

project, requires uncom-

mon test 
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Chapter 5 Geological Description & Data 

Collection 

5.1 Introduction 

In this chapter, the selected and available projects used as base cases for the new TBM 

performance prediction model, including Zagros water conveyance tunnel Lot 2 in Iran, 

Ghomrood water conveyance tunnel Lots 3 & 4 in Iran, Golab conveyance water tunnel 

in Iran, Karaj-Tehran water conveyance tunnel Lot 1 in Iran, Maroshi-Ruparel water 

supply tunnel Mumbai in India, Manapouri second tailrace tunnel in New Zealand and 

Lötschberg Base Tunnel in Switzerland are presented, brief geological description of the 

projects are expressed. Furthermore, descriptive statistics of the generated database for 

this study are represented. 

5.2 Geological Description 

In order to develop a more accurate TBM performance prediction model that can be 

applied in different geological conditions, data from various projects with the different 

rock mass conditions have been obtained from pertinent research groups and compiled 

in a database. The database on TBM field performance contains different levels of infor-

mation which define the tunnel, rock mass conditions, and TBM performance parame-

ters over the full length of a tunnel drive, and some within discrete geological zones or 

short tunnel reaches. The database contains data on 7 tunnel projects and includes over 

621 data sets. This database includes bored tunnel records with a total length of over 

70.73 km. 

The tunneling projects used in this investigation are listed as follow: 

• Zagros water conveyance tunnel, Lot 2 in Iran (Hassanpour, 2009; Hassanpour 

et al. 2009; Hassanpour et al. 2016). 

• Ghomrood water conveyance tunnel, Lots 3 & 4 in Iran (SCE Company, 2004; 

Hassanpour, 2009; Hassanpour et al. 2011). 

• Karaj-Tehran water conveyance tunnel, Lot 1 in Iran (SCE Company, 2006; Has-

sanpour, 2009; Hassanpour et al. 2010). 
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• Golab conveyance water tunnel in Iran (Fatemi, 2016; Fatemi et al. 2016; ICE 

2009). 

• Maroshi-Ruparel water supply tunnel, Mumbai India (Jain et al. 2014; Jain 2014). 

• Manapouri second tailrace tunnel, New Zealand (Watts et al. 2003; Hassanpour 

et al. 2011; Delisio, 2014) 

• Lötschberg Base Tunnel in Switzerland (Delisio et al. 2013; Delisio 2014). 

The main characteristics of these TBM tunnelling projects are summarized in Table 5.1 

and 5.2. Figure 5.1 shows the geographical distribution of project sites. 

Table 5.1: Main characteristics of tunnelling projects 

No Projects 

Tunnel 

Length 

(km) 

Available 

data (km) 
TBM type 

TBM  

diameter 

(m) 

1 

Ghomrood water convey-

ance tunnel, Lots 3 & 4 

(Iran) 

21.5 15 Double shield (Wirth) 4.525 

2 

Manapouri second tail-

race tunnel (New Zea-

land) 

10 9.7 

Main beam open TBM 

(Robbins, Kvaerner-Mark-

ham) 

10.5 

3 
Golab conveyance water 

tunnel (Iran) 
10 8 Double shield (Wirth) 4.495 

4 

Maroshi-Ruparel water 

supply tunnel Mumbai, 

(India) 

12.24 5.831 
Hard rock Gripper TBM 

(Wirth) 
3.6 

5 
Zagros water conveyance 

tunnel, Lot 2 (Iran) 
26 152 

Double shield (Her-

renknecht) 
6.73 

6 

Karaj-Tehran water con-

veyance tunnel, Lot 1 

(Iran) 

15.9 8.7 
Double shield (Her-

renknecht) 
4.65 

7 
Lötschberg Base Tunnel 

(Switzerland) 
36.4 8.53 

Gripper TBM (Her-

renknecht) 
9.43 

1Maroshi- Vakola; 2The first 5.3 km used for model development, remaining 9.5 km employed for model 

evaluation/validation; 3Steg lateral adit, Main southern. 
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Table 5.2: Geological characteristics of tunnelling projects 

No Projects 
Geological 

zone 
Formation Lithology 

Max. 

depth (m) 

1 

Ghomrood 

tunnel, Lots 

3 & 4 

Sanandaj-Sir-

van meta-

morphic belt 

Jurassic metamor-

phic rocks (low to 

medium grade) and 

Cretaceous Lime-

stone 

Limestone, Shale and 

Sandstone, Slate, Phyllite, 

Schist with quartzitic 

veins 

700 

2 
Manapouri 

tunnel 
- 

Paleozoic metamor-

phic and igneous 

rocks of the 

Fiordland Complex 

Gneiss, Calc-silicate and 

quartzite and the intru-

sive rocks (Gabbro and 

Diorite) 

1200 

3 Golab tunnel 
Sanandaj-Sir-

jan 

Sedimentary and Ig-

neous rocks of Eucen 

to Jurassic 

Periodic series of argillite 

shale and metamorphic 

sandstone, schist and am-

phibolite 

- 

4 
Maroshi-Ru-

parel tunnel 

Deccan traps 

(Lava flows 

of Basaltic 

rocks) 

Upper traps (Upper 

Cretaceous to Lower 

Eocene) 

Fine compact basalt, Por-

phyritic basalt, Amygda-

loidal basalt,  

Pyroclastic rocks (Tuff, 

Tuff breccia) and Inter-

trappeans 

(Shale)… 

82 

5 
Zagros tun-

nel, Lot 2 

Zagros 

Simply  

folded zone 

Carbonate-Argilla-

ceous rocks of Pab-

deh, Gurpi and Ilam 

Formations 

Limestone, Shale and 

Limy Shales 
650 

6 
Karaj-Tehran 

tunnel, Lot 1 

Central Al-

borz 

Pyroclastic rocks of 

Karaj formation 

Tuffs, Shaly and Sandy 

Tuffs, Agglomerate 
600 

7 
Lötschberg 

Base Tunnel 
- 

Autochthon Gampel-

Baltschieder and Aar 

Massif 

Crystalline Gneiss, Gran-

odiorite and Granite, Gra-

nitic Gneiss, Amphibolite 

1950 
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Figure 5.1: Geographical distribution of the hard rock TBM projects used in this study 

5.2.1 Zagros Water Conveyance Tunnel (Lot 2) 

Zagros water conveyance tunnel, with a total length of 49 km and a diameter of 6.73 m, 

has been designed to transfer 70m3/s of water from the Sirvan River in the south of the 

city of Nowsood to Dasht-e-Zahab plain. The tunnel was divided into three sections: 1A 

(14 km) as the northeast section, 1B (9 km) as the middle section, and lot 2 (26 km) as 

the southwest section (Figure 5.2). By April 2008, about 5.3 km of lot 2 (26 km) of this 

section had been completed. At the southwest portal, a double-shield TBM was 

launched from a 200-m starter tunnel excavated by the drill and blast method. The tun-

nel is lined with pre-cast concrete segments with a hexagonal arrangement and thick-

ness of 25 cm. The maximum rock cover in section 2 is about 1000 m, with an average of 

about 300 m. Maximum and average overburdens in the bored section are 200 and 150 

m, respectively. The area around the tunnel is located in Zagros Mountain in western 

Iran. The main geological formations outcropped in the project area (in the first 6 km of 

the tunnel) include various carbonate and argillaceous rock units. The oldest geological 

unit along the tunnel alignment is the grey limestone of Illam formation (ch: 03 + 710 to 

ch: 04 + 927) that is located in the core of the A2 anticline (Figure 5.3). 
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Figure 5.2: Details of Zagros water conveyance tunnel scheme, west of Iran (Hassanpour 

et al. 2016) 

 

Figure 5.3: Tunnel profile with engineering geological units of Zagros tunnel lot 2 (Has-

sanpour, 2009) 
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Overlying this unit is the Gurpi formation, which consists of alternating limy shale and 

argillaceous limestone (ch: 02 + 300 to ch: 03 + 710). The youngest unit is the Pabdeh 

formation (ch: 00 + 000 to ch: 02 + 300), which is composed of alternations of dark-gray 

shale and greenish-grey argillaceous limestone. During geological studies in the project 

area, 14 predominant stratigraphic units were identified along the excavated section of 

tunnel alignment (Table 5.3). These units are different members of the above-mentioned 

formations. The geological section in Figure 5.3 shows the distribution of these rock 

units along the mined section of the tunnel. 

Table 5.3: Engineering geological units identified along tunnel alignment of Zagros lot 

2 (Hassanpour, 2009) 

No. 
Engineering geo-

logical unit 

Equivalent stratigraphic 

units 
Main lithology 

1 S1 Pabdeh 

 (Paleogene) 

4a

PdPE  Shale 

2 SL1 
5

PdPE  Argillaceous limestone 

3 S2 
6

PdPE  Shale 

4 LS1 
7

PdPE  Limy shale 

5 LS2 
8

PdPE  Limy shale 

6 S3 
3

PdPE  Shale 

7 SL2 
2

PdPE  Argillaceous limestone 

8  1

PdPE  Argillaceous limestone 

9 S4 Gurpi (Upper Cre-

taceous) 

5a

GuK  Shale 

10 LS3 
4

GuK  Limy shale 

11 S5 
3

GuK  Shale 

12 LS4 
2

GuK  Limy shale 

13  

 
1

GuK  Limy shale 

14 L1 Ilam (Upper Cr.) Ki (K15) Limestone 

 

Structurally, the area around the tunnel is moderately folded and gently faulted. As 

shown in Figure 5.3, the tunnel in the bored section has passed through some minor 
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synclines and anticlines. There are no important faults in the bored section of the tunnel 

route, but some minor faults and shear zones have been identified as crossing the tunnel 

line. The thicknesses of these fault zones are estimated through back mapping of the 

tunnel and it is recognized that they generally range between 10 and 25 m. In the shale 

layers, usually, more than three joint sets with low values of average spacing can be 

observed in the tunnel. This is in addition to foliation and bedding planes. In limestone 

layers, the quality of surrounding rocks changes to less fractured rock masses with more 

systematic and fewer joint sets (typically two conjugate joint sets and bedding planes) 

and higher values of spacing. Due to the folded structure of the tunnel route and the 

existence of some minor faults along the tunnel, the tunnel route can be divided into 

some structural zones. The orientation of bedding planes and related structures (joint 

sets) changes in a wide range in these structural zones. Results of petrographic analyses 

show that, considering mineralogy and texture, there are four main lithotypes in tunnel 

alignment. These lithotypes include (1) limestone, (2) argillaceous limestone, (3) limy 

shale, and (4) shale. The first two lithotypes are competent and more brittle rocks with 

well-developed joint systems and the latter two are incompetent rocks with more plastic 

behaviour and weathered features at outcrops. To measure the physical and mechanical 

properties of these lithotypes, many laboratory tests were performed on samples taken 

from boreholes, tunnel faces, and surface exposures. The main petrographic, physical, 

and mechanical characteristics of these lithotypes are summarised in Table 5.4. To de-

termine drillability indices 12 sets of tests have also been performed by the SINTEF la-

boratory (Trondheim, Norway) on samples taken from different boreholes on the tunnel 

alignment. The summary results of these tests are also presented in Table 5.4 (Has-

sanpour, 2009). 

Table 5.4: Main characteristics of lithotypes in Zagros tunnel, lot 2 (Hassanpour, 2009)  

No Lithotype 
Major 

minerals 

Quartz 

content 

(%) 

Porosity 

(%) 

UCS 

(MPa) 

Tensile 

strength 

(MPa) 

Drilling 

rate index 

(DRI) 

Cutter 

life index 

(CLI) 

1 Limestone Calcite, 

clay min-

erals 

< 5 10-12 100-150 8-10 55-60 75-85 

2 
Argillaceous 

limestone 
< 5 5-8 50-100 6-8 60-65 70-75 

3 Limy shale Clay min-

erals, cal-

cite 

5-15 8-10 20-50 4-6 65-70 60-70 

4 Shale 10-15 5-10 15-30 3-5 70-75 50-60 
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A TBM was launched from a 200 m starter tunnel excavated by the drill and blast 

method. In this project, a double-shield TBM manufactured by Herrenknecht has been 

selected to provide for safer operation in adverse geological zones identified along the 

tunnel route. The cutterhead is laced with 42 17 inch or 432 mm diameter disc cutters 

with a load capacity of 267 kN. The other main specifications of the machine are listed 

in Table 5.5. 

Table 5.5: Main specifications of TBM used in Zagros tunnel lot 2 (Hassanpour, 2009) 

Parameter Value 

Machine diameter 6.73 m 

Cutter diameter 432 mm 

Number of disc cutters 42 

Disc nominal spacing 90 mm 

Max. Operating cutterhead 

thrust 
28,134 kN at 350 bar 

Cutterhead power 2100 kW 

Cutterhead speed 0-11 

Cutterhead torque (nominal) 4450 kN.m at 9 rpm 

Thrust cylinder stroke 1700 mm 

Conveyor capacity (approx.) 690 t/h 

Total TBM weight (approx.) 573 ton 

 

To obtain the required data for the analysis of TBM performance, results of studies per-

formed during the pre-construction phase and construction phase have been compiled 

into a database. During the construction phase and through back-mapping of the tun-

nel, predicted geological and geomechanical properties of the rock mass along the tun-

nel were examined by a detailed investigation of tunnel faces. In addition to sampling 

from surface outcrops and boreholes in the pre-construction phase, during back-map-

ping of the tunnel, many samples were taken from the muck and tunnel face to perform 

tests such as point load index test and petrographic analysis (Hassanpour, 2009; Has-

sanpour et al. 2009). Average values of rock mass parameters (and intact rock proper-

ties) have been used to determine geomechanical conditions of the identified engineer-

ing geological units by some empirical rock mass classification systems including, RMR 

(Bieniawski, 1989), GSI (Hoek et al. 1995, Hoek, 2007) and Q-system (Barton et al. 1974) 

which are illustrated in Figure 5.4. Also, the changes in 0RQD respecting tunnel sections 

is presented in Figure 5.5. Since the dominant and widely used intact rock properties 
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for the estimation of TBM performance isUCS , the changes of this parameter in re-

spected tunnel sections are illustrated in Figure 5.6. As can be seen from the figure, the 

diversity ofUCS in related sections are between 15 till 150 MPa which can be categorized 

within low strength to very high strength according to the International Society of Rock 

Mechanics (ISRM, 1978; 1979).  In the construction phase, machine performance data 

and operating parameters (such as applied thrust, RPM, torque, etc.) were also recorded 

continuously in special sheets and analysed separately. Variations of TBM penetration 

rate (ROP), applied total thrust, and RPM regarding to selected tunnel sections are 

demonstrated in Figures 5.7. As can be seen from the figure, the minimum and maxi-

mum ROP are around 1 and 3.5 (m/h), respectively. 

 

 

Figure 5.4: Variation of basic RMR, GSI, & Q in selected tunnel sections in Zagros lot 2  

 

Figure 5.5: Variation of 0RQD in selected tunnel sections in Zagros lot 2 
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Figure 5.6: Variation of UCS  in selected tunnel sections in Zagros lot 2 

 

0

20

40

60

80

100

120

140

160

3
1
7

4
8
7

6
4
6

7
1
7

7
4
0

8
4
5

9
4
1

1
0
2
1

1
2
0
3

1
4
2
8

1
4
8
7

1
5
9
5

1
7
0
5

1
9
2
6

2
0
1
9

2
1
2
8

2
2
6
3

2
2
8
7

2
3
2
9

2
5
3
2

2
6
5
6

2
7
7
3

2
9
2
1

3
1
0
8

3
3
0
4

3
5
9
4

3
8
7
4

3
9
2
3

4
2
3
3

4
4
8
5

4
5
1
0

4
5
9
5

4
6
2
5

4
9
7
0

5
2
6
9

U
C

S
 (

M
P

a
)

Section chainage

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

3
1
7

4
8
7

6
4
6

7
1
7

7
4
0

8
4
5

9
4
1

1
0
2
1

1
2
0
3

1
4
2
8

1
4
8
7

1
5
9
5

1
7
0
5

1
9
2
6

2
0
1
9

2
1
2
8

2
2
6
3

2
2
8
7

2
3
2
9

2
5
3
2

2
6
5
6

2
7
7
3

2
9
2
1

3
1
0
8

3
3
0
4

3
5
9
4

3
8
7
4

3
9
2
3

4
2
3
3

4
4
8
5

4
5
1
0

4
5
9
5

4
6
2
5

4
9
7
0

5
2
6
9

T
o
ta

l 
T

h
ru

s
t 
(k

N
)

Section chainage (m)



5.2  Geological Description 

149 

 

 

 

Figure 5.7: Variations of total thrust, RPM, and rate of penetration (ROP) in selected 

tunnel sections in Zagros lot 2 

5.2.2 Ghomrood Water Conveyance Tunnel (Lots 3 & 4) 

The Ghomrood water conveyance tunnel is one of the components of a water manage-

ment system in central Iran. This involves a 36 km tunnel from the Dez river to the 

Golpayegan reservoir (Figure 5.8). The tunnel was originally divided into four parcels, 

each about 9 km, and was put out to bid as design/build contracts in 2002. Combined 

parcel 3-4 of this project totalling 18 km at the exit end of the tunnel with a portal access 

had been excavated via double shield TBM manufactured by Wirth with a diameter of 

4.38 was excavated at a grade of 0.134% and finished in winter 2009 with a concrete 
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segmental lining to a diameter of 3.8 m. Machine specifications of TBM is listed in Table 

5.6. 

 

 

Figure 5.8: Geographical location of the Ghomrood project (Farrokh & Rostami, 2008) 

Table 5.6: Main specifications of TBM used in Ghomrood tunnel lot 3 & 4 (Hassanpour, 

2009) 

Parameter Value 

Machine diameter 4.53 m 

Cutter diameter 432 mm 

Number of disc cutters 36 

Disc nominal spacing 75 mm 

Max. Operating cutterhead thrust 18,000 kN 

Cutterhead power 1120 kW 

Cutterhead speed 0-12 

Cutterhead torque (nominal) 802 kN.m at 10rpm 

Thrust cylinder stroke 1400 mm 

Total TBM weight (approx.) 255 ton 
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The area under study is located in the Sanandaj-Sirjan formation of the geological divi-

sions of Iran. This formation consists of a series of asymmetric foldings and faults and 

is gone through mild to high metamorphisms. The lithology of this area consists of a 

sequence of Jurassic–Cretaceous formations. The Cretaceous formation consists of mas-

sive limestone and dolomite while the Jurassic formation mainly consists of slate, schist, 

and metamorphic shale and sandstone units. The majority of the rock mass is consid-

ered to be of weak to fair quality (SCE Company, 2004; Farrokh & Rostami, 2008; Has-

sanpour, 2009). The geological conditions along the tunnel alignment are illustrated in 

the cross-sectional profile in Fig. 5.9.  To collect the required data for the analysis of TBM 

performance, a similar methodology which applied for to data-compilation of Zagros 

tunnel lot 2, had been employed, meaning pre-construction and construction investiga-

tions such as back-mapping of the tunnel face, etc. In brief, according to geological in-

vestigation (Figure 5.9), the lithology encountered along the tunnel can be categorized 

into three main units including: 

• The northeast part of Chal-Hendeh mountain (Tunnel outlet area) which con-

tains Sandstone and Shale that have been altered into metamorphic Slate and 

Phyllite (Jsh1 unit)  

• Elevated and calcareous (limy) section of Chal-Hendeh mountain which is the 

most sophisticated part in terms of lithology, including Carbonate facies (Klm1 

& Klm) 

• The southeast part of Chal-Hendeh mountain which includes Jurassic units (Jsh1 

& Jsh2) located below the Cretaceous limestones with fault boundary. In terms 

of lithology, the section near to the mountain is not different from the first part, 

but in the southwest, this section changed from Slate form to Schist, which 

causes its lithology changed more to quartzite graphite schists.  Another differ-

ence is related to the abundance of quartz veins and quartzite layers which 

quartz veins in the north-eastern part of the mountain have a maximum fre-

quency of around 10% with the maximum thickness around 0.5 m whereas, in 

south-western, the frequency increased to 20 to 30% and the thickness some-

times is even more than 10m.  

Results of petrographic analyses indicate that, considering mineralogy and texture, 

there are six main lithotypes in tunnel alignment. These lithotypes include (1) clay-lime-

stone, (2) limestone, (3) Shale & Slate (4) Low metamorphosed fine Quartzite Sandstone, 

(5) graphite schist, and (6) Quartzite. The main petrographic, physical, and mechanical 

characteristics of these lithotypes are summarised in Table 5.7.  
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Figure 5.9: Geological section through the Ghomrood tunnel excavated alignment, Lot 

3 &4 (Hassanpour, 2009) 
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Table 5.7: Main characteristics of lithotypes in Ghomrood tunnel (Hassanpour, 2009) 

No Lithotype Major minerals Quartz 

content (%) 

Porosity 

(%) 

UCS (MPa) 

1 Clay limestone Calcite, clay minerals, opaque 

minerals  

< 5 < 5 130-150 

2 Massive lime-

stone  

Calcite, clay minerals < 5 < 5 150-175 

3 Slate/Shale Phyllosilicate minerals (clay, 

mica, and chlorite), fine 

quartz, feldspars, iron oxide 

minerals, and opaque miner-

als 

5-10 < 2 20-30 

4  Low metamor-

phosed fine 

Quartzite Sand-

stone 

quartz, feldspars, Phyllosili-

cate minerals (chlorite & 

mica), iron oxide minerals 

and opaque minerals 

> 60 5-10 50-100 

5 Graphite Schist fine feldspars, mica & quartz, 

opaque minerals 

5-10 < 2 20-30 

6 Quartzite quartz, opaque minerals > 90 < 2 > 150 

 

It is worth to note that, average values of rock mass parameters (and intact rock prop-

erties) have been utilized to determine and assess the geomechanical conditions of the 

identified engineering geological units by some empirical rock mass classification sys-

tems including, RMR (Bieniawski, 1989), GSI (Hoek et al. 1995) and Q-system (Barton et 

al. 1974) which are illustrated in Figures 5.10. The changes of 0RQD related to selected 

bored tunnel sections is also depicted in Figure 5.11 which ranges between 10 to 100 and 

based on Deere et al. (1967), it can be classified as very poor rock to excellent rock qual-

ity. Besides that, the diversity of commonly used intact rock properties for estimation of 

TBM performance (UCS ), relative to tunnel sections is also illustrated in Figure 5.12 

graphically to reflect the variation of compressive strength in bored sections of the tun-

nel. Furthermore, during the construction phase, machine performance data, and oper-

ating parameters (such as applied thrust, RPM, torque, etc.) were also recorded contin-

uously in special sheets and analysed independently. As a such, the variations of TBM 

penetration rate (ROP), applied total thrust, and RPM are depicted in Figures 5.13. 
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Figure 5.10: Variations of basic RMR, GSI & Q value in selected tunnel sections in Ghom-

rood tunnel lot 3 & 4 

 

Figure 5.11: Variations of 0RQD (%) in selected tunnel sections in Ghomrood tunnel lot 3 

& 4 
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Figure 5.12: Variations ofUCS in selected tunnel sections in Ghomrood tunnel, Lot 3 & 

4 
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Figure 5.13: Variations of total thrust, RPM, and rate of penetration (ROP) in selected 

tunnel sections in Ghomrood tunnel lot 3 & 4   

5.2.3 Karaj-Tehran Water Conveyance Tunnel 

The Karaj-Tehran Water Conveyance Tunnel has been designed to transfer 16 m3/s of 

water from the Karaj (Amir-Kabir) Dam northeast of Karaj City to Tehran City (Figure 

5.14). The tunnel was divided into two sections: Lot 1 or ET-K (16 km) at the southeast 

end and Lot 2 or K-P (14 km) at the northwest end of the project area. Lot 1 of the project 

started in 2006 and had been excavated by double-shield TBM manufactured by Her-

renknecht, finished by 2009. Machine specifications of TBM is listed in Table 5.8. The 

available data for this project includes the first 8.7 km of Lot 1.  
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Figure 5.14: Details of Karaj water conveyance tunnel scheme, northwest of Tehran 

(Hassanpour, 2009) 

Table 5.8: Main specifications of TBM used in Karaj-Tehran water Conveyance Tunnel, 

lot 1 (Hassanpour, 2009)   

Parameter Value 

Machine diameter 4.65 m 

Cutters diameter 432 mm 

Number of disc cutters 31 

Disc nominal spacing 90 mm 

Maximum operating cutterhead thrust 16,913 kN 

Cutterhead power 1,250 kW 

Cutterhead speed 0-11 rpm 

Cutterhead torque (nominal) 1,029 kNm (11 rpm) 

Thrust cylinder stroke 1,400 mm 

Conveyor capacity (approx.) 200 m3/h 

TBM weight (approx.) 170 ton 

 

The maximum overburden in section Lot- 1 is 670 m, with an average of about 400 m. 

The elevation of K‘ and ET points at the two ends of the section are 1,582 m and 1,560 

m, respectively, with a slope of 0.013 % toward the outlet portal. Geological units of this 

area comprise a sequence of Karaj formations having a variety of pyroclastic rocks, often 

interbedded with sedimentary rocks. The characteristic rock types are green vitric to 
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crystal lithic tuff, tuff breccias, sandy and silty tuffs with shale, siltstone, and sandstone 

(Hassanpour et al. 2010). The engineering geological profile of the tunnel (Fig. 5.15) 

shows the distribution of rock units along the bored section of the tunnel. During the 

geological studies in the project area, 14 predominant stratigraphic units were identified 

along the tunnel alignment. Table 5.9 lists 11 stratigraphic units encountered in the 

bored section of the tunnel.  

Table 5.9: Stratigraphic and engineering geological units identified along the Karaj-Teh-

ran tunnel (Hassanpour, 2009) 

No Stratigraphic 

units 

Lithology Engineering geologi-

cal units 

1 U14 Undifferentiated rocks of U11 to U13 

units 

Gta1 

2 U13 Sandstone, green vitric tuff, and siliceous 

tuff 

Gta2 

3 U12 Light cream lithic and vitric tuff 

 

4 U11 Sandstone and micro-conglomerate Gta3 

5 U10 Siliceous green tuff and sandstone 

6 U9 Green vitric and lithic tuff and siltstone Sts2 

7 U8 Siliceous green tuff and sandstone 

8 U7 Massive green tuff Sts1 

9 U6 Tuffy siltstone 

10 U5 Sandstone and micro-conglomerate 

11 U4 Alternation of thin-bedded shale, silt-

stone, and sandstone 

Tsh 

- - Intense faulted zone, crushed zone Cz 

 

The area along the tunnel is moderately folded and intensively faulted. Further, some 

minor faults and shear zones have been observed at the tunnel face. As shown in the 

geological cross-section (Fig. 5.15), the bored section of the tunnel has passed through a 

wide syncline (Azgilak syncline) and anticline (Vardij anticline), and some thrust faults 

with different length of influence zone. Due to the folded structure of the area and the 

existence of some thrust faults, the tunnel route can be divided into several structural 

zones. The orientation of bedding planes and related structures (joint sets) changes in 

different structural zones. The most important thrust faults in the area are the Poorkan-

Vardij and North Tehran faults. Although the alignment has been chosen to avoid these 
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two major faults, the first 3 km of the tunnel have passed through the zone of influence 

of these two major faults, resulting in many delays due to instabilities in the tunnel 

walls. In addition, some minor faults and shear zones have been identified as crossing 

the tunnel line. The thickness of the fault zones is thought to be generally between 10 

and 50 m. 

 

 

Figure 5.15: Geological cross-section along the Karaj-Tehran tunnel (Hassanpour, 2009) 

The bored section of the tunnel can be subdivided into 7 segments (engineering geolog-

ical units) with uniform characteristics related to TBM performance, tunnel stability, 

and groundwater inflow. This was based on studies of outcrops; core boxes and also 

results of laboratory and field tests. The main petrographic, physical, and mechanical 

characteristics of these lithotypes are summarised in Table 5.10.  

Average geomechanical characteristics of the engineering geological units in the area 

were assessed using some empirical rock mass classification systems, RMR (Bieniawski 

1989), GSI (Hoek et al. 1995, Hoek 2007) and Q-system (Barton et al. 1974) which the 

results of calculation of different rock mass classification parameters are depicted in 

Figure 5.16.  Besides that, the diversity ofUCS & 0RQD which are representative of intact 

and rock mass properties in each selected section of bored tunnel are shown in Figures 



Chapter 5  Geological Description & Data Collection 

160 

5.17 & 5.18, respectively. As shown in Figure 5.17, the averageUCS ranges between 30 

and 150 MPa. Also, data obtained from the back mapping of the tunnel was used to 

analyse TBM performance and also to verify design assumptions. In addition, machine 

performance data and operating parameters (such as applied thrust, RPM, torque, etc.) 

were recorded continuously by the data acquisition system. The respected ROP, total 

thrust, and RPM of selected bored tunnel sections are presented in Figure 5.19. 

Table 5.10: Main characteristics of lithotypes in Karaj-Tehran tunnel (Hassanpour, 

2009) 

No Lithotype Major minerals Quartz con-

tent (%) 

Poros-

ity (%) 

UCS 

(MPa) 

BTS 

(MPa) 

1 Vitric tuff Feldspars, clay miner-

als, 

calcite, quartz 

5 1-10 30-100 5-10 

2 Lithic tuff Rock fragments, feld-

spars, 

clay minerals, chlorite, 

quartz 

15 3-6 50-80 6-8 

3 Siliceous tuff Silica, feldspars, clay 

minerals, quartz 

30 1-3 80-160 8-12 

4 Sandstone, mi-

croconglomer-

ate 

Feldspars, clay miner-

als, 

calcite, chlorite, quartz 

20 1-5 40-80 6-8 

5 Siltstone, shale Clay minerals, calcite, 

quartz, chlorite 

10 1-5 30-50 5-6 
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Figure 5.16: Variations of basic RMR, GSI & Q value in selected tunnel section in Karaj-

Tehran water conveyance tunnel  

 

Figure 5.17: Variations ofUCS in selected tunnel section in Karaj-Tehran water convey-

ance tunnel 

0.1

1

10

100

0

10

20

30

40

50

60

70

80

90

4
7
3

5
8
6

7
6
8

1
1
0
5

1
3
8
0

1
5
1
7

1
5
7
3

1
9
0
9

2
1
0
9

2
2
7
2

2
4
5
8

2
6
7
8

2
8
9
5

3
1
3
2

3
5
0
3

3
7
8
7

4
1
3
9

4
2
3
8

4
3
1
4

4
6
2
8

4
7
8
6

4
9
1
0

5
0
1
8

5
1
8
3

5
2
3
1

5
3
4
0

5
5
6
5

5
7
9
3

5
8
1
9

6
1
7
9

6
6
3
4

7
0
4
1

7
3
0
5

7
4
8
2

7
6
5
9

7
8
1
3

7
8
9
5

8
2
5
2

8
3
8
8

8
4
8
0

8
5
9
8

Q
 v

a
lu

e

B
a

s
ic

 R
M

R
 a

n
d

 G
S

I 
v
a

lu
e

s

Section chainage

Basic RMR GSI Q

0

20

40

60

80

100

120

140

160

4
7
3

5
8
6

7
6
8

1
1
0
5

1
3
8
0

1
5
1
7

1
5
7
3

1
9
0
9

2
1
0
9

2
2
7
2

2
4
5
8

2
6
7
8

2
8
9
5

3
1
3
2

3
5
0
3

3
7
8
7

4
1
3
9

4
2
3
8

4
3
1
4

4
6
2
8

4
7
8
6

4
9
1
0

5
0
1
8

5
1
8
3

5
2
3
1

5
3
4
0

5
5
6
5

5
7
9
3

5
8
1
9

6
1
7
9

6
6
3
4

7
0
4
1

7
3
0
5

7
4
8
2

7
6
5
9

7
8
1
3

7
8
9
5

8
2
5
2

8
3
8
8

8
4
8
0

8
5
9
8

U
C

S
 (

M
P

a
)

Section chainage (m)



Chapter 5  Geological Description & Data Collection 

162 

 

Figure 5.18: Variations of 0RQD in selected tunnel section in Karaj-Tehran water convey-

ance tunnel 
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Figure 5.19: Variations of total thrust, RPM, and rate of penetration (ROP) in selected 

tunnel section in Karaj-Tehran water conveyance tunnel 
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5.2.4 Golab Water Conveyance Tunnel 

Golab water transfer tunnel was introduced with the aim of transferring Zayandehrud 

river water to Kashan in Iran. This project with an approximate length of 11.5 km in-

cludes the main tunnel, an access tunnel, a water intake tunnel, and a pumping station 

cavern. After passing through the 10 km main tunnel, water is transferred to the pump-

ing station cavern by a water intake tunnel, and finally, it is pumped through the 1.5 km 

pipeline in the access tunnel to the refinery at the portal (See Figure 5.20). The tunnel is 

excavated from the inlet to the outlet with a negative dip angle. The machine used in 

the Golab tunnel was a double-shield TBM with a 4.495 m diameter manufactured by 

Wirth. The cutterhead was laced with 35 discs cutters, 432 mm in diameter. The cutter-

head was designed with six (6) cutters as the center cluster, 26 single face cutters, and 3 

are gage cutters. Overall specifications of the machine are shown in Table 5.11. 

 

Figure 5.20: (a) Location of the project, (b) A large-scale view of the project, (c) small- 

scale view of the project indicating various components of Golab water 

transfer tunnel (Fatemi, 2016) 
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Table 5.11: Main specifications of TBM used in Golab water Conveyance tunnel (Wirth 

TBM- TB 458 E/TS) (Fatemi, 2016) 

Parameter Value 

Machine diameter 4.495 m 

Number of disc cutters 35 

Disc cutter diameter 432 mm 

Disc nominal spacing 75 mm 

Max. Cutterhead rotational speed 12 rpm 

Max. Cutterhead torque 80 kNm at 12 rpm 

Max. Thrust force 20000 kN 

Total machine power 1750 kW 

Cutterhead power 1120 kW 

 

The tunnel path is surrounded by numerous faults. These faults have been identified by 

the surface exploration of outcrops. Given the considerable depth of the tunnel, predict-

ing the location of these faults along the tunnel route based on surface surveying is not 

very accurate. Therefore, to determine the exact location of faults intersecting the tunnel 

an as-built geological map has been developed. This map has been used in the database 

of machine performance to represent the ground conditions (Fatemi, 2016). The back-

mapping shows that rock masses along the tunnel route can be divided into several 

zones based on different geological characteristics and geomechanical properties of the 

units. Table 5.11 shows a list of engineering geological units and their approximate 

length in the bored tunnel. From the geological aspect, Golab's main tunnel is situated 

in the metamorphosed zone of Sanandaj-Sirjan. The starting part of the tunnel which is 

located in the shear zone of Chadegan mostly contains metamorphic rocks including 

different types of Schists and some igneous rocks. Besides, the middle part of the tunnel 

includes an intermittent set of slightly metamorphic argillaceous shales which in some 

cases were converted to slates and Phyllites. The end part of the tunnel is located in the 

intersection area of the main tunnel and the access tunnel generally consists of limestone 

and conglomerate. Figure 5.21 also indicates the longitudinal profile of the tunnel. En-

gineering geological studies were conducted to determine the geomechanical properties 

of different units along the tunnel. Also, 10 boreholes were drilled along the tunnel route 

and some tests were carried out on samples taken from boreholes as well as tunnel face. 

Ground characteristics of various engineering geological units are summarized in Table 

5.12. 
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Table 5.12: Engineering geological units along Golab alignment (Fatemi, 2016) 

Chainage 

(m) 

Engineering 

geological 

units 

Stratigraphic units Lithology No. 

4070.75 Met-Sch 𝐽1𝑚𝑒𝑡
𝑀.𝑆𝑐ℎ, 𝐽1𝑚𝑒𝑡

𝑆𝑐ℎ , 𝐽1𝑚𝑒𝑡
𝐺𝑟.𝑆𝑐ℎ, 𝐽1𝑚𝑒𝑡

𝐶ℎ.𝑆𝑐ℎ, 

𝐽1𝑚𝑒𝑡
𝐴𝑐.𝑆𝑐ℎ, 𝐽1𝑚𝑒𝑡

𝐵𝑖.𝑆𝑐ℎ, 𝐽1𝑚𝑒𝑡
𝑄.𝑀.𝑆𝑐ℎ

 

Quartz Muscovite Biotite 

chlorite Schist 

1 

109.83 Li  Gray Massive Limestone 2 

1147.22 Met-Sh 𝐽3𝑠𝑒𝑡
𝑆𝑐ℎ  Low Metamorphosed 

Greenish Gray Shale 

3 

1069.54 Met-Phy 𝐽2𝑀𝑒𝑡
𝑃ℎ𝑦

 Very Weak Black Phyllite 4 

672.45 Met-SI 𝐽2𝑀𝑒𝑡
𝑆𝐼  Very Weak Greenish Slate 5 

1737.63 Ig 𝑀𝑜 − 𝐷𝑖, 𝐷𝑖, 𝐷𝑜𝑙, 𝑇𝑜, 𝐴𝑃 Fine to Medium Grain Ig-

neous Rocks 

6 

422.2 Met-Ig 𝐺𝑟 − 𝐺𝑚𝑒𝑡 , 𝐷𝑜𝑙𝑚𝑒𝑡 , 𝑉𝑜𝑙𝑚𝑒𝑡  Metamorphosed Igneous 

Rocks 

7 

299.56 Met-Sa 𝐽2𝑚𝑒𝑡
𝑆𝑡  Schistose Meta Sandstone 8 

126.14 Ar-Li 𝐾𝑘𝑚 , 𝐾𝑘𝑚
𝑏𝑔𝑟

 Argillaceous Limestone 9 

57.62 Cg.r 𝑃𝑐𝑔, 𝑃𝑐𝑟 Red Conglomerate 10 

130.9 Cg-Li. Sn 𝐸𝑐, 𝐸𝑐𝐿−𝑆, 𝐸𝑐𝑠𝐿−𝑆 Gray Conglomerate with 

Limy Sandstone 

11 

13.41 CZ  Crushed Zone 12 

113.75 FZ  Fracture Zone 13 

 

Database of Golab tunnel TBM performance includes the geotechnical information as 

well as TBM operating parameters gathered by the machine’s PLC system. Average ge-

omechanical characteristics of the engineering geological units in the area were assessed 

using some empirical rock mass classification systems, such as RQD (Deere et al. 1967), 

RMR (Bieniawski 1989), GSI (Hoek et al. 1995, Hoek 2007), and Q-system (Barton et al. 

1974) which the results of calculation of different rock mass classification parameters 

regarding to each lithology are summarized in Table 5.13. Figure 5.22 presents the total 

thrust, RPM, and ROP related to some selected tunnel sections in the Golab water con-

veyance tunnel.    
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Table 5.13: Main physical & mechanical characteristics of lithotype encountered along 

the Golab tunnel (Fatemi, 2016; Imensazan Consulting Engineering “ICE”, 

2009) 

Lithology UCS (MPa) Is (50) (MPa) RQD (%) RMRbasic GSI Value Q value Porosity (%) 

Met- Sch 12-17 1.5 - 3 25-35 40-45 35-40 0.4-0.95 4.5- 8.5 

Li 50-60 2 - 4.5 70-80 49-57  44-52 1.2-2.2 0.5 - 2.5 

Met-Sh 2 - 6.5 0.83 - 0.1 20-25 28-33  25-30 0.9-0.17 5.5 - 10.8 

Met-Phy 7-12 0.65 - 1.5 20-30 34-40 30-35 0.18-0.25 4.2 - 6.5 

Met-SI 4-8 0.2 - 1 20-25 32-37 28-34 0.15-0.25 7.7 - 10.4 

Ig 108- 130 5.8 - 7 75-90 72-76 62-65 8.5-20.5 0 - 0.15  

Met-Ig 60 – 65 3.5 - 5.5 50-70 60-68 65-60 3.5-7.5 0.1 - 0.5 

Met-Sa 25 – 30 1.8 - 3 35-50 48-52 45-49 0.8-1.4 6 - 8.5 

Ar-Li 10 - 13.5 1 - 2.2 45-55 48-53 43-48 0.3-1 7.1 - 8.8 

Cg.r 21 – 31 2-4 50-60 46-55 44-52 0.8-1.5 1.5 - 2.51 

Cg-Li. Sn 71.5 - 85 4.1 - 5 90-100 60-67 48-54 1.8-4 0.43 - 0.75 

 

 

 

 

Figure 5.21: Profile of engineering geological units along Golab tunnel (Fatemi, 2016) 
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Figure 5.22: Variations of total thrust, RPM and ROP in some selected tunnel sections in 

Golab water transfer tunnel 
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5.2.5 Maroshi-Ruparel Water Supply Tunnel 

To improve the water supply to Vakola, Mahim, Dadar and Malbar Hill of Greater 

Mumbai, a 12.24 km long tunnel between Maroshi and Ruparel College is being exca-

vated by TBM. The tunnel is divided into three sections, i.e., Maroshi–Vakola (5.834 km 

long), Vakola–Mahim (4.549 km long), and Mahim–Ruparel Col-lege (1.859 km long) 

(Figure 5.23). The longest tunnel between Maroshi and Vakola has been completed. 

WIRTH TB-II-320H and TB-II-360H TBMs (Hard rock, Open type) were used for the 

excavation of Maroshi–vent hole and Vakola–vent hole tunnel sections, respectively. 

These are refurbished full-face hard rock TBMs and refurbishment was carried out un-

der the supervision of the equipment manufacturer. Main TBMs specifications are given 

in Table 5.14 & 5.15 respectively. 

The tunnel boring was extremely challenging between Maroshi and Vakola section due 

to heavy water seepage, varying rock strata conditions, and the presence of various 

weak zones. The rock mass conditions were assessed by precise judgment using for-

ward probing and “3D” geological logging of tunnel walls. Studies indicate that in Dec-

can traps, variations in rock types, flow contacts, rock strength, and volumetric joint 

amount with the presence of weak zones have predominantly affected the penetration 

rate and stability of tunnels.  

 

 

Figure 5.23: Location map of the study area, Maroshi-Ruparel tunnel (Jain, 2014) 
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Figure 5.24: Plan map of Maroshi–Ruparel College tunnel and shafts (Jain, 2014) 

Table 5.14: Main specifications of TBM Maroshi-Vent hole stretch (Wirth / TB-II-320H), 

(Jain, 2014) 

Parameter Value 

Machine diameter 3.6 m 

Cutter diameter 432 mm 

Number of disc cutters 31 

Disc nominal spacing 62 mm 

Maximum operating cutterhead thrust 3828 kN (220 bar) 

Cutterhead speed 0-14 rpm 

Cutterhead torque 225 kNm (225 bar) 

Thrust cylinder stroke 1,100 mm 

Muck handling capacity 5 m/h 

TBM weight (approx.) 107 ton 
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Table 5.15: Main specifications of TBM Vakola-Vent hole stretch (Wirth / TB-II-360 H) 

(Jain, 2014) 

Parameter Value 

Machine diameter 3.6 m 

Cutter diameter 432 mm 

Number of disc cutters 31 

Disc nominal spacing 62 mm 

Maximum operating cutterhead thrust 3828 kN (220 bar) 

Cutterhead speed 0-12 rpm 

Cutterhead torque 185 kNm (185 bar) 

Thrust cylinder stroke 1,100 mm 

Muck handling capacity 5 m/h 

TBM weight (approx.) 107 ton 

 

Geologically, the entire Mumbai area is occupied by Deccan basaltic flows and the as-

sociated pyroclastic and the plutonic rocks of the Upper Cretaceous to Palaeogene age 

classified as Sahyadri Group. Deccan basalt of Mumbai Island is considered to be the 

youngest basalt of the Eocene age. Overall, the geology around Mumbai indicates the 

presence of ultrabasic, basic, and acid differentions with intertrappean beds, agglomer-

ates, and tuffs. The ultrabasic differentiates are of limited occurrence. Acid rocks include 

quartz trachyte. The agglomerate and tuff include reworked materials as indicated by 

the current bedding as well as graded bedding. The lava pile of Mumbai is intruded by 

columnar jointed, medium-grained doleritic dykes. The rock types encountered during 

tunnelling are fine compacted basalt, porphyritic basalt, amygdaloidal basalt, and py-

roclastic rocks, namely tuff and tuff breccia with layers of red boles and intertrappean 

beds consisting of different types of shales. The thickness, presence, and structural char-

acteristics of fine compacted basalt, porphyritic basalt, and amygdaloidal basalt vary in 

different flows, depending on properties of magma, cooling history, and geological con-

ditions at the time of formation, which make these rock types suitable or unsuitable for 

engineering structures. Vesicles and amygdales increase toward the top of a flow unit 

which in turn merges into the bole at some places. The red bole is overlain by the mas-

sive strata of the next younger flow unit. Vesicular basalt with empty gas cavities and 

amygdaloidal basalt with gas cavities filled with secondary minerals like zeolites, car-

bonate minerals, and secondary silica, i.e., agate, etc., do not have a regular pattern of 

jointing and are massive, while compacted basalt with no gas cavities is usually jointed. 

The lava flows show various types of structures such as joints, fractures, vesicles, veins, 
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breccias clasts, mafic-dykes, and amygdule with different shapes like a circular, ellipti-

cal, and irregular boundary. Due to the emplacement of the traps upon the eroded sur-

faces of the earlier rock strata, minor undulations in the flow were also observed. The 

general flows contact dip varies between 30°and 45°in N020°-N040°and N200°-N220°di-

rections. Some flow contacts were open, filled with weathered, altered, or soft materials 

while some were tight and commonly coalescent. Open flow contacts provide passage 

for water and weathered materials. Weathered or soft materials are generally deposited 

during the time internal between two flows. The angle between the tunnel axis and the 

flow contact was 80°and penetration rate was less at flow contact. The advance rate was 

low in the case of open flow contact zones while it was high in tight flow contact zones. 

The sequences of flows are different in different chainages of tunnel indicating they do 

not have a regular structure like ideal sedimentary rocks. In sedimentary rocks, beds 

having plane surface stops and bottoms, constant dip, uniform thickness, and wide lat-

eral extent, such a disparity in sequences could validly be interpreted as a fault. It has 

now been well established that Deccan trap basalt flows do not have such regular struc-

ture, and have limited the lateral extent and stretch out over short distances. There is 

variation in thicknesses, i.e., flows usually have a different thickness in different parts. 

Its tops and bottoms are not regular plane surfaces with constant dip but irregular sur-

faces. As a result, it is almost invariable that the flow sequence in boreholes, which were 

drilled during the investigation does not normally match. This disparity however does 

not indicate faulting as it would be in the case of beds with regular structural behaviour. 

Hence, the possibility of the occurrence of a fault between boreholes need not be appre-

hended merely because the flow sequence in boreholes does not match, as this disparity 

is the outcome of the structural irregularity of the basalt flows. Traps show two or more 

sets of vertical joints. Horizontal joints are parallel to the top or bottom surfaces. Two 

sets of columnar joints were observed in thicker flows. Fractures were identified and 

they were generally parallel to the prominent joint directions. Conchoidal fracturing of 

rock mass was a common feature. Generally, amygdaloidal basalt and tuff breccia were 

massive while in porphyritic basalt the spacing of joint sets was more than 2 m and in 

fine-grained jointed compacted basalt, it varied from 10 cm to 30 cm. Generally, the TBM 

penetration rate was greater in fine compacted basalt than that in the porphyritic basalt. 

Veins are extension fracture that was filled with mineral deposits of quartz, calcite, and 

zeolites of different dimensions. They were generally sheet-like or tabular or regular in 

shape. Veins have major influences on cavability and fragmentation and may be weaker 

or stronger than the wall rock. In the tunnels, generally, calcite and zeolite veins were 

mapped. About 32 cm to 3.5 m thick mafic dykes were mapped in the Vakola shaft area. 

The dyke exhibits prominent columnar joints, which were formed due to differential 

volume changes in cooling and contracting magma. No curviplanar (fold) structure was 
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observed during the geological “3D” logging of the tunnel wall (Jain, 2014). The miner-

alogical content of basaltic rocks was analysed for each rock type. Major mineral com-

position of fine-grained basalt and porphyritic basalt constitutes plagioclase (40-45%), 

pyroxene (15-20%), glass (10-15%), iron oxide (8-10%), and secondary calcite (7-10%), 

and groundmass was composed of plagioclase, pyroxeneand glass. The mineral con-

tents of the amygdaloidal basalt and tuff breccia are plagioclase (35%), devitrified glass 

(30%), pyroxene (20%), and oxide phase (15%), and groundmass was composed of glass, 

chlorite, calcite, and zeolite. Cutter abrasion in basalts and breccia was less due to less 

quartz and low silica percentage. Basalt generally has a composition of SiO2(45-55%), 

total alkalis (2-6%), TiO2 (0.5-2%), FeO (5-14%) and Al2O3 (14% or more). The content of 

CaO is commonly about 10% and that of MgO is usually in the range of 5-12%. A de-

tailed engineering geological investigation, as well as laboratory investigation, were car-

ried out in the tunnels and related core samples to acquire the geological and/or ge-

otechnical details for rock mass quality assessment. Laboratory rock strength test results 

of core samples are given in Table 5.16. 

Table 5.16: Laboratory rock strength results of core samples (Jain, 2014) 

Rock type UCS (MPa) Is (50) BTS (MPa) Brittleness index 

Fine compact basalt 33.35-115.90 - 2.57-13.31 8.26-15.12 

Porphyritic basalt 115.87-143.33 - 8.76-15.26 8.31-15.78 

Amygdaloidal basalt 54.10-65.70 - - - 

Tuff breccia 26.43-50.20 1.33-3.44 1.5-3.2 4.60-11.5 

Tuff 15.68-24.28 0.5-1.25 1.6-3.8 4.12-15.17 

Flow contact zone 12.40-31.87 - - - 

Intertrappeans (shale) 28.30-34.35 - 4.90-6.10 4.63-7.10 

 

Various rock types encountered during tunnelling which are illustrated graphically in 

Figures. 5.25 and 5.26. In this project, the rock mass was characterized using RMR clas-

sifications (Bieniawski, 1989). RMR values were calculated after geological mapping 

and measurements of discontinuity data. In the Maroshi–vent hole section, 1160 m 

lengths fell in the good rock mass category, while 1098.5 m, 453 m and 375 m lengths 

fell in fair, very good, and poor rock mass categories respectively. In the Vakola–vent 

hole section, 1510.5 m length was of good rock mass category, while 998 m, 60 m, and 

22 m lengths were of fair, very good, and poor rock mass categories respectively. Gen-

erally, the rock conditions were fair to good except at or near the flow contacts where 

poor to fair rock mass conditions were observed. For medium quality rock masses (RMR 
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of 40-75), the maximum TBM performances (penetration rate and advance rate) were 

achieved while lower penetration was for poor and very good rock masses. 

 

Figure 5.25: Lithological mapping along the tunnel from Maroshi to vent hole (Ch. 90-

3180 m) (Jain, 2014) 

 

Figure 5.26: Lithological mapping along the tunnel from Vakola to vent hole (Ch. 57–

2645 m) (Jain, 2014) 
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About 3534 m lengths, of the tunnel, was excavated in basalts (compacted basalt-3341 

m, porphyritic basalt-193 m). TheUCS of the intact basalt varied from 33.35 MPa to 

143.33 MPa and the rock mass fell in fair to good rock mass categories. A total of 35.0 m 

was excavated in the amygdaloidal basalt. In addition, a total of 1617 m of tunnel length 

(tuff breccia-1257 m, tuff-360 m) was excavated in tuff breccias and tuff. Also, there were 

sedimentary beds known as intertrappean beds associated with the Deccan trap lava 

flows. They were predominantly made up of argillaceous and carbonaceous shales. The 

fine-grained variety of shale had good compressive strength, i.e., up to 34.35 MPa, but 

it was thinly bedded. Approximately 90 m of tunnel length was excavated in the inter-

trappean shales, which was about 2% of the total length. The assessment of ‘RMR’ and 

‘Q’ and ‘GSI’ in selected tunnel sections are shown in Figure 5.27 & 5.28. It is worth to 

be noted that, RMR has been estimated directly from the tunnel sites and related core 

samples, and the other rock mass classifications including, Q and GSI have been meas-

ured via related converting equations which can be found in Singh & Goel (2011). De-

tailed engineering geological mapping, geological logging of drill holes, rock mass per-

meability values, in-situ testing, and laboratory test results, rock mass was evaluated in 

which the variations of respectedUCS and 0RQD regarding to each tunnel sections are 

presented in Figures 5.29 to 5.32 respectively. Also, machine performance data and op-

erating parameters (such as applied thrust, RPM, torque, etc.) were recorded continu-

ously and analysed separately. The respected ROP, total thrust, and RPM of selected 

bored tunnel sections for each tunnel are presented in Figure 5.33 & 5.34. 

 

 

Figure 5.27: Variations of basic RMR, GSI & Q value in selected tunnel sections in Ma-

roshi to vent hole Tunnel 
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Figure 5.28: Variations of basic RMR, GSI & Q value in selected tunnel sections in Vakola 

to vent hole Tunnel 

 

Figure 5.29: Variations of UCS in selected tunnel sections in Maroshi to vent hole Tunnel 
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Figure 5.30: Variations of 0RQD in selected tunnel sections in Maroshi to vent hole Tun-

nel 

 

Figure 5.31: Variations ofUCS in selected tunnel sections in Vakola to vent hole Tunnel 
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Figure 5.32: Variations of 0RQD in selected tunnel sections in Vakola to vent hole Tun-

nel 
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Figure 5.33: Variations of total thrust, RPM and ROP in selected tunnel sections in Ma-

roshi to vent hole Tunnel 
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Figure 5.34: Variations of total thrust, RPM and ROP in selected tunnel sections in 

Vakola to vent hole Tunnel 

5.2.6 Manapouri Second Tailrace Tunnel 

The Second Manapouri Tailrace Tunnel (SMTT), located in the Fiordland region of 

Southern New Zealand (5.35), was constructed between 1997 and 2002 as part of a 700 

MW hydropower project of Meridian Energy Ltd, New Zealand (Deere et al., 2004; 

Maidl et al., 2008; Papke and Heer, 1999; Delisio, 2014). The 9.6 km long, 10 m diameter 

tunnel was constructed near an existing tailrace tunnel (Tunnel No. 1) to increase the 

power output of the existing Manapouri Power Station. With the exception of a few 

hundred meters at either portal, a TBM was used to excavate Tunnel No. 2 (Watts et al. 

2003). The tunnel connects the existing power station at Lake Manapouri to the outlet 

portal located in the “Deep Cove Area”, formed by a low relief delta of the Lyvia River. 

0

2

4

6

8

10

12

1
4
7

1
6
0

2
3
0

2
8
2

3
3
0

7
6
0

8
8
0

9
4
0

1
2
8
0

1
2
8
5

1
3
0
1

1
4
7
5

1
5
5
0

1
5
6
5

1
6
0
0

1
6
3
4

1
6
4
0

1
6
4
5

1
6
6
0

1
7
3
5

1
7
5
0

1
9
9
2

2
0
0
2

2
2
0
7

2
2
6
7

2
2
8
7

2
3
4
0

2
3
7
0

2
5
2
0

2
5
6
0

2
5
8
0

2
5
9
0

R
P

M

Section chainage (m)

0

1

1

2

2

3

3

1
4
7

1
6
0

2
3
0

2
8
2

3
3
0

7
6
0

8
8
0

9
4
0

1
2
8
0

1
2
8
5

1
3
0
1

1
4
7
5

1
5
5
0

1
5
6
5

1
6
0
0

1
6
3
4

1
6
4
0

1
6
4
5

1
6
6
0

1
7
3
5

1
7
5
0

1
9
9
2

2
0
0
2

2
2
0
7

2
2
6
7

2
2
8
7

2
3
4
0

2
3
7
0

2
5
2
0

2
5
6
0

2
5
8
0

2
5
9
0

R
O

P
 (

m
/h

)

Section chainage (m)



5.2  Geological Description 

181 

 

Figure 5.35: Location of the Second Manapouri Tailrace Tunnel (SMTT) project (Deere 

et al. 2014) 

As shown on the geological profile in Figure 5.36, the TBM part of the tunnel was sub-

divided into four reaches during the design phase. 

• Reach 1 (1’770 m long, from Tm 10+00 to Tm 27+70) was excavated in mixed 

meta-sediments, primarily consisting of non-banded and banded gneiss and in-

ter-bedded meta-sedimentary calc-silicate rocks. 

• Reach 2 (2’530 m long, from Tm 27+70 to Tm 53+00) consists of hard rock such as 

gabbro/diorite and diorite gneiss, but also contains banded gneiss with some in-

ter-bedded calc-silicate rocks. 

• Reach 3 (1’880 m long, from Tm 53+00 to Tm 71+00) is mainly constituted by 

banded gneiss, amphibolite, and amphibolite-gneiss with only minor amounts of 

pegmatite and granite. 

• Reach 4 (3’600 m long, from Tm 71+00 to Tm 107+00) intercepts banded and non-

banded massive gneiss with inter-layers of calc-silicate and intruded pegmatite 

and granite, which are more prevalent in this reach. 
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Figure 5.36: Geological longitudinal profile along the SMTT (Delisio, 2014) 

The surface geology along the tunnel alignment is shown in Figure 5.37. Several large, 

regional-scale faults were identified from the construction of Tunnel No.1 and from sur-

face geological mapping. From the west portal at Deep Cove, towards the east portal at 

Lake Manapouri, a first fault zone of crushed and sheared rock, named “Wilmot Fault” 

is encountered between Station 14+52 and 15+04 (Reach 1). The “Stella Burn Fault” is 

then met at Station 26+95. It consists of a zone of blocky/seamy rocks cut by several 

sheared zones over a length of approximately 90 m. After around 1’300 m, the “Disaster 

Branch Fault” is encountered. It can be described as a wide fault zone consisting of 

crushed/sheared/shattered rock with a well-defined hanging wall striking approxi-

mately 45˚ off the tunnel alignment. The “Disaster Burn Fault” is located in Reach 3 and 

intercepts Tunnel No.2 for around 14 m between Station 54+14 and 54+28. It is formed 

by sheared and crushed material, representing the poorest conditions found in Tunnel 

No.2. Finally, the last major fault named “Mica Burn Fault” is encountered between Sta-

tion 67+04 and 68+24. Although this is the largest fault zone encountered, it was charac-

terized by relatively good tunnelling conditions (Delisio 2014; Watts et al. 2003; Deere 

et al. 2004). 
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Figure 5.37: Surface geology along the SMTT alignment (Delisio, 2014) 

The rock encountered along the tunnel alignment includes, gneiss with an averageUCS  

of 140.1 MPa and ranging from 45 to 379 MPa. Gneiss was the dominant rock type in 

the tunnel (5.175 m or 83%). Also, the fine-grained gneiss makes up nearly 20% or 354 

m of the rock excavated in Reach 1 and 8.8% or 223 m of rock excavated in Reach 2. The 

calc-silicates is around 730 m or 7.5% with the averageUCS of 171 MPa and ranged from 

41 to 309 MPa. Another rock type is Amphibolite with an averageUCS of 131 MPa which 

ranged from 20 to 273 MPa. This rock type was present in the tunnel for 920m or 9.5%. 

Besides that, pegmatite with the averageUCS of 174 MPa and ranging from 50 to 225 

MPa presents 950 m or 9.7% of the excavated rock in the tunnel. Another rock type is 

gabbro/diorite with an averageUCS of 161 MPa which ranged from 89 to 228 MPa. 1988 

m or 20.2% of the tunnel excavated in this rock type (Deere et al. 2004; Watts et al. 2003). 

A summary of the mechanical properties of the rocks encountered at the SMTT is re-

ported in Table 5.17, in terms of uniaxial compressive strength ( C ) and Brazilian tensile 

strength ( t ). A Robbins gripper TBM of 10.05 m diameter was used for tunnel excava-

tion. The main machine specifications are listed in Table 5.18. 
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Table 5.17: Intact rock parameters in each reach of the SMTT (Watts et al. 2003; Delisio, 

2014) 

Rock type 
C  (MPa) t  (MPa) 

N. of test Mean S.D. N. of test Mean S.D. 

Gneiss 295 140.1 49.7 283 9.8 3.3 

Calc-silicate 58 171 64.9 43 8.4 3.6 

Pegmatite 41 174 53.8 32 8.3 3.2 

Gabbro/Diorite 70 161 32.8 59 8.9 2.2 

Amphibolite 63 131 52.6 59 8.8 3.6 

Table 5.18: Main specifications of the SMTT TBM (Deere et al. 2004) 

Parameter Value 

Machine diameter 10.5 m 

Recommended normal operating force 18156 kN 

Max. Thrust  27101 kN 

Number of disc cutters 68 

Cutterhead Speed (RPM) 5.07 

Max. Torque 9860 kNm 

Cutter diameter 17" (432 mm) 

Nominal cutter spacing 90 mm 

Cutterhead power 3465 kW (11*315 kW) 

Thrust cylinder stroke 1.83 m 

Conveyor capacity (approx.)  1500 ton 

 

The field data collected at the Second Manapouri Tailrace Tunnel (New Zealand) has 

been included in a TBM performance database. The compiled TBM performance data-

base is subdivided into two parts. The first one includes some TBM performance pa-

rameters such as the penetration per revolution (P), the TBM boring time ( boringt ), the 

rate of penetration (ROP), and the average of some other TBM operational parameters, 

such as the applied thrust force, torque, and RPM, which were registered by the onboard 

TBM data acquisition system. The second category of data includes the geological/ge-

otechnical parameters obtained from site investigation and laboratory testing. These 

comprise some intact rock parameters, such as uniaxial compressive strength (UCS ), 

Brazilian tensile strength ( BTS ), and some rock mass parameters such as joint spacing,
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RQD . The Rock Mass Rating (RMR), the Rock Quality Index (Q), and the Geological 

Strength Index (GSI) have also been back-calculated (Watts et al. 2013; Hassanpour, 

2009; Hassanpour et al. 2011; Delisio, 2014). Figure 5.38 shows the average of basic RMR, 

Q, and GSI in some selected tunnel sections. 

 

 

Figure 5.38: Variations of basic RMR, GSI & Q value in some selected tunnel sections in 

SMTT 

Besides that, variations of respectedUCS and RQD regarding to some selected tunnel 

sections in SMTT are depicted in Figures 5.39 & 5.40 respectively. Also, the average of 

thrust force, RPM, and ROP associated with some selected tunnel sections are illustrated 

in Figure 5.41. 

 

 

Figure 5.39: Variations of UCS  in some selected tunnel sections in SMTT 
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Figure 5.40: Variations of 0RQD in some selected tunnel sections in SMTT 
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Figure 5.41: Variations of total thrust, RPM & ROP in some selected tunnel sections 

SMTT 

5.2.7 Lötschberg Base Tunnel 

The Lötschberg Base Tunnel (LBT) is part of the so-called New Rail Alpine Routes pro-

ject (NEAT in German) whose objective is to modernize the Swiss railways and to switch 

heavy traffic from road to rails. The NEAT, with a budget of about 30 billion Swiss 

francs, consists of the Lötschberg Base Tunnel, the Gotthard Base Tunnel, and the Ceneri 

Tunnel (Figure 5.42). 
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Figure 5.42: Overview of the NEAT project with location of the Lötschberg Base Tunnel, 

the Gotthard Base Tunnel, and the Ceneri Tunnel (Delisio, 2014) 

The LBT was the first work of the project and was constructed between 1999 and 2006. 

It is a high-speed railway tunnel linking Frutigen in the Kander Valley and Raron in the 

Rhône Valley (Figure 5.42). Combined with the Simplon Tunnel (constructed between 

1904 and 1919), the LBT provides a direct link between Germany and Italy through Swit-

zerland. The LBT is 36.4 km long and consists, in most parts, of two tubes with a sepa-

ration of 40 m, linked at every 333 m through transversal bypasses. The southern part 

of the LBT, for a total length of about 18.5 km, has been excavated by two gripper TBMs 

with a diameter of 9.43 m. The first machine started to excavate at the Steg lateral adit 

before reaching the main west tube after around 3 km. From this point on (Lötschen 

link), the TBM proceeded along the main route for around 6 km up to Ferden. The sec-

ond machine directly started with the excavation of the main east tube (Raron Sector) 

and, starting from Raron, it proceeded towards north for around 10 km. The main con-

struction sections of the LBT are represented in Figure 5.43. 
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Figure 5.43: Main construction sections of the LBT and indication of the adopted exca-

vation method (Delisio, 2014) 

The southern part of the LBT, excavated by TBMs, is located in two distinct tectonic 

formations called Autochthon Gampel-Baltschieder and Aar Massif. These are, respec-

tively, composed of sedimentary and crystalline rocks. As presented in Figure 5.44, 

moving from south (right) to north (left), the first part of the tunnel is intersected by a 

zone of loose rock which precedes the southern old crystalline sector “SOC” of the Aar 

Massif. This is composed by crystalline gneiss and shows a well-defined folded struc-

ture. After around 500 m from the portal, a complicated Triassic folded zone “Tr”, 

mainly composed of dolomite, schist, and gypsum, starts. This area is then followed by 

the Autochthon Gampel-Baltschieder, composed of several lithological units: the Lias 

zone “Li” (limestone and shale), the Dogger zone “Dog” (slate, limestone, and marl) and 

finally the Malm zone “Ma” (limestone). Large-scale folds characterize this part of the 

rock mass (Delisio 2014; Ziegler et al. 2008). After about 2800 m from the south portal, 

the contact between the Autochthon Gampel-Baltschieder and the Aar Massif is met. 

This contact between sedimentary and crystalline rocks represents the major tectonic 

disturbance of the region named Rote Kuh – Gampel fault. From this point on, the ex-

cavation proceeded into the Aar Massif, which is formed by three main lithological 
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units: the Baltschieder granodiorite “BG” (gneiss and granodiorite), the Central Aar 

granite “CAG” (fine to coarse-grained granite), and the northern old crystalline sector 

“NOC” composed of amphibolite, granitic – gneiss, and massive/schistose gneiss, the 

latter containing different proportions of sericite, biotite, and chlorite. The depth of 

cover along the alignment increases from 0 to 1950 m, reaching its maximum in the gra-

nitic gneiss at Tm 5600 from the south portal (Raron). Consequently, the in-situ stresses 

can be substantial (Delisio, 2014; Delisio et al. 2013; Ziegler et al. 2008).  

 

Figure 5.44: Longitudinal geological profile along the main southern Lötschberg Base 

Tunnel axis (Delisio, 2014); SOC = southern old crystalline; Tr = Trias zone; 

Li = Lias zone; Dog = Dogger zone; Ma = Malm zone; BG = Baltschieder 

Granodiorite; CAG = Central Aar Granite; NOC = northern old crystalline 

sector 

The Steg lateral adit is located in the Autochthon Gampel-Baltschieder and the Aar Mas-

sif, and is connected to the main tunnel axis at Tm 3059 from the south-west portal (Fig-

ure 5.45). Moving from south to north in the access tunnel, the sediments of the Autoch-

thon Gampel-Baltschieder (Malm zone “Ma” and Dogger zone “Dog”) are first met. 

Around Tm 600 from the Steg portal, the Rote Kuh – Gampel fault is again encountered 

and the Aar Massif begins with the Baltschieder granodiorite zone “BG”. The Central 

Aar granite “CAG” is finally encountered in the northern part, around Tm 2000. The 

maximum overburden depth along this route is 1330 m (Delisio, 2014; Delisio et al. 

2013). 
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Figure 5.45: Longitudinal geological profile along the Steg lateral adit (Delisio, 2014); 

Dog = Dogger zone; Ma = Malm zone; BG = Baltschieder Granodiorite; 

CAG = Central Aar Granite 

A summary of the mechanical properties of the intact rock found along the tunnel align-

ment is reported in Table 5.19. For the four main rock types, the mean uniaxial compres-

sive strength ( C ) ranges between 100 and 220 MPa, the mean Brazilian tensile strength 

( t ) between 11 and 19 MPa, approximately, and the mean Cerchar Abrasiveness Index 

(CAI) between 3.3 and 5.2. This generally defines the excavated material as a very strong 

and highly abrasive rock. In the case of rocks with well-developed foliation (banded 

gneiss and schistose gneiss), the foliation planes lead to rock anisotropy, causing a var-

iation of the uniaxial compressive strength of the intact rock along with different load-

ing directions. At the tunnel level, the direction of loading is defined by the angle be-

tween the tunnel axis and the weak structural planes. In most cases, this angle ranged 

between 60˚ and 70˚, causing the uniaxial compressive strength to be reduced down to 

30-50% of its maximum value, which occurs when the direction of loading is parallel to 

the foliation planes (Delisio 2014; Hassanpour, 2011; Singh et al. 1989). Two gripper 

TBMs manufactured by Herrenknecht were used to excavate the southern Steg and Ra-

ron lots of the LBT. The main machine specifications are listed in Table 5.20. The ma-

chine used in Raron was essentially the same. 
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Table 5.19: Average mechanical properties of the main rock types in the Aar Massif. C

= uniaxial compressive strength; t = Brazilian tensile strength; CAI= Cerchar 

abrasiveness index (Delisio, 2014) 

Rock type 

C  (MPa) t  (MPa) CAI (-) 

No. of 

test 
Mean S.D. 

No. of 

test 
Mean S.D. 

No. of 

test 
Mean S.D. 

Old crystalline 

gneiss 
26 107.7 29.4 16 11.4 1.7 25 3.3 0.6 

Granodiorite 

and Granite 
17 146.7 34.7 16 11.2 1.8 16 4.8 0.6 

Granitic Gneiss 25 221.1 54.4 19 14.2 1.0 23 5.2 0.6 

Amphibolite 5 184.3 46.3 4 18.7 1.1 6 3.8 0.1 

Note: the uniaxial compressive strength of schistose rocks is measured perpendicular and parallel to the foliation 

planes 

Table 5.20: Main specifications of the LBT TBMs (Raron / Steg TBMs) (Delisio, 2014) 

Parameter Value 

Machine diameter 9.43 m 

Max. Thrust force 16,000 kN 

Max. Revolutions per minute (RPM) 6.00 

Max. Torque 8825 kNm 

Number of cutters 60 

Cutter diameter 17" (432 mm) 

Nominal cutter spacing 90 mm 

Max. Cutter force 267 kN 

 

The data compilation/dataset is composed of two main categories. The first one includes 

machine performance parameters recorded during the construction of the two main 

tubes and the Steg access adit. The principal data of this category are the actual pene-

tration rate, the boring time, and the average of some machine operational parameters 

such as the total applied thrust force, the RPM, and the torque. The second category 

comprises geological/geotechnical parameters obtained from site investigations, labor-

atory tests, and tunnel perimeter/face mappings during construction. These data in-

clude rock mass jointing (described by both joint spacing and volumetric joint count), 

intact rock and rock mass properties (uniaxial compressive strength, Brazilian tensile 

strength, CAI, etc.), as well as the estimated rock mass classifications using Rock Mass 
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Rating (RMR), Tunneling Quality Index (Q) and Geological Strength Index (GSI). For 

instance, Figure 5.46 illustrates the variations of basic RMR, Q, and GSI in some selected 

tunnel sections, while Figure 5.47 shows the variations of respected thrust force, RPM, 

and ROP in some selected tunnel sections. 

 

 

Figure 5.46: Variations of basic RMR, GSI & Q value in some selected tunnel sections in 

LBT tunnel 
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Figure 5.47: Variations of total thrust, RPM and ROP in some selected tunnel sections in 

LBT  

5.3 Data Collection (TBM Field Performance Database) 

In this study data on geological and ground conditions, TBM operational parameters, 

and machine performance represented by the rate of penetration were collected during 

pre-construction and construction phases. During the construction phase and through 

back-mapping of the tunnel, predicted geological and geomechanical properties of rock 

mass along the tunnels were examined by a detailed investigation of the tunnel face. 

During the construction phase and through back-mapping of the tunnel, predicted ge-
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by a detailed investigation of the tunnel face. In this stage, information such as rock 

type, rock mass fracturing, joint condition, characteristics of fault zones, weathering/al-

teration characteristics, groundwater condition, and rock stability information were rec-

orded on mapping sheets. In addition, during back-mapping of the tunnel, many sam-

ples were taken from the muck and tunnel face to perform tests such as point load index 

and petrographic analysis. In the construction phase, machine performance data, and 

operating parameters such as applied thrust, RPM, torque, and rate of penetration 

(ROP) were also recorded continuously in special sheets and analyzed separately. It is 

worth to be mentioned that, there were some limitations on the accessibility of geologi-

cal features in the tunnels through the observation of the walls, notably in DS-TBMs. 

Therefore, an attempt was made into select parts of the tunnels where sufficient and 

reliable geological data were available. Data were collected from the following general 

locations within the tunnels: 

• Locations where exploration borings extended to the tunnel level. 

• Tunnels sections where the rock face was inspected during geological back-map-

ping. 

• Places where extrapolation of surface geological parameters to tunnels level were 

possible with a high degree of reliability. 

As would be expected, the format and the extent of reported TBM operational parame-

ters and geological data varied significantly from project to project. As such, one im-

portant issue to be noticed in this process is the missing data for different parameters in 

different records. Due to the difficulty of dealing with volumes of detailed data in sev-

eral separate databases for different projects, it was necessary to reduce the number of 

data sets to a manageable number. Heterogeneity of the data was also an issue which 

was caused by using different protocols for recording TBM performance data for differ-

ent tunnel job sites. 

In brief, the data for developing new models were organized in a special database in-

cluding 580 (61.03 km) tunnel sections of seven selected projects where the ground con-

ditions and machine performance were reliable and could be verified. A tunnel section 

is a part of the tunnel that has been excavated in a working shift and its two ends have 

been studied by direct observations and geological measurements, sampling, and labor-

atory tests. In this respect, the main data collected during the construction phase, in-

clude TBM performance parameters, operational parameters, and geological parame-

ters. 

The data sets included two main categories. The first category contained machine per-

formance parameters such as, net boring time, length of mined section as well as the 

average of machine operational parameters like thrust, RPM, applied torque, and power 
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throughout the section. These parameters were gathered from the daily operating rec-

ords and TBM data logger “Automatic recording on PLC”. In addition, the most im-

portant performance parameters containing average penetration rate (ROP), penetra-

tion per revolution (P) and field penetration index FPI have been estimated using the 

formula as shown below: 

 b

b

L
ROP

t
=  , 

1000

60

ROP
P

RPM


=


 , nF

FPI
P

=      ,    ( ) /n h f cuttersF T F N= −                           (5.1) 

where ROP is the rate of penetration (m/h), bL is boring length (m),
b

t is boring time (h), 

P is cutter penetration per revolution (mm/rev), RPM is cutterhead rotational speed 

(rev/mm), FPI is Field Penetration Index expressed in (kN/cutter/mm/rev), nF is cutter 

load or normal force, hT is the applied thrust of the machine, and fF is the estimated fric-

tion between the machine and the ground. To estimate the frictional force, machines 

were placed in two groups as reported in Table 5.1. The TBM field performance data-

base is composed of both gripper/open and double shield TBMs. In open type TBM the 

friction force which builds up between machine and surrounding ground is much lower 

than shielded machines. In some cases, the front shoes of the machine are pressed 

against the walls and can impose high pressure on the walls and thus high friction. 

However, for the most part, the friction of the machine can be included in the calcula-

tions by subtracting 20% machine weight from the total thrust force applied by the 

thrust cylinders (Delisio and Zhao, 2014). For shielded TBMs, the friction force builds-

up between the shield and surrounding ground, and hence is significantly higher than 

open machines, especially for double shield TBM. Previous studies have used 20% 

weight of the machine in non-squeezing grounds, or 20% of the rock load against the 

shield in low to medium level squeezing conditions. For highly squeezing conditions 

the value of friction forces could be higher than the machine thrust, leading to jamming. 

In such conditions, the use of an arbitrary percentage of the weight of the machine is 

misleading. Further investigations are needed when shield TBMs are being utilized to 

assess the friction between the shield and respected ground conditions (Maidl et al. 2008 

& 2012; Hassanpour, 2009; Hassanpour et al. 2016). 

The second part of the database included some geological parameters such as lithology 

and petrographical characteristics, intact rock properties (Compressive strength, poros-

ity and…), discontinuity characteristics such as spacing, surface condition, weather-

ing/alteration, groundwater, and also results of calculation of some rock mass parame-

ters (like RQD, RMR, Q, and GSI) in selected tunnel sections based on tunnel rock face 

observation, analysis of muck materials (chips analysis), sampling and testing in labor-

atory and study of surface outcrops and boreholes. A descriptive statistical distribution 
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of variables in the database and input parameters for the generated model is summa-

rized in Table 5.21. Since the parameters including joint condition ( Jc ) and groundwa-

ter condition (Gw ) in RMR systems are qualitative (descriptive), the partial rating of 

these parameters are used in this analysis. Also, it is important to note that, where mul-

tiple joint sets were identified, different strategies could be adopted to incorporate their 

impact. One approach is to focus on the critical joint set which can have the highest 

impact (most assist or hinder) on TBM penetration rate. Another approach is to use a 

combination of the joints as prescribed by the NTNU system and using s totK − . The last 

approach was to compute an average α angle for all existing joint sets. This approach 

has some downsides since it assumes an arithmetic averaging of the joint orientation to 

represent the cumulative impact of the joints. The approach used in this study was the 

first one i.e., using the critical joint set, which was selected to be the set with the highest 

frequency and minimum joint spacing. 

Table 5.21: Descriptive statistics of the generated database for model development used 

in this study 

 

As can be seen from Table 5.2, the database covers three main types of rock including, 

Igneous rocks (37%), Metamorphic rocks (35%), and Sedimentary rocks (28%). The dis-

tribution of different rock types is illustrated in Figure 5.48. The distribution pattern of 

the intact and rock mass properties including,UCS , Js , RQD , Jc , basic RMR, Q, and GSI 

value in 2D are depicted in Figure 5.49.  

Variable N Min. Max. Mean Std. Deviation Variance 

UCS (MPa) 580 6 267.9 97.41 68.79 4732.18 

Js (cm) 580 0.34 200 31.59 29.3 858.53 

RQD (%) 580 10 100 66.45 24.15 583.28 

Jc (partial rating in RMR) 580 5 30 16.54 5.36 28.74 

Gw (partial rating in RMR) 580 0 15 11.67 3.39 11.55 

RMR basic 580 25 90 57.56 13.24 175.47 

Q 580 0.11 165.85 7.53 12.82 164.5 

GSI 580 15 85 52.66 13.54 183.46 

P (mm/rev) 580 1.63 38.87 7.53 4.68 21.96 

ROP (m/h) 580 0.48 6.2 2.62 1.32 1.75 

FPI (kN/cutter/mm/rev) 580 1.43 145.6 25.83 21.27 452.71 
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The two-dimensional space graphs from the data variabilities displayed in Figure 5.49 

show that in the comparison of RQD andUCS , the highest distribution of the data laid 

beyond 20 value for both parameters. Meanwhile, the Js variables are mainly dominated 

between 5-50 cm when compared with the RQD . TheUCS  however showed high fluc-

tuations when depicted with Js and Jc in which theUCS  parameter showed the highest 

distribution when compared with the Js at the range of 5 -100 cm whereby Js of 5-150 

cm are in correlation with the Jc over 9 value. Analyses of the RQD and Jc indicates that 

the Jc parameters less than 9 value fell as not in the domain region when compared with

RQD . The same pattern can be seen inspecting Jc and Js where Jc  > 9 value are domi-

nantly correlated with the Js over 5 cm. Regarding to rock mass classification, GSI com-

pared with basic RMR and Q values illustrate a linear correlation between GSI over 30 

value and basic RMR higher than 40 value, whereas the Q value laid majorly between 

0.5 and 50 value. 

 

 

Figure 5.48: The percentage distribution of different rock types in this investigation 
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Figure 5.49: Distribution pattern of variables for this study presented in 2-dimensional 

space 
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Chapter 6 Developing New Empirical 

Models 

6.1 Introduction 

Geotechnical and geological parameters have the greatest impact on the performance of 

hard rock tunnel boring machines (TBMs). This includes the rock and rock mass prop-

erties that affect the rate of penetration (ROP) as well as the machine utilization that is 

heavily dependent on ground support type and related machine downtime and delays. 

However, despite the widespread use of TBMs and established track records, accurate 

estimation of machine performance is still a challenge, especially in complex geological 

conditions. During the past three decades, numerous TBM performance prediction 

models have been introduced based on theoretical, empirical, and semi-empirical inves-

tigations. 

This chapter covers the discussion of the pertinent analysis on the machine performance 

versus geotechnical parameters, including a series of bi-variate analyses conducted to 

evaluate the relationship between common rock mass classification systems, including 

RMR, Q, and GSI, and their input parameters with TBM performance. The preliminary 

bivariate analysis is followed by principal component analysis (PCA) was performed to 

identify the critical input parameters, leading to developing new empirical equations 

based on linear and non-linear regression for the prediction of TBM performance. 

6.2 Rock Mass Classification Systems & TBM Performance 

Over the years, many rock mass classification systems have been presented in mining 

and civil engineering (see Table 6.1). According to Bieniawski (1989), a rock mass clas-

sification scheme is intended to classify the rock masses, provide a basis for estimating 

deformation and strength properties, supply quantitative data for support estimation 

and present a platform for communication between exploration, design, and construc-

tion groups. With the widespread use of TBMs in tunnelling in the past two decades, 

there have been many attempts to use these classification systems to estimate machine 

performance in various rock masses compared to their original purpose. The fact is that, 

also, these models are commonly employed in many empirical design practices and 



Chapter 6  Developing New Empirical Models 

202 

planning in rock engineering contrasting with their original intent and applications. A 

good example is the usage of available rock mass classification systems in the estimation 

of TBM performance in different tunnelling projects. This is because of the simplicity 

and worldwide acceptance/availability of the classification systems in general engineer-

ing practices, such as underground mining and construction. To deal with this conflict, 

many investigations have been conducted to assess the applicability of rock mass clas-

sification systems in TBM performance prediction.  

Table 6.1: Some rock classification and characterization systems (revised from Palm-

ström, 1995; Edelbro et al. 2006) 

Name Form and Type a Main applications and re-

marks 

Author and first 

version 

Terzaghi rock load clas-

sification 

system 

Descriptive and be-

haviouristic form  

Functional type 

Tunnels with steel support 

(unsuitable for modern tun-

nelling) 

Terzaghi (1946) 

Lauffer's stand-up time 

classification 

Descriptive form  

General type 

For input in tunnelling de-

sign (conservative)  

Lauffer (1958) 

New Australian tunnel-

ling method (NATM) 

Descriptive and be-

haviouristic form 

tunnelling concept 

For excavation and design in 

incompetent ground (utilized 

in squeezing ground condi-

tion) 

Rabcewicz (1964, 

1965) 

Rock classification for 

rock mechanical pur-

poses 

Descriptive form 

General type 

For input in rock mechanics Patching and 

Coates (1968) 

Unified classification of 

soils and rocks 

Descriptive form 

General type 

Based on particles and blocks 

for communication 

Deere et al. (1969) 

in Deere and Deere 

(1988) 

Rock Quality Designa-

tion (RQD) 

Numerical form 

General type 

Based on core logging; used 

in other classification sys-

tems 

Deere et al. (1967) 

Size-strength classifica-

tion 

Numerical form 

Functional type 

Based on rock strength and 

block diameter, used mainly 

in mining 

Franklin (1975) 

Rock Structure Rating 

(RSR) 

Numerical form 

Functional type 

For design of (steel) support 

in tunnels (not useful with 

steel fibre shotcrete) 

Wickham et al. 

(1972) 

Rock Mass Rating 

(RMR) 

Numerical form 

Functional type 

For design of tunnels, mines, 

and foundations 

Bieniawski (1973) 

Q Classification System Numerical form 

Functional type 

For design of support in un-

derground excavation (tun-

nel, large caverns) 

Barton et al. (1974) 
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Name Form and Type a Main applications and re-

marks 

Author and first 

version 

Mining RMR (MRMR) Numerical form 

Functional type 

Rock support in mining Laubscher (1975) in 

Laubscher (1977) 

Typological classifica-

tion 

Descriptive form 

General type 

For use in communication Matula and Holzer 

(1978) 

Unified rock classifica-

tion system 

Descriptive form 

General type 

For use in communication Wiliamson (1980) 

Basic geotechnical clas-

sification (BGD) 

Descriptive form 

General type 

For general applications ISRM (1981) 

Slope Mass Rating 

(SMR) 

Numerical form 

Functional type 

Forecast stability problems 

and support techniques for 

slopes 

Romana (1985) 

Geological Strength In-

dex (GSI) 

Numerical form 

Functional type 

Indicates the strength of rock 

masses, input to engineering 

applications 

Hoek (1994) 

Rock Mass Index (RMi) Numerical form 

Functional type 

Rock engineering, general 

characterization, design of 

support 

Palmström (1995) 

a Glossary: 

- Descriptive form: input to the system is mainly based on descriptions; 

- Numerical form: input parameters are given numerical ratings according to their character; 

- Behaviouristic form: input is based on rock mass behaviour in a tunnel; 

- General type: system is worked out to serve as a general characterization; 

- Functional type: the system is structured for a special application (for example, for rock support). 

There are new models and rock mass classification systems particularly adapted for the 

application of TBM projects. Innaurato et al. (1991) developed a new model for estima-

tion of TBM penetration rate based on the intact rock (presented by uniaxial compres-

sive strength) and rock mass characteristics by Rock Structure Rating (RSR). The model 

considers the effect of intact and rock mass properties, but the latter is defined by an 

infrequent geotechnical quality index which is not commonly available in the tunnelling 

projects. Barton (2000) introduced a new model based on Q-system, namely QTBM which 

includes many additional input parameters related to TBM tunnelling. They include all 

original Q system input parameters as well as NTNU boreability indices. Sapigni et al. 

(2002) correlated TBM performance parameters including penetration rate (PR) and FPI 

to the RMR classification system. The estimated PR often has more errors since it does 

not include the force cutterload ( NF ) acting on a disc, nor cutterhead RPM into account. 

Rock Mass Excavability (RME) has been introduced by Bieniawski et al. (2006) and is 

directly linked to the performance of TBM. The new system incorporates the intact and 

rock mass characteristics pertinent to TBM tunnelling. The fact is that, the RME index is 
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quite similar to RMR and quite easy to apply. However, the cutterload is not taken into 

account which can have a significant impact on PR as noted before. Some follow-up 

studies by Hassanpour et al. (2009, 2011, 2013) have linked FPI to geosocial parameters, 

namelyUCS and RQD , or alternatively usingUCS and GSI.  The use of FPI allows for ac-

counting for the machine size and thrust and thus offers reasonably good results. A 

quick review of the related literature reveals that the rate of success of these attempts 

has been limited and there is no consensus nor accepted formula or model that can use 

the original rock mass classification systems and related ratings in TBM performance 

estimates. This could be attributed to the original intent of such classification methods 

for the evaluation of rock stability and design of ground support measures (Rostami, 

2016b). The summary of empirical correlations for TBM performance factors versus the 

rock mass classification systems is summarized in Table 6.2. 

Table 6.2: List of selected empirical TBM performance prediction models based on rock 

mass classifications 

Correlations (TBM performance prediction) References 

0.0059 1.59PR RSR=− +  Cassinelli et al. (1982) 

0.437 0.047 3.15PR RSRc
−= − +  Innaurato et al. (1991) 

0.2
0

5 ,
10 9

20

20 520
PR QTBM

RQD JJ SIGMA qwrQ
TBM J J SRF CLIFn a


−

=  =        Barton (2000) 

1000.66
250 , exp

18

RMR
SP cm cm c   

−−
=  =

 
 
 

 
Ribacchi and Lembo-Fazio 

(2005) 

0.422 11.61
07

ARA RME= −  Bieniawski et al. (2007a, b) 

4.161 0.091 0.077 0.117 1.077log( )FPI UCS RQD Jc = + + + +  Khademi et al. (2010) 

2
0.053 4.205 92.068FPI BRMR BRMR= − +  Hassanpour et al. (2011) 

0.023
4.619

GSI
FPI e=  Hassanpour et al. (2011) 

0.304
15.309FPI Q=  Hassanpour et al. (2011) 

PR = penetration rate; c
  = rock material uniaxial compressive strength; RSR = rock structure rating; ARA = average 

rate of advance; FPI = field penetration index; Jn, Jr, Ja, Jw and SRF are original parameters of Q-system, RQD0 is 

oriented-RQD in tunnelling direction, SIGMA = rock mass strength; F = average cutter load; CLI = cutter life index; q 

= quartz content;  = average biaxial stress on tunnel face; RME = rock mass excavibility; BRMR = basic rock mass 

rating; GSI = geological strength index. 
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6.3 Composite Indices for Representing TBM Performance  

Various TBM performance indices have been introduced and used by many researchers 

to assess the boreability of a rock mass. This includes FPI and Specific Penetration (SP) 

which are the composition of penetration per revolution (which accounts for TBM size 

and RPM) and cutterload (which represents machine thrust). The purpose of using SP 

(Alber, 2000) or FPI (Nelson et al. 1983) is to combine the thrust and cutterhead rate of 

rotation with the penetration rate. Stevenson (1999) introduced a Specific Excavation 

Rate (SER) as the excavated volume per revolution divided by thrust per cutter to com-

bine SP and the tunnel cross-sectional area. Also, the specific rock mass boreability in-

dex (SRMBI), defined as boreability index of 1 mm/rev in a given ground expressed by 

Gong et al. (2007). Table 6.3 summarizes various parameters related to machine perfor-

mance and their definitions. 

Among the indices, the FPI developed by Nelson et al. (1983) has been successfully ap-

plied to the determination of the correlation between rock mass characteristics and TBM 

performance. It is good to note that, usually, stronger and less fractured rock masses are 

more difficult to cut by TBM and require higher thrust levels to achieve a certain depth 

of penetration. So, higher values of FPI are usually seen in strong and massive rock 

masses. In contrast, there is no need to apply high thrust values for excavation of poor-

quality rock masses (weaker and more fractured) due to crack initiation and propaga-

tion are enhanced by pre-existing fractures (Gong et al. 2006). It means that, the values 

of FPI are low (Hassanpour et al. 2011). Therefore, FPI has been selected to represent 

rock mass boreability due to its simplicity and scalability to various machine sizes. 
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Table 6.3: Summary of various parameters related to machine performance and their 

definition 

Parameter Symbol Typical unit Formula 

Penetration rate PR m/h - 

Penetration per revolution PRev mm/rev (1000 ) / (60 )PR RPM   

Specific penetration SP (mm/rev)/(kN/cutter) Re nP v F  

Field penetration index FPI (kN/cutter)/(mm/rev) RenF P v  

Specific excavation rate SER (m3/rev)/(kN/cutter) A SP  

Boreability index BI kN/cutter/mm/rev - 

Filed penetration index in 

blocky rocks 

FPIblocky kN/(mm/rev) 
nF PR  

Specific rock mass boreabil-

ity index 

BI (1) - 0.75
(1) RevBI BI P

−
  

         A : tunnel area; nF : Normal force on disk cutter; RPM: cutter head rotation per minute. 

6.4 Evaluation and Analysis of TBM Operational Parameters and Per-

formance with Rock Mass Properties 

During tunnel excavation with a TBM, the thrust and torque produced by the machine 

to break the rock vary depending on the properties of intact and rock masses. Therefore, 

it is necessary for the TBM operators to control the penetration rate and rotational speed 

of the cutterhead to maximize the production/penetration rate of the machine for the 

given ground conditions. The relationship between thrust and RPM which are im-

portant TBM operational parameters, with TBM performance and rate of penetration 

(mm/rev) at Lötschberg Base Tunnel (LBT) is shown in Figure 6.1. A similar tendency 

has been observed in the other tunneling projects used in this study. The reason for the 

low correlation can be attributed to the influence of the operational attributes of the 

TBM that is managed by the operator. In hard rock formation, TBM runs thrust-limited, 

while in the soft ground it runs torque/power-limited. In hard rocks, TBM applies 

higher thrust to penetrate, while in soft rock more power is required for rolling force, 

needed for TBM for deeper penetration for a given level of thrust (Cheema, 1999). 

Typically, in soft rocks penetration rate was higher, whereas in hard rock penetration 

lower at the same thrust levels and for the same machine it may appear than at higher 

thrust levels lower penetration rate is achieved, if one ignores the rock strength. The 

study of available data shows that, higher thrust and torque were used in the excavation 
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of harder rock and the cutterhead speed and penetration rate were low. Conversely, the 

penetration rate and cutterhead rotation speed were higher in softer rock, at low thrust  

levels. However, the performance characteristics of TBMs were varying not only accord-

ing to whether the rock was soft or hard, but also according to the condition of fractur-

ing and many other characteristics of the rock mass, in addition to the experience, reac-

tion, and skill of the operator. 

 

 

 

Figure 6.1: Relationship between rate of penetration (ROP, mm/rev) with TBM thrust, 

RPM & Torque in Lötschberg Base Tunnel 

The analysis undertaken here consists of comparing the rock strength (UCS ) with the 

operating parameters and excavation characteristics of the machine at the excavated 

section in the LBT project (Figure 6.2). It shows that, the thrust increases with increasing 

UCS  of the rock as well as torque. Also, as it was expected, the rate of penetration (ROP, 

mm/rev) decreased as UCS increased. The fact is that, the uniaxial compressive strength 

Soft rock 

Hard rock 

Soft rock 

Hard rock 



Chapter 6  Developing New Empirical Models 

208 

(UCS ) is the most widely used rock property for performance prediction because of the 

easy availability of UCS test results.  

 

Figure 6.2: Plot of UCS -Thrust, ROP-UCS  with and Torque-Thrust for Lötschberg Base 

Tunnel 

Furthermore, relations between cutter-head rotation per minute (RPM) withUCS and 

with thrust are shown in Figure 6.3. For these relations, it can be concluded that, speed 

of the cutterhead (RPM) increases with increasingUCS value as well as with increasing 

thrust. Similar trends have been also observed in other projects used in this study. 

It is well established that, the degree of fracturing in rock masses has a great influence 

on TBM performance and operational parameters. In this respect, the relations between 

RQD which is the representative of rock mass fracturing degree with TBM operational 

and performance in the LBT project are displayed in Figure 6.4. As can be seen, in gen-

eral, there is a better correlation between machine operational parameters with rock 

mass properties, i.e., RQD as compared to intact rock such as,UCS . 
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Figure 6.3: Relationship between RPM with thrust andUCS in Lötschberg Base Tunnel 

 

 

Figure 6.4: Relationship between RQD with ROP, Thrust, RPM and Torque in Lö-

tschberg Base Tunnel 
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6.5 TBM Performance Estimation & Rock Mass Rating (RMR) Classi-

fication 

Among different rock mass classification systems, RMR, Q, and GSI classifications are 

the most commonly used methods in many empirical design practices and planning in 

rock engineering. More information about each of these classification methods can be 

found in Singh and Goel (2011). It is good to note that, according to the result of Has-

sanpour et al. (2010; 2011) basic RMR shows a better correlation with machine perfor-

mance than RMR89. The basic RMR classification system is determined from the sum of 

ratings (weighting) that is outlined by a table for calculation of rock load and tunnel 

support selection (Bieniawski, 1973). Therefore, the RMR basic has been considered. The 

distribution curve and frequency histogram of rock mass classifications including basic 

RMR, Q, and GSI in the database grouped by rock type is depicted in Figure 6.5. The 

relationships between FPI and basic RMR, Q, and GSI classifications grouped by rock 

types are depicted in Figure 6.6.  

    

 

Figure 6.5: Distribution curve and frequency histogram of rock mass classifications in 

the database (G: Igneous rocks, M: Metamorphic rocks, S: Sedimentary 

rocks) 
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Figure 6.6: Correlation between basic RMR, GSI, Q and measured FPI 

Overall, when comparing the most commonly used rock mass classification systems, 

RMR shows a better correlation with TBM penetration rate, possibility due to the use of 

intact rock compressive strength as an input parameter. This matter has also been also 

observed by previous investigations (Hassanpour et al. 2009, 2011; Salimi et al. 2016a; 

b). Besides, RMR is frequently used in the tunnel design process and reported from the 

logging of cores in the site investigation reports as well as back mapping of the tunnels. 

As such, input parameters of the RMR system are often available for various projects, 

including seven tunnelling projects used in the current study. 

It should be noted that, the TBM utilization is mainly influenced by ground condition, 

support design, and cutter replacement, and in other words, the rock mass quality is 

tightly associated with tunnel stability, based on which these classification systems have 

been developed. Zhao (2007) expressed the correlation between rock mass to TBM uti-

lization, which was found to be better than the correlation to the TBM penetration rate. 
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Also, parameters in these classifications were related to support the design and they 

were not selected to describe rock mass boreability. 

As can be seen from Fig.6.6, the correlation between basic RMR and FPI is better than 

the others, however at a low correlation factor (R2 = 0.60). So, it was subsequently de-

cided to investigate the possibility and capability of using input parameters of RMR in 

developing a new weighing scheme for TBM applications. Fig.6.7 illustrates the corre-

lations between the five individual independent variables in the basic RMR and the ac-

tual measured FPI. Also, the figure includes the coefficient of determination (R2) which 

is an indicator of correlation strength. 
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Figure 6.7: The relationship between measured FPI and Basic RMR five input parame-

ters 

Obviously, the use of a single parameter will provide a simple predictive model, but it 

lacks the impact of other important parameters. However, a single value classification 

system as the summed value of several parameters is also limited in establishing an 

accurate and reliable correlation with TBM performance which is basically due to the 

internal weighting system. For more illustration, Table 6.4 presents an example in which 

the RMR system measured for two rock masses. Upon assigning such ratings in a given 
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condition, the same RMR value is calculated for both rock masses with different condi-

tions of RMR input parameters. However, from the point of view of rock mass boreabil-

ity, it is expected that the excavation of Rock mass 2 is much easier than that of Rock 

mass 1. The correlation between the RMR and penetration rate assumes the same trend 

as correlations between the penetration rate and these five parameters. This inherent 

assumption will decrease the accuracy of empirical equations. This was the reason for 

Sapigni et al. (2002) to suggest that several improvements should be made to the con-

ventional RMR system. 

Table 6.4: Comparison between the two different rock masses with the same basic RMR 

value 

RMR input parameters 

Rock mass properties  Rating 

Rock mass 1 Rock mass 2 
Rock mass 

1 

Rock mass 

2 

Uniaxial compressive 

strength (MPa) 
180 70 12 8 

RQD (%) 90 50 18 10 

Spacing of discontinui-

ties (m) 
1 0.5 14 10 

Condition of discontinu-

ities  

Slightly rough and 

moderately to highly 

weathered, wall rock 

surface separation 1 < 

mm 

Rough and slightly 

weathered, wall 

rock surface sepa-

ration <1 mm 

20 25 

Groundwater condition Dripping Completely dry 4 15 

Basic RMR  
  

68 68 

 

The study of correlations between the individual independent variables in the basic 

RMR and the actual measured FPI shows that, RQD offers the highest R2 value of 0.69, 

followed by theUCS (0.67), Js (0.56), Jc partial rating in RMR (0.33).Gw is practically 

neutral relative to TBM penetration rate and therefore it can be concluded that the 

groundwater condition has negligible effects on the TBM FPI. All of these results are 

almost in good agreement with those of Ribacchi and Lembo-Fazio (2005) and Has-

sanpour et al. (2009). Ribacchi and Lembo-Fazio (2005) stated that the TBM specific pen-

etration is best fitted with modified RMR index indicated as RMRP, for which a fixed 

partial rating value of 15 is assigned to groundwater condition and no adjustment factor 

for joint orientation is applied. Hassanpour et al. (2009) used the same index and arrived 
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at the same conclusion that, water condition has an indirect effect on the TBM perfor-

mance with increasing alteration of the rock mass and decreasing strength parameters 

of the intact rock and joint surface condition. On the other hand, the water flow in rock 

mass decreases the rock brittleness, consequently decreases the penetration rate. The 

meaningless correlation between FPI and Gw condition may be described via this con-

tradicting effect of water flow in the rock mass. However, it is necessary to note that, 

another reason for the as-built data showing the low influence of water ingress on TBM 

performance is because the solid rock TBMs in real unfavourableGw conditions were 

not taken into account. This is not to say that there is no relationship between PR and 

Gw , it is that the available data do not clearly indicate the conclusive relationship (per-

haps due to inconsistency of the data) and thus this factor was removed from the addi-

tional analysis and consideration in the study. As such, it can be considered as a new 

topic to be investigated by researchers in this field to examine the relationship between 

unfavourable groundwater conditions and TBM performance and its influence in terms 

of solid rock-TBMs. 

The effect of groundwater condition on TBM performance was also studied by Nelson 

(1983) and Laughton (1998). They indicate that the groundwater mostly impacts the ad-

vance rate, through machine utilization, rather than penetration rate. Tunnel instability 

accidents always occur with the inflow of groundwater. This is also the basis for the 

inclusion of the groundwater condition in the RMR system. Given that the rating 

(weight) for theGw condition andUCS in the RMR system are identical, the influence of 

the two independent variables on the FPI is quite different and hence, is ignored.  

6.6 Developing New Empirical Equations 

In rock engineering practice, statistically-based empirical equations have been exten-

sively used to predict target variables based on other operational or geological parame-

ters. Empirical equations have great importance during the early stages of rock excava-

tion and design works since they are more practical compared to extensive theoretical 

analyses. In this study, regression analyses were performed between TBM performance 

parameters and geomechanical parameters in the database. Both simple regression and 

multi-variable regression (linear and non-linear form) analyses were used to develop 

empirical equations. 

6.6.1 Simple Regression Analysis 

As mentioned in previous sections, among machine parameters, FPI shows better cor-

relations with geological and geomechanical parameters. Table 6.5 lists the summary 
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results of the correlation of FPI with rock mass parameters and related equations. Since 

groundwater condition ( Gw ) has a negligible impact on FPI, this parameter has been 

eliminated for further investigations. 

Table 6.5: Summary results of the determination of regression coefficients of correlation 

between different geological and geomechanical parameters and FPI 

Parameter 
Regression  

Coefficient (R2) 
Regression type Relationship Eq. No. 

Geological and Geomechanical     

UCS (MPa) 67 Power 0.6821.097FPI UCS=  6.1 

RQD (%) 69 Exponential 
0.0263.566 RQDFPI e=  6.2 

Js (cm) 56 Power 0.6582.597FPI Js=  6.3 

Jc (partial rating in basic 

RMR) 
33 Exponential 

0.085.289 JcFPI e=  6.4 

Rock Mass Classifications     

Basic RMR 60 Power 2.3160.002FPI RMR=  6.5 

Q 41 Power 
0.34313.731FPI Q=  6.6 

GSI 53 Exponential 
0.0412.356 GSIFPI e=  6.7 

 

6.6.2 Principle Component Analysis (PCA) 

To establish the predictive models and evaluate the effective parameters and their im-

pacts, principal component analysis (PCA) was performed. PCA is a classical method 

that provides a sequence of the best linear approximations to a given high-dimensional 

observation. This method has received much attention in the literature in recent years 

for various applications. PCA is used frequently in different types of analysis (from neu-

roscience to computer graphics) because it is a simple, nonparametric method of extract-

ing relevant information from confusing data sets. With minimal additional effort, PCA 

provides a roadmap on how to reduce a complex data set to a lower dimension. Fig.6.8 

(a) represents a two-variable data set which has been measured in the X-Y coordinate 

system. The principal direction in which the data varies is shown by the U axis and the 

second most important direction is the V axis orthogonal to it. If one transforms each 

(X, Y) coordinate into its corresponding (U, V) value, the data is de-correlated, meaning 

that the co-variance between the U and V variables is zero. For a given set of data, PCA 

finds the axis system defined by the principal directions of variance (i.e., the U-V axis 
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system in Fig. 6.8 (b)). The directions U and V are called the principal components. In 

this new reference frame, note that variance is greater along with axis U than it is on 

axis V. PCA computes new variables which are obtained as linear combinations of the 

original variables. These variables are found by calculating the covariance (or correla-

tion) matrix of the data patterns (Jolliffe 1986; Engelbrecht 2007).  In this study, PCA 

was performed on a set of output and input parameters, and the ratio of the variance of 

the first component to the total variance (variance ratio) were calculated. Accordingly, 

this ratio can be determined by the similarity among the output and a set of input fac-

tors.  

As noted by Rostami (2016b), a cursory review of the parameters impacting TBM per-

formance reveals that the most important geological features that impact TBM perfor-

mance includes rock strength (UCS or BTS ), joint frequency, orientation, and conditions, 

as well as rock abrasion. With the exception of the rock abrasivity that controls the disc 

cutter life and thus machine utilization, other parameters are the same as the parameters 

used in common rock mass classification systems. As such, it makes sense to assume 

that some versions of existing rock mass classifications can be used for the prediction of 

TBM performance. This means that perhaps a methodical selection of input parameters 

and different weight or rating schemes can be adopted to develop rock mass classifica-

tions that are pertinent and suitable for the prediction of TBM rate of penetration (ROP).  

In this study, the PCA, R statistical computing software was applied to screen the input 

parameters (see Appendix).  To quantify the performance of TBM, the Field Penetration 

Index (FPI) was computed from the raw data. Several analyses with two, three, and four 

input parameters, with special emphasis on input parameters of basic RMR, were per-

formed to identify the influencing parameters on the TBM performance and check the 

capability and possibility of using basic RMR parameters as inputs for developing a new 

model for TBM PR studies. As can be seen from Fig.6.9, the factor containing four inputs 

( , , ,UCS RQD Js Jc ) was shown to be more effective and FPI has been expressed as a func-

tion of these inputs. Also, it is good to note that, although the difference in comparison 

with three factors, containingUCS , RQD , and Js is minimal, however, as expressed by 

Ribacchi & Lembo-Fazio (2005) in which the influence of different rock mass parameters 

on the performance of TBM in Varzo tunnel was analysed; even simple quality indexes, 

such as the partial rating of joint spacing in the RMR classification, had sound predictive 

value for penetration rate. Joint conditions proved to have a significant impact, though 

the most influencing feature is joint spacing.  
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 (a)  (b) 

Figure 6.8: (a) Principal components for data representation; (b) Principal components 

for dimension reduction 

For more clarification and assessing exactly what percentage of the variance was re-

tained in these principal components, the proportion of variance explained (PVE) by the 

mth principal component is calculated using the equation: 
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Where   is the principal component loading vector. It can be shown that the PVE of the 

mth principal component can be more simply calculated by taking the mth eigenvalue 

and dividing it by the number of principal components, p. The results of PVE is illus-

trated in Figure 6.10, while, the cumulative variance of the first four parameters is 

shown in Figure 6.11. As can be seen, together, the first three principal components ex-

plain 93% of the variability, and adding Jc results in a 100% explanation. 

Besides that, Farrokh et al. (2012) considers Rock Type Code (RTC) as an input param-

eter in their model to estimate TBM PR. Since different rock textures (cementation and 

grain size and shape) affect the penetration rate, such properties should also be taken 

into account in PR studies. According to the results of sensitivity analysis and paramet-

ric study of common models conducted by Fatemi et al. (2016), consideration of RTC 

has a significant role to play in the estimation of rock mass boreability. For more clarifi-

cation, Table 6.6 presents a comparison between different rock type categorizations with 

the same RMR value and TBM FPI. As can be seen from Table 6.6, despite the similar 

values are found between two types of rock, the boreability of rock masses are different. 
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Although, there are several factors which directly or indirectly can affect TBM perfor-

mance, such as the angle between tunnel axis and discontinuity plane α (Alpha angle), 

crew experience, backup system, and so on, but from geological points of view, it can 

be expected that, the differences are due to the rock texture and cementation. Therefore, 

as expected, the boreability of rock masses is totally different based on rock texture and 

cementation (Salimi et al. 2019). 

Table 6.6: Comparison between different rock type categorizations with the same basic 

RMR value and TBM FPI  

RMR input parameters 

Rock mass properties  Rating 

Rock mass 1 (Am-

phibolite) 

Rock mass 2 

(Limestone) 

Rock mass 

1 

Rock mass 

2 

Uniaxial compressive 

strength (MPa) 
170 170 12 12 

RQD (%) 95 95 20 20 

Spacing of discontinui-

ties (m) 
0.8 0.8 15 15 

Condition of discontinu-

ities  

Slightly rough and 

moderately to highly 

weathered, wall rock 

surface separation 1 < 

mm 

Slightly rough and 

moderately to 

highly weathered, 

wall rock surface 

separation 1 < mm 

20 20 

Groundwater condition Damp Damp 10 10 

Basic RMR  
  

77 77 

FPI (Field Penetration 

Index; kN/cut-

ter/mm/rev)   

46.81 38.48 

 

Therefore, this parameter has been considered in this investigation as well. To such that, 

seven rock type categories, as proposed by Hoek and Brown (1980) and Stevenson 

(1999), were adopted. 
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Figure 6.9: Results of some of the principal components analysis (PCA) for TBM perfor-

mance analysis using various geotechnical input parameters 

 

Figure 6.10: Proportion of Variance Explained (PVE) for the first four features (

, , ,UCS RQD Js Jc ) 
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Figure 6.11: Cumulative variance of first four features (input parameters of basic RMR) 

These rock types are listed in Table 6.7. The first four classes are for ‘‘Sedimentary 

Rocks.’’ The fifth, sixth, and seventh classes are for ‘‘Metamorphic Rocks, Granitic 

Rocks, and Volcanic Rocks’’ respectively. It should be mentioned, Gneiss (GN) is inher-

ently metamorphic, but it is typically closer to granite in terms of its behaviour, espe-

cially where foliation is less pronounced. For this reason, it was categorized as GN in 

this analysis. As can be seen in Fig. 6.12, when the rock type is taken into consideration 

in the analysis, a good relationship can be established between rock strength and FPI. 

The graphs show that in general a lower FPI is achieved in sedimentary rocks, and a 

higher FPI is achieved in igneous rocks. These results are in agreement with the results 

proposed by Laughton (1998) and Robbins (1992) for different rock types. 
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Table 6.7: Rock-type categorization in the database (modified from Hoek and Brown, 

1980) 

Rock type Code 

Claystone, mudstone, marl, slate, phyllite, argillite C 

Sandstone, siltstone, conglomerate, quartzite S 

Limestone, chalk, dolomite, marble L 

Karstic Limestone K 

Metamorphic rocks such as gneiss and schist M 

Coarse igneous such as granite and diorite G 

Fine volcanic such as basalt, tuff, and andesite V 

 

Figure 6.12: Rock type versus TBM FPI 

To use rock type code as one of the selected input parameters for developing new mod-

els, code numbers including, 1 for G and GN, 2 for MV, 3 for SLK, 5 for C have been 

employed. Figure 6.13 shows the percentage distribution of different rock type codes in 

this investigation. The results of PCA grouped by RTC across the four selected features 

is presented in Figure 6.14. 
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Figure 6.13: Percentage distribution of different rock type codes 
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Figure 6.14: Results of scatter plot of PCA grouped by RTC across the four selected fea-

tures 

In brief, the four parameters of basic RMR containing , , ,UCS RQD Js Jc as well as RTC 

were taken into consideration as input parameters for developing new models for FPI. 

To eliminate and examine the multicollinearity between the selected input parameters; 

tolerance analysis (VIF, variance inflation factor) was conducted. Tolerance values ap-

proaching zero indicate a high degree of multicollinearity among the independent var-

iables. The effect of collinearity is to increase the standard error of the regression coeffi-

cients (and hence to increase the confidence intervals and decrease the P values). The 

standard error of a regression estimates of the variable j ( j


) is given by: 
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Where
2

jR is the 2R found when regressing all other predictors onto the predictor j. Note 

that when there is only one variable in the regression equation, or when the correlation 

between the predictors is equal to zero, the value for the part of the equation 
21 (1 )jR−  

is equal to 1.  The term
21 (1 )jR−  is known as the variance inflation factor (VIF). When the 
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correlation changes from 0 (or when additional variables are added), the value of the 

VIF increases, and the value of the standard error of the regression parameter increases 

with the square root of the VIF. The reciprocal of the VIF is called tolerance. It is equal to 
21 jR− , where each predictor is regressed on all of the other predictors in the analysis. 

Table 6.8 is the summary of collinearity evaluation using the tolerance values calculated 

by statistical analysis of the input data and shows minimum to no multicollinearity be-

tween the selected input parameters. 

Table 6.8: Summary of collinearity evaluations based on statistical analysis 

Independent variable Tolerance VIF (variance inflation factor) * 

UCS  (MPa) 0.44 2.27 

RQD  (%) 0.355 2.819 

Js (cm) 0.621 1.61 

Jc  (partial rating in basic RMR) 0.599 1.67 

RTC  0.613 1.631 

* VIF=1/Tolerance “Threshold is 10.0” 

The distribution curve and frequency histogram of selected input parameters based on 

PCA results ( , , ,UCS RQD Js Jc ) and TBM performance parameter (FPI & ROP) in the da-

tabase is illustrated in Figure 6.15. As can be seen, the higher value ofUCS (strength pa-

rameter) belongs to igneous rocks and the lower value associates to sedimentary ones. 

Similar pattern can be found in the other parameters such as RQD , Js and Jc , as well as 

TBM performance parameter, FPI, while the higher value of rate of penetration (ROP) 

seen in sedimentary rocks as it was expected. 
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Figure 6.15: Distribution curve and frequency histogram of selected input parameters 

of basic RMR, FPI and ROP in the database grouped by rock type (G: Igne-

ous rocks, M: Metamorphic rocks, S: Sedimentary rocks) 
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6.6.3 Multiple Linear Regression Analysis Model (MLRA) 

Multivariate regression analysis (MVRA) is an extension of regression analysis which was 

firstly conducted by Pearson in 1908 (Yilmaz and Yuksek, 2009). The purpose of multiple 

regressions is to learn more about the relationship between several independent or pre-

dictor variables and a dependent or criterion variable. The goal of regression analysis is 

to determine the values of parameters for a function that cause the function to fit a set of 

data observations provided. In linear regression, the function is a linear (straight-line) 

equation. When there is more than one independent variable, then multivariate regres-

sion analysis is used to get the best-fit equation. The main form of MLRA is: 

0 1 1 2 2
....x x x

n n
Y    + + + +=                                                                                               (6.10) 

Where 1 2, ,..., n    are the coefficient of a regression model, 0 is a constant value, Y is 

the dependent variable, and 1 2, ,..., nx x x are independent variables.  The R statistical com-

puting software (see Appendix) was used as a modelling tool to apply multiple linear 

regression analysis. In this regard, five independent variables including 

, , ,UCS RQD Js Jc and RTC  are considered as input parameters and FPI as an output. As 

a result, a new performance predictive equation was obtained as follows: 

1.102 0.129 0.071 0.314 0.389 0.466FPI UCS RQD Js Jc RTC= + + + + −   (6.11) 

whereUCS is uniaxial compressive strength (MPa), Js is joint spacing (cm), RQD  is rock 

quality designation, Jc is joint characteristic in basic RMR and RTC is rock type code; 1 for 

G and GN, 2 for MV, 3 for SLK, 5 for C. Correlation between the measured and predicted 

FPI via MLRA is illustrated in Fig.6.16 in which the correlation coefficient (R2) is 0.68. 
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Figure 6.16: Comparison between the measured and predicted FPI from MLRA model 

6.6.4 Multiple Non-linear Regression Analysis (MNLRA) 

As stated by Davis (2002), most of the problems in geology involve complex and inter-

acting forces, impossible to isolate and study individually. Non-linear multiple regres-

sion analyses have been utilized in rock engineering and engineering geology to solve 

complex problems. In fact, non-linear regression involves estimating the coefficients in 

a non-linear relationship between independent and dependent variables. The R Statis-

tical Computing software (see Appendix) was used to apply multi-variable non-linear 

regression analysis. After a series of modelling, the best combination of rock mass pa-

rameters to predict the field penetration index (FPI) was found based on the established 

TBM performance database. As a result, a new predictive equation was empirically ob-

tained as follows: 

exp(1.763 0.003 0.012 0.005 0.008 0.091 )FPI UCS RQD Js Jc RTC= + + + + −   (6.12) 

A comparison between the measured and predicted results from Eq.6.12 is shown in 

Figure 6.17. Furthermore, the correlation and distribution between input parameters 

and output were found in 3-dimensional plots (Figure 6.18). The plots show that an in-

crease inUCS and RQD value,UCS and Jc value,UCS and Js value results in a higher 

value of FPI, as does an increase in RQD and Jc value, RQD and Js value as well as Js  and 

Jc . While the higher value of FPI respecting to RTC  can be found in group one “G&GN” 

and it decreases to group five “C”. This seems intuitive and is in an agreement with 
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field observation and previous literature. In brief, the strength of rock material (UCS ) 

and three parameters defining joint condition ( RQD , Js , and Jc ) as well as RTC which 

is representative of rock texture can be used for estimation of TBM FPI. 

 

Figure 6.17: Comparison between the measured and predicted FPI from multivariable 

non-linear regression analysis 
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Figure 6.18: 3D graph showing the relationship of FPI with , , ,UCS RQD Js Jc and RTC
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Chapter 7 Artificial Intelligence Algorithms  

7.1 Introduction 

Apart from empirical and theoretical models, the use of artificial intelligence (AI) tech-

niques has received attention in various aspects of geotechnical engineering. Several 

techniques, such as an artificial neural network (ANN), fuzzy logic, adaptive neuro-

fuzzy inference system (ANFIS), particle swarm optimization (PSO) and support vector 

machine (SVM) in approximating TBM performance parameters like penetration rate 

(PR) and advance rate (AR) have been highlighted by many scholars. The flexible nature 

of the AI techniques makes them powerful tools in approximating and solving engi-

neering problems more specifically when the problem is highly complex and nonlinear. 

Although AI techniques such as ANN are considered as powerful techniques in approx-

imating TBM performance parameters, they are known as “black-box” methods and 

there is no clear knowledge about their internal procedures or reuse of the algorithm by 

others in their estimations. Therefore, in this study for the first time, two different AI 

models, including Classification & Regression Tree (CART) and Genetic Programming 

(GP) have been considered to develop a system for predicting TBM performance 

through offering pertinent graphs (diagrams) and mathematical equations, respectively. 

7.2 Artificial Intelligence Methods & TBM Performance 

One of the early works in this field was by Alvarez Grima et. al (2000) where a neuro-

fuzzy method for TBM performance prediction was introduced. Benardos and Kaliam-

pakos (2004) proposed an ANN model by using data of 1077 m of Athens Metro tunnel 

in Greece. Simoes and Kim (2006) employed two fuzzy inference system (FIS) types 

namely rule-based and parametric based to predict utilization index (UI) using data of 

three TBM projects. Yagiz et al. (2009) applied ANN to predict TBM PR using 7.5 km 

data of Queens Water Tunnel in the USA. Gholamnejad and Tayarani (2010) conducted 

ANN for estimation of TBM PR using data collected from three different TBM projects 

(the Queens Water Tunnel, USA, the Karaj-Tehran water transfer tunnel, Iran, and the 

Gilgel Gibe II hydroelectric project, Ethiopia. Besides, a fuzzy logic model was devel-

oped to predict the penetration rate based on collected data from one hard rock TBM 

tunnel (the Queens Water Tunnel in New York City, USA (Ghasemi et al. 2014) while 

the support vector regression (SVR) was performed by Mahdevari et al. (2014) for the 
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same dataset collected and compiled by Yagiz (2008). Furthermore, Armaghani et al. 

(2017) applied two different hybrid intelligent models, containing particle swarm opti-

mization (PSO)-artificial neural network (ANN) and imperialism competitive algorithm 

(ICA)-ANN and also simple ANN for predicting the TBM penetration rate in the Pa-

hang- Selangor Raw Water Transfer (PSRWT) tunnel in Malaysia. Several works of TBM 

performance prediction using AI techniques have been summarized in Table 7.1.  

While the domain method applied by researchers for estimation of TBM performance is 

ANN, the author in 2016 (Salimi et al. 2016) conducted two common AI methods, in-

cluding support vector regression (SVR) and adaptive neuro-fuzzy inference system 

(ANFIS) using data collected from two tunnelling projects in Iran, named Zagros lot 1B 

and 2 for a total length of 14.3 km. In ANFIS, both of the learning capabilities of neural 

networks and reasoning capabilities of fuzzy logic were combined in order to enhance 

prediction capabilities in comparison with using a single methodology alone. Takagi-

Sugeno method was considered because of its computational efficiency and higher reli-

ability for developing a systematic approach to build fuzzy rules from the input-output 

dataset and among different membership functions, the Gaussian membership function 

was used. (see figures 7.1; 7.2 as well as Table 7.2). On the other hand, a support vector 

machine (SVM) “was developed for solving both classification and regression prob-

lems”, which maximizes predictive accuracy and avoids over-fitting simultaneously 

was also employed. This is similar to a neural network; however, a neural network’s 

solution is based on empirical risk minimization. In contrast, SVR introduces structural 

risk minimization into the regression and thereby achieves a global optimization, while 

a neural network achieves only a local minimum. The details of the topology selected 

for the SVR model are listed in Table 7.3. The variation of FPI with two input parameters 

(UCS , Js ) in the form of a surface graph based on the results of SVR is shown in figure 

7.3. 

The results of most of these studies have been a ‘‘black/opaque box’’ programs that 

show a high level of accuracy and correlation between their predicted rates and actual 

machine performance but cannot be used by others in a similar way of using empirical 

models in estimating machine performance in other projects, since the end-user need to 

be expert in programming as well as has a good knowledge of AI methodology. In this 

respect, two machine learning algorithms, containing classification and regression tree 

(CART) and genetic programming (GP) have been utilized to assess the TBM perfor-

mance which are not acting as ‘‘black box’’ and can be easily applied in other projects 

in the form of graph and a mathematical equation, respectively. 

  



7.2  Artificial Intelligence Methods & TBM Performance 

235 

Table 7.1: Several investigations of TBM performance prediction using AI techniques 

Reference Technique Input Output Description 

Alvarez Grima 

et al. (2000) 

ANN, AN-

FIS 
CFF; UCS, RPM, Dc, TF PR, AR 

A database containing 640 

TBM projects 

Benardos and 

Kaliampakos 

(2004) 

ANN 

N, RQD, UCS, RMR, over-

burden, permeability, WTS, 

rock mass weathering 

AR 

Data collected from an in-

terstation section of the 

Athens metro tunnel 

Yavari and 

Mahdavi (2005) 
ANN 

Dc, UCS, Qu, TPC, Rock-

type 
PR 

Data of 251 sections of 

Gavshan tunnel, Iran 

Simoes and Kim 

(2006) 
FIS 

RMR, RQD, machine diam-

eter, groundwater inflow 

rate 

UI 

Using data of three TBM 

projects in South Korea, 

USA, and New Zealand 

Yagiz et al. 

(2009) 
ANN DPW, UCS, BI,  PR 

151 datasets collected from 

the Queens Water Tunnel, 

USA 

Mikaeil et al. 

(2009) 
FIS DPW, UCS, BTS, , PSI PR 

Using dataset presented by 

Yagiz (2008) 

Gholamnejad 

and Tayarani 

(2010)  

ANN UCS, RQD, DPW PR 
185 datasets collected from 

three TBM projects  

Eftekhari et al. 

(2010) 
ANN 

UCS, Rock Type, Qu, BTS, 

RQD, RMR, TF, CT, Rs 
PR 

Using 10 km data exca-

vated in Zagros tunnel, 

Iran 

Yagiz and Kara-

han (2011) 
PSO UCS, BTS, BI, DPW,  PR 

151 datasets collected from 

the Queens Water Tunnel, 

USA 

Oraee et al. 

(2012) 
ANFIS RQD, DPW, UCS PR 

Using 177 datasets ob-

tained from two tunnel 

projects 

Gholami et al. 

(2012) 
ANN UCS, RQD, Js, Jc PR Data of 121 tunnel sections 

Salimi and 

Esmaeili (2013) 
ANN PSI, UCS, BTS, DPW,   PR 

Data of 46 sections of the 

Karaj–Tehran water supply 

tunnel 

Torabi et al. 

(2013) 
ANN UCS, C, ,  PR, UI 

Data of 39 sections of Teh-

ran–Shomal highway pro-

ject 

Shao et al. (2013) ELM PSI, UCS, BTS, DPW,  PR 
153 datasets of Queens Wa-

ter Tunnel, USA 
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Reference Technique Input Output Description 

Mahdevari et al. 

(2014) 
SVR 

UCS, BTS, BI, DPW, , SE, 

TF, CP, CT 
PR 

150 data points pertaining 

to the Queens Water Tun-

nel, USA 

Ghasemi et al. 

(2014) 
FIS DPW, UCS, BI,  PR 

151 datasets collected from 

the Queens Water Tunnel, 

USA 

Salimi et al. 

(2016) 

ANFIS, 

SVR 
UCS, Js 

PR 

(FPI) 

Zagros lot 1B and 2, Iran 

(75 datasets) 

Armaghani et al. 

(2017) 

ANN, PSO-

ANN, ICA-

ANN 

UCS, BTS, RQD, RMR, WZ, 

TF, RPM 
PR 

1286 data points of a water 

transfer tunnel in Malaysia 

The distance between planes of weakness (DPW); rock brittleness (BI); the angle between the plane of 

weakness and TBM-driven direction ( ); rock quality designation (RQD); rock mass rating (RMR); core 

fracture frequency (CFF); revolution per minute (RPM); penetration rate (PR); advance rate (AR); utiliza-

tion index (UI); cutter diameter (Dc); particle swarm optimization (PSO); peak slope index (PSI) also refers 

to rock brittleness; quartz percentage (Qu); the rotational speed of TBM (Rs); joint spacing (Js); joint con-

dition (Jc); cohesion (C); friction angle ( ); Poisson’s ratio ( ); specific energy (SE); thrust force (TF); 

cutterhead power (CP); cutterhead torque (CT); extreme learning machine (ELM); overload factor (N); 

uniaxial compressive strength (UCS); water table surface (WTS); differential evolution (DE); field pene-

tration index (FPI); imperialism competitive algorithm (ICA), fuzzy inference system (FIS), support vector 

regression (SVR), adaptive neuro-fuzzy inference system (ANFIS). 

 

Figure 7.1: ANFIS model structure for FPI prediction (Salimi et al. 2016a) 
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(a) 

 
(b) 

 

Figure 7.2: TSK membership function plot for input (a) ‘‘Uniaxial compressive strength 

(UCS )”, (b) ‘‘Joint spacing ( Js )” (Salimi et al. 2016a) 

Table 7.2: The ANFIS information used for developing a model for estimation of TBM 

FPI (Salimi et al. 2016a) 

ANFIS parameter type Value 

MF type Gaussian 

Number of MFs 3 

Number of fuzzy rules 3 

Output function Linear 

Number of nodes 23 

Number of linear parameters 9 

Number of nonlinear parameter 12 

Total number of parameters 21 

Training RMSE 2.43 
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Table 7.3: Parameters of the SVR model for estimation of TBM FPI (Salimi et al. 2016a) 

Parameter Value 

Type ε-SVR 

Kernel Radial basis function (RBF) 

Degree 2 

  1 

  0.1 

C 25 

Tolerance of stopping criterion 0.0001 

 

Figure 7.3: Surface graph generated by SVR showing relationship of FPI withUCS and 

Js (Salimi et al. 2016a) 

7.2.1 TBM Performance Prediction by Regression Tree 

One of the most popular techniques in data mining (analysis) is a DT (decision tree) in 

which a simple and comprehensible structure is used that can be utilized for classifica-

tion, recognition, decision making as well as prediction of certain target parameters. In 

comparison to other ML algorithms such as ANNs or SVRs which have a complex struc-

ture and known as a black box, meaning that, they can be applied to predict the value 

of a target variable depending on data, but the rules or implicit patterns within the 

model cannot be interpreted. Therefore, the application of a DT for a prediction scheme 
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is usually preferred for its simplicity, explicability, and low computational costs. Thus, 

the main advantage of using DT algorithms is that the tree structure can be presented, 

easily interpreted, and defined as a white box. There are several kinds of DT methods, 

including CART (classification & regression tree), chi-squared automatic interaction de-

tector (CHAID), exhaustive CHAID (E-CHAID), quick, unbiased, efficient statistical 

tree (QUEST), random forest regression and classification (RFRC), and boosted tree clas-

sifiers and regression (BTCR). According to the literature review, among the above six 

different DT methods, CART has been widely conducted with a high level of accuracy 

and performance for predicting problems in different engineering fields. CART is a rule-

based method introduced by Breiman et al. (1984) and is based on whether the depend-

ent variable is qualitative or quantitative; as such it can be categorized as a classification 

tree (CT) or regression tree (RT), respectively. The fact is that, this technique is recom-

mended for use in situations where the form of the relationships between the dependent 

variable (response) and independent variables (predictors) is not exactly known before 

building a predictive model (Breiman et al. 1984). Besides, in CART analysis, there is no 

need to consider prior suppositions about the relationship between variables. 

An RT can perform recursive partitioning (aka recursive partitioning) as an alternative 

method to the traditional multiple regressions. In the case of a database with a complex 

of variables and nonlinear interactions, constructing a single global predictive model 

can be arduous and confusing. Therefore, partitioning or subdividing the space into 

smaller regions where the interactions become more manageable and can be considered 

as an alternative to mitigate the problem. 

Decision trees are represented by a set of questions that splits the learning sample into 

smaller and smaller parts. CART asks only yes/no questions. CART algorithm will 

search for all possible variables and all possible values in order to find the best split – 

the question that splits the data into two parts with maximum homogeneity. The pro-

cess is then repeated for each of the resulting data fragments. A DT includes a root node, 

interior nodes, branches, and terminal nodes (see Fig. 7.4) in which the root node con-

tains a complete dataset and is divided into two sub-nodes with left and right branches 

while each node represents a variable; the branches indicate a specific range of input 

variables. A sequence of elements of the root node, branches, and interior nodes forms 

a leaf (Breiman et al. 1984). 



Chapter 7  Artificial Intelligence Algorithms 

240 

 

Figure 7.4: Structure of a decision tree 

7.2.1.1 Classification Tree 

Classification trees are used when for each observation of the learning sample, we know 

the class in advance. Classes in the learning sample may be provided by a user or cal-

culated in accordance with some exogenous rule. For example, for a stock trading pro-

ject, the class can be computed as subject to a real change of asset price. Let pt be a parent 

node and ,l rt t -respectively left and right child nodes of a parent node pt . Consider the 

learning sample with a variable matrix X with M a number of variables jx and N obser-

vations. Let the class vectorY consist of N observations with the total amount of K clas-

ses. The classification tree is built in accordance with the splitting rule - the rule that 

performs the splitting of learning samples into smaller parts. We already know that each 

time data has to be divided into two parts with maximum homogeneity:  

 

Figure 7.5: Splitting algorithm of CART 

Where pt , ,l rt t -parent, left and right nodes; jx -variable j ; R

jx is the best splitting value of 

a variable jx . Maximum homogeneity of child nodes is defined by the so-called impurity 

function ( )i t . Since the impurity of the parent node pt is constant for any of the possible 
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splits R

j jx x , 1,...,j M= , the maximum homogeneity of left and right child nodes will 

be equivalent to the maximization of change of impurity function (t)i : 

 (t) ( ) ( )p ci i t E i t = −                                                                                                               

(7.1) 

Where ct -left and right child nodes of the parent node pt . Assuming that the ,l rP P -prob-

abilities of right and left nodes, we get: 

(t) ( ) P ( ) ( )p l l r ri i t i t P i t = − −                                                                                                   (7.2) 

Therefore, at each node CART solves the following maximization problem: 

argmax    , 1,..., ( ) ( ) ( )R

j j p l l r rx x j M i t Pi t P i t  = − −                                                            (7.3) 

Equation 7.3 implies that CART will search through all possible values of all variables 

in the matrix X for the best split question R

j jx x which will maximize the change of im-

purity measure (t)i . 

RT algorithms use a binary-dividing procedure that splits the dataset from a root node 

(parent node) based on yes/no questions of the independent variables in which the cre-

ated sub-nodes (child or interior nodes) are purer than the parent node. During this 

process, candidates are searched to reach the optimum split which results in a tree with 

high purity. The next important question is how to define the impurity function (t)i . In 

theory, there are several impurity functions. Some of the most frequent ones are gain 

ratio (Quinlan, 1993), Gini Index (Breiman et al. 1984), and chi-square (Mingers, 1989). 

In RT, usually, the Gini index is used for selecting the best split. Gini splitting rule (or 

Gini index) is the most broadly used rule. It uses the following impurity function (t)i : 

( ) ( | ) ( | )
k l

i t p k t p l t


=                                                                                                                (7.4) 

where , 1,...,k l K -index of class; ( | )p k t is a conditional probability of class k provided 

we are in a node t . Applying the Gini impurity function (7.4) to the maximization 

problem (7.3). we will get following change of impurity measure (t)i : 

2 2 2

1 1 1

(t) ( | t ) ( | ) ( | )
K K K

p l l r r

k k k

i p k P p k t P p k t
= = =

 = − + +                                                                (7.5) 
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Therefore, Gini algorithm will solve the following problem: 

argmax 

2 2 2

1 1 1

, 1,..., ( | ) ( | ) ( | )
K K K

R

j j p l l r r

k k k

x x j M p k t P p k t P p k t
= = =

 
 = − + + 

 
                                      (7.6)         

Gini algorithm will search in the learning sample for the largest class and isolate it from 

the rest of the data. Gini works well for noisy data. 

7.2.1.2 Regression Tree 

Regression trees do not have classes. Instead, there are a response vector Y which rep-

resents the response values for each observation in variable matrix X. Since regression 

trees do not have pre-assigned classes, classification splitting rules like Gini 7.6. Con-

sider we have a continuous response variable Y and two inputs 1X and 2X . The recursive 

partitioning results in three regions 1 2 3( , , )R R R where the model predicts Y with constant 

$c_m$ for region mR :  

3

1 2

1

( ) ( , )m m

m

f X c I X X R


=

=                                                                                                    (7.7) 

However, an important question remains of how to grow a regression tree. It’s im-

portant to realize the partitioning of variables is done in a top-down, greedy fashion. 

This just means that a partition performed earlier in the tree will not change based on 

later partitions. The model begins with the entire data set S and searches every distinct 

value of every input variable to find the predictor and split value that partitions the data 

into two regions 1 2( ,and )R R such that the overall sums of squares error are minimized: 

1 2

2 2

1 2minimize ( ) ( )i i

i R i R

SSE y c y c
 

  
= − + − 

  
                                                                               (7.8) 

Having found the best split, we partition the data into the two resulting regions and 

repeat the splitting process on each of the two regions. This process is continued until 

some stopping criterion is reached.                                                                              

The process of partitioning in RT algorithms is repeated until achieving the stop condi-

tion that was previously assigned. Several criteria can be considered, such as the mini-

mum number of observations for the node split, the minimum number of observations 

in a leaf, the maximum tree depth, the number of intervals, and the complexity of pa-

rameters. The main goal of these parameters is to reduce computational time by pruning 
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off the splits which do exhibit no worth. The structural complexity of the trees is related 

to the minimum number of observations; therefore, increasing the number of minimum 

observations in nodes leads to the less complexity of the model. To prevent the over-

growth of trees and over-fitting of the problems as well as achieve the predictive model 

with the highest accuracy and lowest estimation error, the optimum number of these 

parameters should be determined. Each leaf, or final node, represents a simple regres-

sion which is dedicated to that node. Pruning can be implemented in order to enhance 

the tree’s generalization capacity, when the process of the tree’s induction is fulfilled. 

The number of observations in nodes can be taken into consideration as pruning criteria.  

The CART algorithm is able to detect the outliers in the dataset and eliminate them dur-

ing the partitioning procedure. Furthermore, a CART uses inherent principal compo-

nent analysis (PCA) to identify the most important parameters in the modeling (Michael 

and Gordon 1997; Kiers et al. 2000; Myles et al. 2004; MATLAB, 2006). Further infor-

mation regarding the algorithm and its mathematical logic can be found in Breiman et 

al. (1984). 

In order to build the CART model, the R statistical computing software “rpart” was 

used (see Appendix). Similar data which has been employed in linear and non-linear 

regression models are used, i.e., 580 as-built data with a total length of 60.63 km tunnel 

length. It is worth noting that the CART model has the ability to deem qualitative vari-

ables as well as descriptive parameters such as rock type, RTC in the analysis. The sug-

gested interval software for maximum ‘‘tree depth’’ and the ‘‘number of the intervals’’ 

were [2–10] and [1–10], respectively. The higher in-depth, the model becomes more 

complicated and harder for production of the tree; and low three depth means lower 

accuracy which some parameters may be omitted. Hence, the related tree depth was 

reduced to [3–8] and several CART models with different controlling parameters were 

created by trial and error. There is often a balance to be achieved in the depth and com-

plexity of the tree to optimize predictive performance on some unseen data. To find this 

balance, we typically grow a very large tree as defined in the previous section and then 

prune it back to find an optimal subtree. The optimal subtree can be found by using a 

cost complexity parameter that penalizes our objective function in 7.8 for the number of 

terminal nodes of the tree as in equation 7.9. 

 minimize SSE T +                                                                                                          (7.9) 

For a given value of the smallest pruned tree that has the lowest penalized error can be 

achieved. As with these regularization methods, smaller penalties tend to produce more 

complex models, which result in larger trees. Whereas larger penalties result in much 

smaller trees. Consequently, as a tree grows larger, the reduction in the SSE must be 
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greater than the cost complexity penalty. Behind the scenes “rpart” is automatically ap-

plying a range of cost complexity (α”) values to prune the tree. To compare the error for 

each α” value, “rpart” performs 10-fold cross-validation so that the error associated 

with a given α” value is computed.  

 

 

Figure 7.6: Cost complexity in terms of optimum tree size generated by “rpart” 

In brief, given a set of samples, CART identifies one input variable and one break-point, 

before partitioning the samples into two child nodes. Starting from the entire set of 

available samples (root node), a recursive binary partition is performed for each node 

until no further split is possible or a certain terminating criterion is satisfied. At each 

node, the best split is identified by exhaustive search, i.e., all potential splits on each 

input variable and each break-point are tested, and the one corresponding to the mini-

mum deviations by respectively predicting two child nodes of samples with their mean 

output variables is selected. After the tree growing procedure, typically an overly large 

tree is constructed, resulting in a lack of model generalization to unseen samples. A 

procedure of pruning is employed to remove sequentially the splits contributing insuf-

ficiently to training accuracy. The tree is pruned from the maximal-sized tree all the way 

back to the root node, resulting in a sequence of candidate trees. Each candidate tree is 
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tested on an independent validation sample set and the one corresponding to the lowest 

prediction error is selected as the final tree (Breiman, 2001). 

To analyse the performance of the models, root-mean-square-error (RMSE) has been 

calculated and used to quantify the errors generated by each model. It should be men-

tioned that, the values of the maximum tree depth, number of intervals, minimum num-

ber of the parent node, the minimum number of the child node, and the cost complexity 

parameter (cp) related to the best model are 7, 7, 3, 2 and 0.0001, respectively. The best 

final tree was scripted via C++ programming language and visualized/depicted by 

“FigTree software - v1.4.0” (http://tree.bio.ed.ac.uk/software/figtree/) (Figure 7.7). Fig-

ure 7.8 illustrates the preferable tree. The developed tree model has 153 nodes which 

are specified by squares and their related numbers and the name of variable related to 

the node and interval changes are shown. The optimum size of the tree (number of ter-

minal nodes) is 77. The detailed information regarding the structure of the tree is pre-

sented in Table 7.4. The relationship between measured and predicted values obtained 

from the CART model is shown in Fig. 7.9. The correlation coefficient (R2) between 

measured and predicted FPI by the CART model is 0.91.  

 

 

Figure 7.7: FigTree software - v1.4.0 “circle version of developed CART model”  
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Figure 7.8: Regression tree developed for FPI prediction 
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Figure 7.9: Comparison between the measured and predicted FPI from CART model 

Table 7.4: Information related to each node in the CART model generated via “rpart” 

Node 
Fre-

quency 

Split 

variable 
Value 

Pre-

dicted 
Node 

Fre-

quency 

Split 

variable 
Value 

Pre-

dicted 

1 580 - - 26.49 78 8 Jc [20, 25] 23.80 

2 421 UCS [6, 155]* 17.67 79 6 Jc [25, 30] 37.31 

3 159 UCS 
[155, 

267.9] 
49.86 80 8 RTC class 1 45.53 

4 223 RQD [10, 67] 11.54 81 4 RTC class 2, 3 30.77 

5 198 RQD [67, 100] 24.56 82 6 RQD [67, 86] 43.12 

6 155 RQD [10, 52] 9.27 83 2 RQD [86, 100] 52.75 

7 68 RQD [52, 67] 16.72 84 2 RQD [67, 76] 38.85 

8 33 RQD [10, 23] 6.28 85 4 RQD [76, 86] 45.25 

9 122 RQD [23, 52] 10.08 86 110 Js [10, 70] 38.52 

10 5 RTC class 2 11.60 87 49 Js [70, 200] 75.33 

11 28 RTC class 3, 5 5.34 88 65 RQD [50, 88] 30.12 

12 2 Jc [5, 8] 9.12 89 45 RQD [88, 100] 50.65 

13 3 Jc [8, 12] 13.25 90 36 Jc [8, 17] 23.67 

14 6 RTC class 3 7.14 91 29 Jc [17, 30] 38.14 

15 22 RTC class 5 4.84 92 33 Js [10, 30] 22.72 

16 15 Jc [5, 12] 4.04 93 3 Js [30, 70] 34.03 

17 7 Jc [12, 15] 5.22 94 15 RQD [49, 70] 20.08 

18 81 Jc [5, 13] 9.03 95 18 RQD [70, 100] 24.92 

19 41 Jc [13, 21] 12.16 96 11 RTC class 1, 2 21.10 

20 59 RQD [23, 35] 8.52 97 4 RTC class 3, 5 17.27 

21 22 RQD [35, 52] 10.38 98 16 RTC class 1 25.72 
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Node 
Fre-

quency 

Split 

variable 
Value 

Pre-

dicted 
Node 

Fre-

quency 

Split 

variable 
Value 

Pre-

dicted 

22 2 Jc [5, 10] 8.36 99 2 RTC 
class 2, 

3, 5 
18.55 

23 57 Jc [10, 30] 13.08 100 17 Js [10, 30] 33.57 

24 20 Js [2.2, 29] 10.12 101 12 Js [30, 70] 44.62 

25 2 Js [29, 37] 12.94 102 3 Jc [15, 20] 32.01 

26 32 RTC 
class 1, 

2, 3 
12.78 103 14 Jc [20, 30] 40.82 

27 9 RTC class 5 9.94 104 7 RQD [50, 78] 29.59 

28 29 Js [5, 29] 10.68 105 7 RQD [78, 100] 34.44 

29 3 Js [29, 41] 13.00 106 6 RQD [50, 75] 33.93 

30 5 Jc [12, 16] 6.17 107 6 RQD [75, 88] 55.32 

31 4 Jc [16, 21] 14.66 108 4 RQD [50, 68] 32.29 

32 8 RTC class 1 23.22 109 2 RQD [68, 100] 37.20 

33 60 RTC 
Class 2, 

3, 5 
15.86 110 3 UCS 

[155, 

195] 
51.01 

34 4 Jc [10, 17] 20.46 111 3 UCS 
[195, 

267.9] 
57.00 

35 4 Jc [17, 22] 25.98 112 39 Jc [10, 23] 46.52 

36 55 UCS [6, 105] 15.33 113 6 Jc [23, 30] 77.50 

37 5 UCS 
[105, 

155] 
21.71 114 14 Js [10, 30] 39.35 

38 43 Jc [10, 19] 14.63 115 25 Js [30, 70] 50.53 

39 12 Jc [19, 28] 17.83 116 8 Jc [10, 18] 37.20 

40 34 RTC 
class 1, 

2, 3 
15.22 117 6 Jc [18, 30] 42.22 

41 9 RTC class 5 12.40 118 5 UCS 
[155, 

200] 
36.10 

42 3 RTC class 1, 2 19.38 119 3 UCS 
[200, 

267.9] 
39.04 

43 9 RTC class 3, 5 13.21 120 2 Jc [10, 15] 35.31 

44 131 UCS [6, 105] 21.49 121 23 Jc [15, 30] 51.86 

45 67 UCS 
[105, 

155] 
30.57 122 16 UCS 

[155, 

215] 
47.06 

46 110 RQD [67, 86] 20.28 123 7 UCS 
[215, 

267.9] 
54.00 

47 21 RQD [86, 100] 27.81 124 4 Js [10, 30] 64.56 

48 48 RTC class 1 23.19 125 2 Js [30, 70] 103.40 

49 62 RTC 
class 2, 

3, 5 
18.03 126 28 UCS 

[155, 

185] 
54.19 

50 45 Jc [10, 22] 22.37 127 21 UCS 
[185, 

267.9] 
103.52 

51 3 Jc [22, 28] 35.38 128 13 RQD [60, 87] 47.45 
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quency 

Split 
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52 26 Js [10, 28] 19.29 129 15 
RQD 

(%) 
[87, 100] 60.03 

53 19 Js [28, 80] 24.63 130 11 Jc [10, 25] 44.25 

54 58 RTC class 2, 3 18.43 131 2 Jc [25, 30] 65.05 

55 4 RTC class 5 12.28 132 5 Jc [10, 18] 40.67 

56 23 Jc [10, 17] 17.10 133 6 Jc [18, 30] 42.43 

57 35 Jc [17, 30] 20.05 134 3 Jc [10, 15] 47.23 

58 5 RTC class 1 35.64 135 2 Jc [15, 30] 38.03 

59 16 RTC 
class 2, 

3, 5 
25.36 136 2 RQD [60, 75] 46.26 

60 3 Js [20, 50] 34.14 137 4 RQD [75, 100] 47.71 

61 2 Js [50, 140] 37.90 138 12 Js [70, 120] 57.60 

62 4 RTC class 5 18.41 139 3 Js 
[120, 

200] 
69.72 

63 12 RTC class 2, 3 27.67 140 5 Jc [15, 22] 52.05 

64 9 Jc [10, 12] 25.15 141 7 Jc [22, 30] 61.57 

65 3 Jc [12, 25] 28.50 142 5 RTC class 1 63.43 

66 55 Js [10, 70] 28.38 143 2 RTC class 2, 3 56.94 

67 12 Js [70, 140] 40.61 144 14 Js [70, 118] 92.13 

68 36 RQD [67, 87] 25.51 145 7 Js 
[118, 

200] 
126.29 

69 19 RQD [87, 100] 33.80 146 3 Jc [15, 20] 87.60 

70 21 Js [10, 27] 22.65 147 11 Jc [20, 30] 108.74 

71 15 Js [27, 70] 29.52 148 7 Jc [20, 25] 80.26 

72 4 RQD [67, 77] 20.55 149 4 Jc [25, 30] 100.45 

73 17 RQD [77, 100] 23.15 150 4 UCS 
[185, 

238] 
76.72 

74 11 RTC class 1, 2 32.92 151 3 UCS 
[238, 

267.9] 
82.93 

75 4 RTC class 3, 5 20.16 152 3 UCS 
[185, 

227] 
105.07 

76 5 RTC class 1 45.58 153 4 UCS 
[227, 

267.9] 
142.20 

77 14 RTC class 2, 3 29.59      

*The software keeps the left bracket open 

7.2.2 TBM Performance Prediction by Genetic Programming 

Genetic programming (GP) is an automatic programming technique modeled on Dar-

win’s theory of ‘survival of the fittest’ and natural evolution that was first invented by 

Cramer (1985) and then developed in the true mathematical formulation by Koza (1992). 
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GP is a branch of evolutionary algorithms (EAs) which is obtained from the develop-

ment of genetic algorithm (GA) (Ferreira, 2001). Nevertheless, genetic programming dif-

fers from the other Evolutionary Algorithm (EA) disciplines in its application area. 

While the other EAs normally pertain to optimization problems, GP is related to ma-

chine learning. GP is utilized to discover systems (Fig.7.10a), while most of the other 

EAs generally seek for input to optimize the solution to the system (Fig.7.10b). 

 

Figure 7.10: Process of modelling and optimization problems 

The main difference between GP and other EAs like GA is related to the structure of the 

problem solutions (individuals). Individuals in GA are linear coded binary strings of a 

fixed length that known as chromosomes, whereas in GP individuals are the computer 

programs which follow LISP language. LISP is an acronym of the processing list and 

can be applied for executing the data strings. The programs are called symbolic expres-

sion (s-Expression) and can be presented in the form of a tree structure with different 

sizes and shapes. The population in GP is initialized with randomly generated the pro-

grams which are composed of the terminal set (T) and function set (F). The fact is that, 

if the terminal and function set are not selected appropriately for the problem, the de-

sired results cannot be achieved. 

Terminals are input (independent) variables of the model and a set of constant values 

that assigned as GP designers according to the nature of the problem. The function set 

is arithmetical, logical, Booleans, or user-defined functions (e.g., +, -, *, /, ^2, ^3, Q, sin, 

cos, tan, ln, and, or, not, nor, etc.). A typical program, presenting the expression is 

demonstrated in Fig. 7.11. In this example, the function set (F) is consisted of multipli-

cation, division, addition, subtraction and the tangent function, F = { , /, +, -, tan} and 

the terminal set (T) is consisted of N = 3 variable as T = {a, b, c}. 

 

Figure 7.11: A typical parse tree structure of the function ab/ (tan(c)) + (a - c) 
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As discussed before, genetic algorithms (GA) typically apply biologically inspired evo-

lutionary operators to a fixed-length binary character. Genetic programming (GP) ex-

tends this by increasing the complexity of the structure that undergoes adaption to 

broad hierarchical computer programs with dynamically varying from and sizes. In the 

classical GP, the structure is typically comprised of the set of funcN functions from the 

function set  1 2, ,..., NfuncF f f f= and the set of termN the terminal from the terminal set 

 1 2, ,..., NtermT a a a=  forming the combined set C F T=  . 

Definition 1: the terminal set consists of all the inputs and the constants supplied to the 

GP algorithm together with the zero-argument functions with side-effects executed by 

GP. 

Definition 2: the function set consists of all operators, statements, and functions supplied 

to the GP algorithm. 

Definition 3: the combined set is the union of the terminal set and function set, i.e., 

C F T=  . 

There are two important notes which need to be considered in the procedure of terminal 

and function set.  

Closure Property: 

It is desired that, the terminal set and the function set in the genetic programming satisfy 

the closure property. The closure property requires that all the functions f F can ac-

cept as their arguments any terminal a T and any data type returned by any function

f F . For example, for the arithmetic operation such as, division by zero or mathemat-

ical function such as, the logarithm of non-positive numbers, the closure property is not 

satisfied. If the closure property is not met, the individuals will need to be discarded if 

they don’t evaluate to an acceptable result. 

Sufficiency Property:  

It is incumbent that, some composition of terminal a T and functions f F will yield a 

solution to the problem. This is known as the sufficiency property, where it is required 

to identify functions and terminals with sufficient power to solve a particular problem. 

Determining the repertoire of primitive functions and terminals is considered one of the 

most important preparatory steps in GP, but it is common to virtually every problem in 

science and other machine learning paradigms. 

The flowchart of the GP system is shown in Fig. 7.12. As can be seen, the process of the 

GP algorithm starts with a random generation of the first population of CPs.  
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Figure 7.12: A general flowchart for GP (Salimi et al. 2017) 

Initialization 

The initial population is created by randomly generating individual S-expression of a 

rooted, point-labeled tree with order branches. Using a uniform random probability dis-

tribution, the selection of the root of the tree is restricted to a function f F , there will 

be ( )ia f lines radiating out from the respective node, where ( )ia f returns the arity of if

(or the number of arguments if takes). For each of these radiated lines, an element is 

randomly selected fromC F T=  using a uniform random probability distribution to be 

the endpoint of the radiating line. If a function is chosen, then the above steps are recur-

sively iterated. However, if a terminal is selected for that point, that point becomes the 

endpoint for the tree and the generating process is consequently terminated. There exist 

three main generative process implementation methods which are discussed in the fol-

lowing text (Kosa, 1992). 

Full Method 

The FULL method restricts the selection of nodes n at a depth less than the maximum 

depth 
max

( )( )n Dd  to a function f F and nodes at the maximum depth to a terminal
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a T . The depth of a node ( )d n is the length or number of branches connecting the spe-

cific node to the root node and the depth of a tree is defined as the length of the longest 

non-backtracking node from the root to the endpoint. The maximum depth of any 

rooted point-labelled tree with ordered branches is denoted by maxD . The full method 

produces a full parse tree, where the tree is fully balanced the left and right-hand side 

of the root node has the same amount of nodes and the same depth. For more illustra-

tion, in this method, the initial individuals are generated so that they do not exceed a 

user-specified maximum depth. The depth of a node is the number of edges that need 

to be traversed to reach the node starting from the tree’s root node (which is assumed 

to be at depth 0). The depth of a tree is the depth of its deepest leaf (e.g., the tree in 

Figure 7.13 has a depth of 2). In the full method (so named because it generates full trees, 

i.e., all leaves are at the same depth) nodes are taken at random from the function set 

until the maximum tree depth is reached. (Beyond that depth, only terminals can be 

chosen.) Figure 7.13 shows a series of snapshots of the construction of a full tree of depth 

2. The children of the * and / nodes must be leaves or otherwise, the tree would be too 

deep. Thus, at both steps t = 3, t = 4, t = 6 and t = 7 a terminal must be chosen (x, y, 1 and 

0, respectively).  

 

Figure 7.13: Creation of a full tree having maximum depth 2 using the full initialization 

method (t = time) (modified from Poli et al. 2008) 

Although, the full method generates trees where all the leaves are at the same depth, 

this does not necessarily mean that all initial trees will have an identical number of 

nodes (often referred to as the size of a tree) or the same shape. This only happens, in 

fact, when all the functions in the primitive set have an equal arity. Nonetheless, even 
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when mixed-arity primitive sets are used, the range of program sizes and shapes pro-

duced by the full method may be rather limited. 

GROW Method 

As opposed to the full method, the GROW method generates random trees that are 

variably shaped. Each node n at the depth less than the maximum depth 
max

( )( )n Dd  is 

randomly selected from the combined set C F T=  , where nodes at maximum depth 

max
( )( )n Dd  are restricted to a terminal a T . The trees produced are not balanced and 

are variably different in shape and size. on the contrary to the full method, the grow 

method allows for the creation of trees of more varied sizes and shapes. Nodes are se-

lected from the whole primitive set (i.e., functions and terminals) until the depth limit 

is reached. Once the depth limit is reached only terminals may be chosen (just as in the 

full method). Figure 7.14 illustrates this process for the construction of a tree with a 

depth limit of 2. Here the first argument of the + root node happens to be a terminal. 

This closes off that branch preventing it from growing any more before it reached the 

depth limit. The other argument is a function (-), but its arguments are forced to be ter-

minals to ensure that the resulting tree does not exceed the depth limit. 

 

Figure 7.14: Creation of a five-node tree using the grow initialization method with a 

maximum depth of 2 (t = time). A terminal is chosen at t = 2, causing the 

left branch of the root to be closed at that point even though the maximum 

depth had not been reached (modified from Poli et al. 2008) 
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Ramped Half-and-Half Method 

Because neither the grow nor full method provides a very wide array of sizes or shapes 

on their own, Koza (1992) proposed a combination called ramped half-and-half. Half 

the initial population is constructed using full and half is constructed using grow. This 

is done using a range of depth limits (hence the term “ramped”) to help ensure that we 

generate trees having a variety of sizes and shapes. The Ramped Half-and-Half method is 

the most popular method in GP and is a mixture of the previous methods. It incorpo-

rates both the GROW method and FULL method by generating equal numbers of trees 

from each of the methods and thereby maximizing the variety of trees in the population. 

The depth of the tree ranging from 2 to maxD is used as a parameter to create trees. To 

illustrate, if the maximum specified depth is 6, 20% of the trees will have depth 2, 20% 

will have depth 3, and so forth up to depth 6. Then, for each value of depth, 50% of the 

trees are created via the full method and 50% of the trees are produced via the growing 

method. More information about each of these initialization methods can be found in 

Koza (1992). 

After generating the initial population, the fitness of each individual will be evaluated 

by a fitness function. The prevalent fitness function is the root mean square error 

(RMSE), which is used for this investigation, and then if the stopping conditions (best 

solution; selected RMSE value or number of generation) are not attained, the process 

will continue. In another word, the best individuals of the first generation will be se-

lected by means of the selection operator to reproduce into the next generation using 

the reproduction operator. It is good to note that, three important genetic operators (pri-

mary operators), containing reproduction, crossover, and mutation respectively, are ap-

plied in the GP algorithm. 

The reproduction operator, a primary operation, is an asexual operator which takes one 

parental S-expression and creates only one offspring S-expression. This operation is con-

ducted in two steps in which an individual is selected and then copied without any 

alteration into the new population. Unlike the other genetic programming (crossover 

and mutation), in reproduction, the “offspring” in the next generation cannot be worse 

in terms of fitness than the original “parent”. For this reason, only the fittest individuals 

in the population at each generation are selected for reproduction. This is important as 

it ensures that the evolutionary search produces individuals in the next generation that 

are at least as fit as individuals from the previous generation. 

In the GP algorithm, there are four common selection schemes (i.e., fitness proportionate 

selection, rank selection, tournament selection, and Lexicographic parsimony pressure 

selection), where they mimic Darwinian natural selection and pick individuals based on 

their fitness values (Koza, 1992).  
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Fitness Proportionate Selection (FPS) which also called Roulette Wheel Selection is the 

most popular and the simplest selection technique among the others. In this method, 

individuals are selected based on their fitness on the roulette wheel the chance factor. 

Any individual having a lower fitness proportion passes into a new population. Each 

individual of the population is allocated a section of an imaginary roulette wheel, which 

is proportionate to its fitness. The fittest candidate has the biggest section of the wheel 

and the weakest candidate has the smallest. The wheel is then spun n number of times, 

where n is the population size and every time the individual associated with the win-

ning section is selected. To explain the way this method works assume that ( ( ))if s t  de-

notes the fitness belonging to the individual s i at the tth generation. When the reproduc-

tion operation is applied, the individual s i will be then passed to the subsequent gener-

ation with the probability of ( ( ))jP S t  

1

( ( ))
( ( ))

( ( ))

i
j m

jj

f s t
P S t

f s t
=

=


                                                                                                      (7.10) 

Where 
1

( ( ))
m

jj
f s t

= indicates the sum of fitness values for m chromosomes. The fittest 

candidate has the biggest section of the wheel and the weakest candidate has the small-

est. The wheel is then spun n number of times, where n is the population size and every 

time the individual associated with the winning section is selected.  

 

No. Fitness (fx) % of total 

1 6.82 31 

2 1.11 5 

3 8.48 38 

4 2.57 12 

5 3.08 14 

Total 22.05 100 

 

Figure 5.15: Fitness Proportionate Selection (FPS), “Roulette wheel selection” (Dalton, 

2007)  

As can be seen from Figure 5.15, the fittest candidate has the biggest section of the wheel 

and the weakest candidate has the smallest. The wheel is then spun n number of times, 

where n is the population size and every time the individual associated with the win-

ning section is selected. As the wheel is spun N times and each time selecting a member 

of the population, picked by the selection pointer. In this example, the 3th individual 
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has higher fitness, hence would be selected more than others. The probability of select-

ing an individual in the roulette wheel method is the ratio of the fitness value of that 

individual to the total fitness values of all individuals as depicted in the figure. Fitness 

f(x) of individual no.3 is the fittest and no.2 is the weakest. Strongest individual a value 

of 38% and the weakest 5%. These percentage fitness values can then be used to config-

ure the roulette wheel and the number of times the roulette wheel is spun is equal to the 

size of the population. Each time the wheel stops it gives the fitter individual the greater 

chance of being selected for the next generation (and subsequent mating pool) That 

means that, individual no.3 will become more prevalent in the general population be-

cause it is fitter. The observation is that the individual with higher fitness values will 

guard the other to be selected for mating. This leads to a lesser diversity and hence fewer 

scope toward exploring the alternative solution and also premature convergence or 

early convergence with a local optimal solution. 

Tournament Selection A very popular and often used method based on ranked selection 

is tournament selection, which is also applied in this research. The method is suggested 

for quick convergence. In this method, usually, a special group of individuals (generally 

two) will be selected randomly from a population and the individuals with a better fit-

ness (i.e., lower fitness) will be selected. This selection technique uses n  sets of individ-

uals (also known as tournament sets; for n  = 2 the selection technique is referred to as 

binary tournament selection shown in Figure). These sets are filled with a number (typ-

ically smaller than the size of the parent population) of uniformly randomly picked in-

dividuals from the parent population. From all tournaments, the fittest individuals are 

then chosen into the mating pool for breeding. The popularity of tournament selection 

is due to its computational efficiency and statistical properties. Due to the independent 

random selection (individuals may be picked more than once into a tournament) of in-

dividuals for the tournament sets the parent population does not need to be ordered (no 

preprocessing of the population is required) which makes this selection method fast. By 

altering the tournament size, the selective pressure can be varied. A low tournament 

size corresponds to a low selective pressure. In fact, a tournament size of 1 would result 

in uniformly random selection while a large tournament size allows more individuals 

from the parent population to be compared to find the fittest and hence increases the 

selective pressure. Having a large tournament size will generally find fitter programs 

more quickly and the evolution process will tend to converge to a solution in less time. 

A smaller tournament size will likely maintain more diversity in the population as more 

programs are given a chance to evolve and the population may find a better solution at 

the expense of taking longer. This is known as selection pressure, and your choice here 

may be governed by the computation time. Note that, tournament size ( n ) can be used 

to vary the selection pressure. 
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Figure 7.16: Binary tournament selection (modified from Poli et al. 2008) 

Rank Selection addresses the drawbacks of FPS by maintaining a constant selection 

pressure. If the best individual fitness is 90%, its circumference occupies 90% of the Rou-

lette wheel, and then other individuals have too few chances to be selected. To overcome 

the problem with Roulette-Wheel selection, a rank-based selection scheme has been pro-

posed. The basic idea is that, first rank the population and every individual receives 

fitness, it means that, the worst have the fitness 1 and the best will have the fitness N 

(number of individuals in a population) (Figure 7.17). The process of ranking selection 

consists of two steps: 

1. Individuals are arranged in an ascending order of their fitness values. The indi-

vidual, which has the lowest value of fitness is assigned rank 1, and other indi-

viduals are ranked accordingly. (the best) 

2. The proportionate based selection scheme is then followed based on the assigned 

rank. 

Note that, the % area to be occupied by a particular individual i , is given by 

1

100i

N

ii

r

r
=




where ir  indicates the rank of i -th individual. Two or more individuals with the same 

fitness values should have the same rank. For example, continuing with the population 

of 4 individuals with fitness values: 1 2 3 40.40; 0.05; 0.03; 0.02f f f f= = = = . Their propor-

tionate area on the wheel are: 80%, 10%, 6%, and 4% (Figure 7.18). Comparison of two 

types of selection method (Roulette wheel & Rank selection) also depicted in Figure 7.18. 

It is evident that expectation counts have been improved compared to Roulette-Wheel 



7.2  Artificial Intelligence Methods & TBM Performance 

259 

selection. As such, a rank-based selection is expected to perform better than the Rou-

lette-Wheel selection 

      

Figure 7.17: Rank selection method, left: (Situation before ranking (graph of fitness), 

right: Situation after ranking (graph of order number) (Obitko, 1998) 

 

 

Individual 

(i) 

Fitness 

(fi) 

RW 

(Area) 
Rank 

RS 

(Area) 

1 0.4 80% 4 40% 

2 0.05 10% 3 30% 

3 0.03 6% 2 20% 

4 0.02 4% 1 10% 

 

                           

Individual % Area fi Rank (ri) % Area 

1 80% 0.4 4 40 

2 10% 0.05 3 30 

3 7% 0.03 2 20 

4 4% 0.02 1 10 

Figure 7.18: Rank selection method & the distinction with Roulette wheel selection 

method 

In brief, when the difference between the individual's fitness is considerable, the use of 

two previous methods is not suggested and the rank selection methods are suitable. 
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This selection method is similar to fitness proportionate selection, but the numerical 

values are replaced by a ranking, therefore, the main advantage of rank selection is that 

it exploits the small differences between individuals, maintaining population diversity 

and avoiding premature convergence.  

 

Lexicographic Parsimony Pressure method is similar to tournament procedure and is 

able to optimize the fitness and the parse tree sizes. Lexicographic parsimony pressure 

is a straightforward multi-objective technique for optimizing both fitness and tree size, 

by treating fitness as the primary objective and tree size as a secondary objective in a 

lexicographic ordering. The fact is that, the procedure does not assign a new fitness 

value, but instead uses a modified tournament selection operator to consider the size. 

To select an individual, two individuals are chosen at random, and their finesses are 

compared. If an individual has superior fitness, it is selected. If the finesses are the same, 

then sizes are compared, and the smaller individual is selected. If both fitness and size 

are the same, an individual is selected at random. It can be thought that, the procedure 

is attractive because it is based on the relative rank of individuals in a population rather 

than their explicit fitness values, thus, specific differences in fitness are immaterial. All 

that matters is that one fitness is greater than another. Additionally, plain lexicographic 

parsimony pressure has nothing to tune. However, the procedure only works well in 

environments/biology which have a large number of individuals with identical fitness 

(see Figure 7.19). As shown, two GP-trees with the same fitness value but, the left one 

has size 6 and the right one has size 4, as such this method selects the right one which 

includes less size. 

 

Figure 7.19: Lexicographic parsimony pressure; two GP-trees with the same fitness; the 

left one has size 6, whereas the right one has size 4 (Kötzing et al. 2019)   

Further information about the mentioned methods can be found in Koza (1992). 
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Crossover or the sexual recombination is another predominant search operator, where 

it produces new offspring by swapping genetic material between the selected parents, 

as depicted in Figure 7.20. This operator is highly stochastic. It is a binary operator, 

where it selects two S-expression probabilistically and produces two new S-expression. 

In selecting the crossover point, a higher probability ipP is given to the internal (function) 

points of the tree. This distribution promotes the recombination of the much larger 

structure. The crossover fragment of each parent is itself a rooted subtree, with its root 

being crossover point. The offspring is created in a symmetric manner, where the cross-

over fragments of the first parent is deleted and the crossover point of the other parent 

is inserted at the crossover point of the first parent. As it is required for all functions to 

comply with the closure property and the entire subtree are exchanged, this genetic op-

eration creates syntactically legal LISP S-expression. The maximum depth of a tree dur-

ing the evolution evolutionD limits the maximum permissible size of the tree. If the crossover 

operation results in offspring of impermissible size, the crossover operation is aborted 

and one of its parents is arbitrarily selected to be reproduced.  Usually, the general range 

of (0, 1) is considered for this operator. 

 

Figure 7.20: Crossover operator in GP  

Mutation is another genetic operator which is an unary operator, introduces random 

changes in the individual. Mutation selects randomly individuals and can occur on any 
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operational and final nodes of parse trees (Figure 7.21). If the selected node is an opera-

tional node, it changes with another node with sub-trees that contain a new function 

otherwise if the selected node is a final node; it substitutes just with another node. The 

range of (0, 1) is suggested usually as the rate of this operator. 

 

Figure 7.21: Mutation operator in GP 

 After applying these genetic operators, new programs with modified structures will be 

created as the second generation. This process continues to achieve the maximum gen-

eration (Koza, 1992; Silva and Almeida 2003a; Salimi et al. 2017). 

In fact, reproduction, crossover, and mutation are considered as primary genetic oper-

ators and there is a secondary genetic operator that is known as Elitism which prevents 

the loss of the fittest individual within the population by ensuring that, the current fit-

test individual always survives and is kept in the population. Thus, the fittest of the best 

individual is an increasing function. Besides that, the Elitism controls the “bloating” in 

genetic programming which is defined as the increase in mean program size without a 

corresponding improvement in fitness. The phenomenon of uncontrolled growth in the 

size of an individual without any significant improvement in fitness is known as bloat. 

Mostly, it is suggested 10 % of the population size is considered as elitism size (Poli et 

al. 2008). 

The fact is that, genetic programming has been applied to a variety of problem domains.  

For example, Johari et al. (2006) have successfully applied GP for the prediction of the 

soil-water characteristic curve. Moreover, Javadi et al. (2006) introduced a new tech-

nique based on genetic programming (GP), for the determination of liquefaction-in-

duced lateral spreading. Also, genetic programming has been employed by Nguyen Thi 

et al. (2020) for storm surge forecasting.  
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The GP domain addressed in this work is symbolic regression. Classical mathematical 

regression techniques typically utilize a regression model (e.g., linear, non-linear, para-

metric) pre-specified by a user according to the requirements of the problem domain. 

While conventional regression techniques seek to optimize the parameters for a pre-

specified model structure, symbolic regression avoids imposing prior assumptions, and 

instead infers the model from the data. In other words, it attempts to discover both 

model structures and model parameters, thus it has more potential in terms of accurate 

modelling than conventional regression methods. 

According to Fig. 7.22, to develop a mathematical equation in order to predict TBM FPI, 

GP modeling can be summarized in five major steps as below: 

i. Determining the set of terminals which are appropriate to solve the given prob-

lem. 

ii. Identifying the set of primitive functions. 

iii. Formulating and establishing the fitness function. 

iv. Adjusting the values for genetic operators and population size. 

v. Defining the initialization and selection methods and termination criterion. 

 

Figure 7.22: Five preparatory steps for GP 

As mentioned before, unlike to other evolutionary algorithms, GP is able to develop 

mathematical functions for the dependent variables. To such that, the same input pa-

rameters, including UCS, RQD, Js, Jc, and RTC are considered as terminal set and FPI is 

the output parameter. The final aim of GP modeling is the development of an equation 
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in the form of ( , , , , )FPI f UCS RQD Js Jc RTC= . Besides, to improve the ability of GP in 

function finding, 6 random constants ranging from -10 to +10 were defined. Therefore, 

the used terminal sets include as follow: 

 ; ; ; ; ;5.655; 8.096; 6.813;0.833;8.307; 3.484F UCS RQD Js Jc RTC= − − −
              (7.11) 

In the modeling procedure of GP,  

The problem was solved by using the popular suite of machine learning software writ-

ten in C# known as GPdoNET v5 (Hrnjica and Danandeh Mehr, 2018). To minimize the 

error and maximize correlation coefficient (R2), the most common functions suggested 

by other researchers were taken into consideration and used as follow: 

 1, , , /, ^ 2,^ 3, , , , , ,F Sqrt Sin Tan Exp Ln
x

= + −                                                               (7.12) 

The fitness of each individual parameter was evaluated by RMSE. It is well-recognized 

that if RMSE=0, an idealized fit can be obtained. Remember that the fitness value and 

efficiency are directly proportional to each other consequently, it is impossible to di-

rectly employ this index as the fitness function. Thus, a modified equation, i.e., Equation 

7.13 was considered as the fitness function. 

1
1000

1

'RMSE
RMSE

= 
+

                                                                                                   (7.13) 

where 
'RMSE signifies a value in the interval from 0 to 1000; where 1000 represents the 

ideal state. 

It is worth to note that in addition to genetic operators which need to be arranged, sev-

eral important parameters composed of the number of populations, the initialization 

method, selection method, number of generations, maximum tree depth, etc. are neces-

sary to be assigned. As noted by Koza (1992), the mutation plays a minor role in GP and, 

therefore this genetic operator is fixed as a value of 0.05 (suggested by literature review). 

Besides that, among different initialization methods and pressure methods, the ramped-

half-and-half initialization method and tournament selection method are more favora-

ble by the scholars (based on literatures review) and frequently used and, thus got more 

attention in this study. Also, since the maximum tree depth has a key role in initializa-

tion, a range of (3, 10) is defined to achieve the best tree depth. Considering that a small 

tree depth causes the elimination of some input parameters in the developed models 

and in another side, the large value for tree depth increases the complexity of the model 

and decreases its performance. Besides, the probability of GP operators of crossover in 

the range of (0, 1) and (0, 0.5) for reproduction are taken into account. In order to deter-

mine the proper values of other parameters, several models with different conditions 
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were evaluated based on a trial-and-error procedure considering the literature’s sug-

gestions. The optimum combination of GP parameters is obtained as listed in Table 7.5. 

The program is evolved through 3000 generations and equation 7.14 is the mathematical 

phrase of the best-generated computer program by GP; whereUCS  is uniaxial compres-

sive strength (MPa), Js is joint spacing (cm), RQD is rock quality designation (%), Jc is 

joint characteristic in basic RMR and RTC is rock type code; 10 for G and GN, 20 for MV, 

30 for SLK, 50 for C. Tree structure of the best GP model for TBM performance predic-

tion is depicted in Fig. 7.23. Figure 7.24 displays the fitness progression of the evolved 

chromosomes during 3000 generations. The relationship between measured and pre-

dicted values obtained from the GP model is shown in Fig. 7.25. The correlation coeffi-

cient (R2) between measured and predicted FPI by GP model is 0.86. Moreover, the var-

iation of FPI with 5 selected input parameters generated by GP in the form of a surface 

graph is shown in Fig. 7.26. It can clearly be seen the variation of output (FPI) with 

inputs is found to be in agreement with previous literatures. Increasing the uniaxial 

compressive strength, joint spacing, RQD , and Jc increases the FPI as anticipated, while 

the low value of FPI respected to RTC is obtained in rock type category “C or 50” and 

the higher one in “G&GN or 10”. 

( )( )
( )( )

( )( )
( )

( )( )
( )( )

5.65 8.3
12.138

5.65 1.2 5.65 10.29

68.89 8.
5.65

8.3

UCS Jc Js JcJs Js RQD Js
RQD

RTCJs RTC RTC RQD RTC

UCS
Sin UCS

RQD RTC

− −
− − − − − −

−− −
+

−

                
                

                   

    
    
      ( )( )

3

5.65 6.81UCS −

 
 
  

   (7.14) 

Table 7.5: GP parameters for constructed model 

GP parameters Values 

Terminal set UCS, RQD, Js, Jc, RTC 

Fitness function RMSE 

Number of populations 500 

Number of generations 3000 

Initialization method Half 

Selection method Tournament 

Tour size 5 

Crossover 0.89 

Mutation 0.05 

Reproduction 0.2 

Elitism size 50 

Max. Tree depth  

Initialize depth 5 

Operation depth 6 
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Figure 7.24: Fitness progression of the evolved chromosomes during 3000 generations 

 

 

Figure 7.25: Comparison between the measured and predicted FPI from the GP model 
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Figure 7.26: Surface graph generated by GP showing the relationship of FPI with 
, , ,UCS RQD Js Jc and RTC  
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Chapter 8 Evaluation & Validation of 

Developed Models 

8.1 Introduction 

A wide variety of performance prediction methods and principles are proposed and 

used to estimate the performance (penetration and advance rate) of a TBM in hard rock. 

Different models are used in different countries, contractors, engineers, and by various 

TBM manufacturers based on their experience and available information. While some 

of the methods are based mainly on one or two rock parameters (for example uniaxial 

compressive strength and a rock abrasion parameter) the others are based on a combi-

nation of comprehensive laboratory, field, and machine parameters.  

To fulfill the main goal of this study, which is developing new and more accurate mod-

els for prediction and penetration rate of TBMs in rock tunneling, seven TBM tunneling 

projects with 61.09 km available data were compiled and analyzed. The models have 

been developed based on the input parameters of rock mass classification system such 

as, rock mass rating (RMR), which is often available in tunneling projects. The statistical 

analysis as well as artificial intelligence algorithm, including classification and regres-

sion tree (CART), genetic programming (GP) were used to analyze the compiled field 

data. In this chapter, the performance and accuracy of the proposed models are evalu-

ated based on different statistical indices. In addition, sensitivity analysis is conducted 

for non-linear regression, CART, and GP models to examine of the effects of variability 

of the input parameters on the results of the developed models. Finally, in order to val-

idate and assess the performance/efficiency of the proposed models, the data from Zag-

ros water conveyance tunnel lot 2 (5-15 km) was used.  The data from this section of the 

Zagros tunnel had not been employed for the development of the proposed model, 

hence it is used for testing and validation. For comparison, the results of proposed mod-

els are compared with the results of three world-wide prognosis models, including the 

CSM model (Rostami 1997), the NTNU (Bruland 1998), and QTBM (Barton 2000). Eventu-

ally, the limitations of developed model (CART) are being proposed and discussed. 
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8.2 Comparison of the Developed Models 

The performance of the proposed models was evaluated according to statistical criteria 

such as correlation coefficient (R2), the root mean square error (RMSE), mean absolute 

deviation (MAD), mean absolute percentage error (MAPE), mean square error (MSE) 

and variance account for (VAF). 

Description of these statistical parameters can be found in textbooks and statistical soft-

ware tutorials.  The results of applying these models are summarized in Table 8.1.  

Table 8.1: Performance indices for developed models 

Model R2 MAD MSE RMSE MAPE VAF 

Linear 0.68 11.048 217.168 14.736 58.436 0.678 

Non-linear 0.78 6.780 138.734 11.778 26.382 0.744 

GP 0.86 5.787 71.514 8.456 23.017 0.863 

CART 0.91 4.194 44.470 6.668 20.146 0.912 

 

8.3 Model Evaluation via Sensitivity Analysis 

Sensitivity analysis examines the variability of the outputs of a model by changing the 

input variables within a prescribed range. This process allows for a better understand-

ing of the relationship between the input parameters and the output results and facili-

tates the recognition of possible errors caused by models when the input parameters 

vary beyond an intended range. In addition, this analysis accommodates validating the 

results and identification of critical or uninfluential parameters in the models. The sim-

plest form of sensitivity analysis is to change one variable by keeping other variables 

constant and investigating the effect of the change of isolated input parameter on the 

model results. This is known as a one-way sensitivity analysis. One-way sensitivity 

analysis can be done by different methods, each of which is applicable for certain pur-

poses. While one-way sensitivity analysis is useful for demonstrating the effect of one 

parameter in the model, sometimes it is necessary to investigate the effect of changes in 

two or several parameters simultaneously. Multi variable sensitivity analysis allows for 

this possibility, through which the effect of changes in the possible combinations of in-

fluential parameters is evaluated in their range of variations. Note that the interpreta-

tion and demonstration of multivariable sensitivity analysis would become complex 

and difficult with an increased number of parameters. In the probabilistic sensitivity 
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analysis, instead of allocating a certain value to each parameter, a distribution is used 

to allow variation all of the parameters available in the model. The distribution of the 

model inputs is assigned through either fitting a curve to a set of data or by using a 

mean, standard deviation, and using a normal distribution. 

In this study, the multiway sensitivity analysis is used by simultaneous variation of dif-

ferent parameters on the developed model conducted by non-linear regression analysis, 

CART GP model (see below).  

The probabilistic sensitivity analysis method was implemented by using a set of initial 

values for each of the influential variables affecting the output. For each combination of 

input values, the output was calculated based on these values. The output is recalcu-

lated by the newly selected values and eventually, the output distribution curve was 

obtained based on the values calculated in each replication. It is worth to be noted that, 

the whole range (distribution) of the input parameters and respected output has been 

taken into the consideration for the analysis. The results of sensitivity analysis are 

shown by tornado diagrams, allowing the ranking of the effect of the distribution of 

input parameters on the output results. The input with the greatest impact on the output 

is the largest (and highest) bar in the diagram. To demonstrate the extent of the effect of 

each parameter on the output, the input values were divided into groups with equal 

size, from the lowest input value to the highest. In a multiway sensitivity analysis, a 

group of different input parameters are selected simultaneously and randomly 

changed, and then the variation in output results is calculated in numerous iterations 

and recorded. 

The difference between the maximum and minimum value of the output calculated in 

the range of variations of each output variable represents the length of the bar in the 

tornado diagram. Figure 8.1 illustrates the tornado diagram for the developed non-lin-

ear regression model. Based on this diagram, the lowest sensitivity of the model is to Jc  

(joint characteristics), while the other inputs have a great impact on the sensitivity of the 

model.  This could be attributed to the limited range of Jc (it changes between 0 to 30) 

in the original database or this parameter is shadowed by the other inputs such asUCS  

or RQD . Figure 8.2 shows tornado diagram for the developed GP model. As can be seen, 

again the lowest sensitivity of the model is to Jc and the other parameters have a signif-

icant impact on the sensitivity of the model. Figure 8.3 illustrates tornado diagram for 

the CART model. Again, similar results were obtained in which Jc shows the lowest 

sensitivity of the model.    

The results of sensitivity analysis can also be illustrated by a spider diagram. A spider 

diagram indicates variations in the output in relation to the percentage of changes in 

each of the input variables. The percentage of changes in input variables is shown in the 
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horizontal axis and the extent of changes in the output results corresponding with the 

given inputs is indicated in the vertical axis. The higher the slope of the line for an input, 

the greater its impact on the output. The spider diagram contains more information than 

the tornado diagram. A tornado diagram only shows the overall change of output val-

ues, whereas the spider diagram also shows the rate of changes in the output value per 

changes in the given range of input parameters. Figure 8.4, 8.5, and 8.6 reveal changes 

in the field penetration index (FPI) value in terms of the percentage of variations in the 

input parameters in the MNLRA, GP, and CART model, respectively. 

The tornado diagram of sensitivity for the MNLRA model indicates that the difference 

between the effects of different parameters is not similar. This shows that the MNLRA 

model is equally affected by input variables (with exception of Jc ), The extent of differ-

ence in the effect of the most important input parameter and the least important param-

eter in MNLRA models is not considerable, revealing suitable selected parameters and 

their weights for the model. The tornado diagram of the sensitivity of the GP model 

demonstrates that the distinctness between the effects of various parameters is not iden-

tical. This expresses that the GP model is equally affected by input variables (with ex-

ception of Jc ). Besides, similar results have been obtained from the tornado diagram of 

the CART model, meaning the CART model also is equally affected by input variables. 

Figure 8.1: Tornado graph resulted of sensitivity analysis of MNLRA model 
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Figure 8.2: Tornado graph resulted of sensitivity analysis of GP model 

Figure 8.3: Tornado graph resulted of sensitivity analysis of CART model 
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Figure 8.4: Changes in the penetration value by change of input parameters in MNLRA 

model 

Figure 8.5: Changes in the penetration value by change of input parameters in GP model 
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Figure 8.6: Changes in the penetration value by change of input parameters in CART 

model 

8.4 Validation of the Proposed Models 

In order to validate/evaluate the capability of the proposed models, the data from Zag-

ros water conveyance tunnel lot 2 which had not been used in the earlier analysis and 

development of the models, was used for validation.  

The geological profile of this section of the tunnel is shown in Fig. 8.7, including the 

distribution of various stratigraphic units along the tunnel. Pictures (a) to (c) of Fig. 8.8 

illustrate different identified engineering geological units in outcrops and tunnel faces. 

Due to the considerable difference in the engineering properties of the stratigraphic 

units, they can be considered as different engineering geological units. 
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Figure 8.7: Geological cross-section along the ZWCT2 (Hassanpour et al. 2016) 

Figure 8.8: (A) A view of Pabdeh and Gurpi contact and stratigraphic units identified 

along the tunnel alignment, (b) alteration of shale and shaly limestone in 

tunnel face, (c) views of limestone blocks in tunnel face (Hassanpour et al. 

2016) 

The main petrographic, physical, and mechanical characteristics of these lithotypes are 

summarized in chapter 5, Table 5.4. To determine drillability indices, 12 sets of Norwe-

gian tests were performed by the SINTEF laboratory on samples taken from different 
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boreholes along the tunnel alignment. Also, a series of tests were performed using de-

vices in a local laboratory. (Hassanpour, 2009; Hassanpour et al. 2016). The selected area 

for assessment of the proposed models is focused on TBM performance for the chainage 

from 5.3 km to 15 km at the southern section of the ZWCT Lot 2 project (~ 9.5 km) while, 

the first 5 km of the tunnel used before for development of the models. 

As mentioned earlier, the main objective of this section was the evaluation of the accu-

racy of developed models and comparison of the most common TBM performance pre-

diction models in a given geological condition encountered at this site. The normal 

range of ROP was 1.6-4 m/h with an average of 2.6 m/h for the total length of bored 

section. Graphs presented in Fig.8.9. shows the variations of the RPM, penetration rate 

(m/h), and total TBM thrust at different identified geological units along the bored sec-

tion of the tunnel used in this section, respectively.  Average values of rock mass pa-

rameters and intact rock properties have been used to determine geomechanical condi-

tions of the identified engineering geological units by some empirical rock mass classi-

fication systems (See Figure 8.10). Besides that, the joint spacing encountered along the 

tunnel in the study area has an average of 0.21 m, ranging from 0.05 to 0.35 m. 

 

 

0

1

2

3

4

5

6

7

S
H

-L
S

3

S
H

-L
S

2

S
H

-L
S

1

M
L
-S

H
5

C
Z

F
Z

S
H

-L
S

2

S
H

-L
S

3

C
Z

S
H

-L
S

3

S
H

-L
S

2

S
H

-L
S

1

M
L
-S

H
5

C
Z

S
H

-L
S

3

S
H

-L
S

2

S
H

-L
S

1

S
H

-L
S

2

S
H

-L
S

3

S
H

-L
S

4

C
Z

S
H

-L
S

4

S
H

-L
S

3

S
H

-L
S

2

S
H

-L
S

3

S
H

-L
S

4

C
Z

S
H

-L
S

4

S
H

-L
S

3

S
H

-L
S

2

S
H

-L
S

1

M
L
-S

H
5

S
H

-M
L

1

M
L
-S

H
5

S
H

-L
S

1

S
H

-L
S

2

S
H

-L
S

3

S
H

-L
S

4

L
I2

C
Z

L
I2

R
P

M

Eng. geological unit



Chapter 8  Evaluation & Validation of Developed Models 

282 

 

 

Figure 8.9: Variations of average TBM performance parameters (ROP, RPM, Total 

Thrust) along the tunnel  
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Figure 8.10: Variations ofUCS , 0RQD and rock mass parameters of engineering units 

identified along the tunnel alignment 

8.4.1 Estimation of TBM Performance using CSM, NTNU, QTBM & 

CART Models 

Among the models presented and discussed in Chapter 4, three of them including CSM, 

NTNU, and QTBM are the most commonly used prognosis models applied in the tunnel 

industry.  As such, based on the arranged data and data-collection, the rate of penetra-

tion at each tunnel sections are calculated and recorded in a new separate file defined 

as the results of performance prediction by different models. Table 8.2 presents an over-

view and calculation procedure of each mentioned model, containing CSM, NTNU, and 

QTBM. Since among the developed models in this investigation, CART shows better re-

sults comparing to the others (Non-linear regression & GP), therefore, the CART model 
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is adopted to assess the results efficiency/ accuracy of TBM PR contrasting to CSM, 

NTNU, QTBM as well as the actual recorded one. Also, the following formula can be used 

to calculate ROP (m/h) from the FPI. 

0.06
( / ) nF RPM

ROP m h
FPI

 
=   (8.1) 

Where nF is the average cutter load (kN/cutter), RPM is cutterhead speed (revolution per

minute), and FPI is field penetration index (kN/cutter/rev/min). Figure 8.11 shows esti-

mated ROP m/h) for the TBM in each unit using the above-mentioned prediction mod-

els, while Figure 8.12 presents the actual and estimated ROP in scatter-plot. Moreover, 

variations of absolute error or (%)E for each model in each tunnel section, are shown in 

graphs of Figure 8.13. The absolute error (%)E can be calculated according to the follow-

ing formulae: 

(%) 100
Actual ROP Estimated ROP

E
Actual ROP

−
=  (8.2) 

A summary of the statistical analysis performed on calculated rates and respected er-

ror are presented in Table 8.3.  The results show that CART had the lowest total error 

and thus offers a more accurate prediction of the TBM performance for this project. 
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Table 8.2: Overview of CSM, NTNU, QTBM and CART prediction models 

Prediction 

model  

Required input parameters Output parameter Limitations 

Rock mass parameters Machine parameters 

CSM 

Uniaxial compressive strength 

(UCS), Brazilian tensile strength 

(BTS), Cerchar Abrasivity Index 

(CAI) 

Cutter load capacity, 

cutter spacing, cutter di-

ameter, cutter tip width, 

TBM thrust, and torque. 

Penetration 

The original model is 

based only on intact 

rock properties 

NTNU 

Fracturing: frequency & orienta-

tion, Drilling Rate Index (DRI), 

Bit Wear Index (BWI), Cutter 

Life Index (CLI), and the other 

parameters 

Cutter thrust, cutter 

spacing, cutter diameter 

Penetration rate, ad-

vance rate, utiliza-

tion factor, tunnel 

cost 

Determination of 

input parameters 

needs special tests 

QTBM 

RQD0, Jn, Jr, Iw, SRF, rock mass 

strength, cutter life index (CLI), 

UCS, induced biaxial stress 

Average cutter load, 

TBM diameter 

Penetration rate, ad-

vance rate 

The model uses many 

parameters, input pa-

rameters determina-

tion needs special 

tests, some inputs pa-

rameters are over-

lapped 

CART 

(Salimi et al. 

2019) 

UCS, RQD, joint spacing (Js), 

joint characteristics (partial rat-

ing in basic RMR), Rock Type 

Code (RTC) 

Thrust, rotation speed of 

cutterhead, number of 

disc cutters 

Penetration rate 

Unstable blocky 

ground, Mixed face 

conditions,  
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Figure 8.11: Comparison of measured and calculated ROP using CSM, QTBM, NTNU & 

CART models 

Table 8.3: Descriptive statistics of absolute errors ( )E estimated for the prediction mod-

els 

Models N Range Minimum Maximum Mean Std. Deviation 

NTNU 41 58.75 1.55 60.30 30.74 16.43 

CSM 41 112.94 2.09 115.03 41.66 28.60 

QTBM 41 258.72 1.00 259.72 69.26 66.59 

CART 41 61.77 0.68 62.45 20.40 14.58 
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Figure 8.12: Comparison between actual and estimated ROP from QTBM, CSM, CART, 

and NTNU model 

Figure 8.13: Variations of absolute error estimated for different models in each geologi-

cal unit along the tunnel alignment 

8.4.2 Comparison with compatible model, (CART vs Hassanpour et al. (2011)) 

Among the different models which have been presented and discussed in chapter 4, the 

model proposed by Hassanpour et al. (2011) was developed based on the FPI model. As 

such, in this section, the results of the calculated ROP via the CART model is compared 

with Hassanpour’s model. Similar data has been used for model assessment, i.e., the 

chainage from 5.3 km to 15 km at the southern section of the ZWCT Lot 2 project (~ 9.5 

km). Figure 8.14 displays estimated ROP (m/h) for the TBM in each unit respecting to 

CART and Hassanpour et al. 2011 models, while Figure 8.15 illustrates the actual and 

estimated ROP in scatter plot. Besides that, variations of absolute error or (%)E for the 

above-mentioned models in each section tunnel section are depicted in Figure 8.16. 

Also, a summary of statistical analysis executed on the calculated rate and respected 

error shown in Table 8.4. As can be seen, the CART model shows slightly less error and 

better accuracy in contrast to Hassanpour et al. (2011) model. 
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Figure 8.14: Comparison of measured and calculated ROP using CART & Hassanpour 

et al. 2011 models 

Figure 8.15: Comparison between actual and estimated ROP from CART and Has-

sanpour et al. (2011) model 

Table 8.4: Descriptive statistics of absolute error ( )E estimated from CART and Has-

sanpour et al. (2011) models 

Models N Range Minimum Maximum Mean Std. Deviation 

CART 41 61.77 0.68 62.45 20.40 14.58 

Hassanpour et al. (2011) 41 87.23 0.45 87.68 23.92 22.78 
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Figure 8.16: Variations of absolute error estimated for CART & Hassanpour et al. (2011) 

models in each geological unit along the tunnel alignment 

8.5 Limitations of the developed CART model 

The CART model developed in this investigation has some limitation in its application, 

similar to any other empirical model, and that is the applicability within the range of 

parameters in the original database and the best results for the range of data with sub-

stantial number of data points.  The additional limitations are with respect to machine 

parameters, mainly associated with the cutter diameter & spacing used on the machines 

used in this study, mostly 432 mm (17 inch) disc cutters. Although the thrust force per 

cutter is a normalized value by cutter number in the developed model, the concentrated 

stress acting on the rock face at the contact point which initiates the fracture propagation 

is still greatly affected by cutter diameter and cutter tip width even if the force per cutter 

is the same as noted by Gong & Zhao (2009). Although, these machines have different 

diameters, they are similar in most of their specifications, particularly in cutterhead de-

sign and cutters arrangement i.e., all of these machines used 17-inch constant cross sec-

tion (CCS) disc cutters with almost similar geometry; and the average spacing of disc 

cutters in all cutterheads was in the range of 60-90 mm. Consequently, when the ma-

chine parameters are changed (especially cutter dimeter, cutter width and spacing), the 

model need to be used with consideration of the effects of these parameters. Perhaps 

existing models such as CSM formula which allows for variation of these parameters 

can be used for developing adjustment factors to extend the use of the proposed FPI 

numbers to the cases where disc diameter and tip width or spacing is outside the range 

of the available database. 
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On the other hand, the estimated FPI and machine performance is dependent upon ge-

ological characteristics of the sites and hence, there are some limitations in the range of 

geosocial parameters for the use of the proposed formulas that can be listed as follows:   

• Transitional working conditions: In general, the estimated penetration rate by

any performance prediction models is not applicable to machines operating in transition

zones which could be Mixed Face Conditions where dissimilar material is cut at the face.

The mixed face describes a tunnel face exhibiting two or more rock materials, interface

between rock and fault zone, fault and soil, etc. with significantly different boreability

properties.

• Unstable Blocky Ground: “blocky rock conditions” is a term associated in the

literature to face instabilities in jointed/blocky rock masses, in which the combined effect

of rock mass structure and in-situ stresses may lead to a degradation process of the tun-

nel face that may lead to face failure in the “blocky” ground. In this type of ground,

intersection of discontinuity sets forms rock blocks which could detach from tunnel face

and cause cutterhead jamming, increase required torque and cause damage to disc cut-

ters.

• Squeezing Ground Conditions:  Operation of TBMs involves tremendous diffi-

culties in weak and deformable grounds, typically encountered within zones exhibiting

ground squeezing behaviours such as highly tectonic zones or weak ductile rocks at

great depth. The high tunnel deformation phenomenon is called ‘squeezing ground’ in

which large time-dependent and anisotropic deformations occur. The potential hazards

associated with squeezing ground concern both the ma-chine (sticking of the cutter

head, jamming of the shield) and the back-up area (in-admissible convergences of the

bored profile, damage to the support). But the main issue is that the cutterload delivered

to the cutters at the face are unpredictable, due to the unknown level of frictional forces

between the walls and the TBM shield.

In addition to the above-mentioned conditions which needs ample amount of caution 

to apply the developed CART model, the use of model in boundary conditions of rock 

mass also requires more scrutiny. This refers to rock masses with high in-situ stress and 

groundwater. While groundwater in principle does not impact penetration rates, it 

surely can affect the advance rate. Many tunnel instability incidents are linked to 

groundwater inflow. High in-situ stress influences both advance rate and penetration 

rate. As noted by Liu et al. (2002), if the in-situ stress is insufficient to cause stress slab-

bing at the face, it may still limit or enhance crack propagation and consequently affect 

penetration rate.  

At higher in-situ stress levels where stress slabbing can occur, over-stressed burst may 

occur that impacts the machine utilization but, in some cases, this can also affect TBM 
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penetration rate (U. S. Army Corps of Engineer, 1997; Boniface, 2000). In either scenario, 

if elevated levels of in-situ stresses are encountered, the use of models based on normal 

TBM operation conditions may yield less accurate estimates of machine performance.  

The CART model offered in this study is no exception. 
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9.1 Introduction 

As mentioned in chapter 1, the main goal of this investigation was to develop new mod-

els for more accurate prediction of penetration rate for rock TBM, based on rock mass 

conditions. For this purpose, data from different tunneling projects using TBMs were 

compiled in a database, which included different rock mass conditions. The database of 

TBM field performance includes 7 tunnel projects with a total length of 70.73 km, in-

cluding rock properties, and TBM operational parameters. Statistical analyses were 

used to seek correlations between rock/ground characteristics and TBM operational pa-

rameters, and the resulting TBM performance.  Based on the recent experiences with 

TBM performance prediction models, field penetration index (FPI) was selected to rep-

resent TBM performance due to its scalability and the fact that it accounts for TBM di-

ameter, RPM, and applied cutterload. 

To find the most effective parameters in the prediction of FPI, principal component anal-

ysis (PCA) was used, followed by developing some models using linear & non-linear 

regression analysis, as well as artificial intelligence algorithms including, classification 

and regression tree (CART) & genetic programming (GP). 

In this chapter the main results are highlighted, conclusions are summarized, and some 

recommendations for future follow-up studies are proposed.   

9.2 Discussion & Conclusion 

The machine penetration rate is represented by a unit of m/h or penetration rate per 

rotation (PRev i.e., mm/rev). There are various approaches to estimate the TBM pene-

tration rate that has been introduced over the past few decades. Parameters such as spe-

cific penetration (SP), the normalized index of the penetration rate per unit value of 

cutter load, and the field penetration index (FPI), which is the inverse of specific pene-

tration, are used for this purpose. The main advantage of these indices is to account for 

machine diameter, rotational speed (RPM), and cutter load (or machine thrust) through 

Chapter 9  Discussion & Conclusion 
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normalization of the objective parameter, ROP, which allows for a head-to-head com-

parison between machine performance in two different ground conditions (Gong and 

Zhao 2009; Farrokh et al. 2012; Salimi et al. 2016a).  

While various empirical models for TBM performance prediction have been introduced, 

many lack the correct reflection of the geotechnical input parameters to allow for proper 

accounting of the impacts of such parameters.  As such, rock mass classifications have 

been used to represent rock mass conditions in TBM performance prediction, often with 

low correlations since they were originally developed for estimation of rock load and 

ground support design and not TBM excavation. Among the most commonly used clas-

sification systems, Rock Mass Rating (RMR), Rock Mass Quality Index (Q), and Geolog-

ical Strength Index (GSI) have been used more frequently in TBM performance predic-

tion. However, the use of RMR classification systems, while better than the other op-

tions, it has offered limited success in providing an accurate estimation of TBM pene-

tration rate.  

Meanwhile, it is known that the parameters that determine rock mass classification do 

influence TBM performance.  This includes rock strength and jointing parameters. The 

most frequent input parameters used in the previous studies for prediction of TBM per-

formance are: the uniaxial compressive strength and tensile strength of intact rock (used 

by 70% of the models), distance and the orientation of discontinuities (used by 50% of 

the models), the assumed thrust per cutter (used by 40% of the models) and the cutter 

diameter (used by 30% of the models).  

The current study focused on developing a new model for estimation of TBM perfor-

mance represented by FPI, based on input parameters from rock mass classification sys-

tems. As such, input parameters of the RMR system, which are often available for vari-

ous projects, have been used as input parameters for the estimation of FPI.  This includes 

UCS , RQD , Js , and Jc , with the addition of Rock Type to replace Gw which was clearly 

shown to have no measurable impact on FPI.  Seven tunneling projects used in the cur-

rent study and related ground characteristics, machine’s operational parameters, and 

recorded performance data were compiled in a database for subsequent analysis. The 

use of the PCA method has allowed for the selection of the input parameters with the 

maximum impact on the FPI. Based on the results of the PCA method, statistical analysis 

of the TBM field performance was conducted using linear and non-linear regression on 

the parameters identified to the highest impact on machine performance. As a result, 

bivariate or multivariate empirical equations have been presented for TBM performance 

in different selected tunneling projects.  
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Apart from the empirical and theoretical models, artificial intelligence (AI) techniques 

have also been used for developing models to predict penetration rate (PR) in hard rock 

conditions in the past.  

In this investigation, two different AI models including classification and regression tree 

(CART) and genetic programming (GP) have been examined to develop new models for 

estimation of FPI based on input parameters of the RMR system (without theGw and 

with the addition of rock type code). The CART model demonstrates better accuracy for 

TBM performance estimation compared to other methods. The model and formulas de-

veloped based on GP analysis while offer better results than the empirical formulas 

based on regression analysis, they are more complex and include components that does 

not offer a coherent physical meaning. 

It is prudent to apply three methods (MNLRA, CART, GP) for TBM performance pre-

diction and compare the results, perhaps use the average value for FPI for prediction 

and hence calculation of TBM rate of penetration. 

The following is the summary of the most important highlights and findings of this 

study: 

• Among the common rock mass classification systems, basic RMR shows a better 

correlation with TBM penetration rate. 

• FPI is a flexible and reliable TBM performance index that is a better representa-

tive for TBM performance as it incorporates machine size (by RPM) and applied 

thrust or cutterload. 

• The analysis of variations in TBM operational parameters as well as rock mass 

properties and resulting TBM performance in this investigation shows that, 

higher thrust, torque, and higher cutterhead RPM were needed or used in the 

excavation of harder rock, while lower penetration rates were experienced. In 

Contrast, in fractured formation as well as in softer rock, higher penetration rate 

and lower cutterhead RPM along with lower thrust forces were required. Be-

sides, better correlations were found between rock mass parameters, e.g., RQD  

with TBM operational parameters, as compared to rock properties such asUCS  

in jointed rocks. However, the overall performance of TBM not only influenced 

by factors related to geology or machine specifications, the experience and skills 

of the crew and especially TBM operators, and site organization also impacts the 

outcome. This can be seen in the difference between machine performance in dif-

ferent shifts, but is often not directly incorporated in the analysis of TBM field 

performance data. 
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• The study of correlations between the individual independent variables in the

basic RMR and the actual FPI measured in the field shows that RQD offers the

highest R2 value of 0.69, followed by theUCS (0.67), Js (0.56), Jc partial rating in

RMR (0.33), andGw shows no correlation with TBM performance (0.0074).

• The results of PCA, which is done independent of the correlation studies, confirm

the findings of the statistical analysis and indicated that the most effective pa-

rameters for the determination of FPI areUCS , RQD , Js , and Jc .

• Since different rock textures (cementation and grain size and shape) affect the

penetration rate, such properties need to be taken into account in PR studies. For

this purpose, rock type code ( RTC ) was considered to reflect this aspect of rock

characteristics.

• As discussed before, the use of statistical analysis alone cannot offer satisfactory

results, and the application of artificial intelligent (AI) methods can improve the

result of regression analysis. This is while the formulas developed based on

multi-variable regression analysis in this study have offered slight improvements

over the formulas that were published in the existing literature.

• Study of various statistical and AI analysis showed that CART offers the best

results for the estimation of FPI based on the input parameters that was listed in

the above sections.  This system is based on a simple tree that can be followed by

anyone to estimate FPI and subsequently to estimate PR.

• Sensitivity analysis conducted on the developed multivariable non-linear regres-

sion analysis (MNLRA) and GP, as well as CART, clearly indicates that, the low-

est sensitivity of the model is to Jc (joint characteristics), while the other inputs

have a significant impact on the output of the model. This could be attributed to

the limited range of Jc (it changes between 5 to 30) in basic RMR classification or

this parameter is shadowed by other inputs such asUCS , and Js . Besides, it

demonstrates the model is equally affected by main input variables (with excep-

tion of Jc ); revealing the suitability of selected parameters and their weights for

the model. The results have a good agreement with PCA results.

• Various statistical indices, including correlation coefficient (R2), the root mean

square error (RMSE), mean absolute deviation (MAD), mean absolute percentage

error (MAPE), mean square error (MSE), and variance account for (VAF) have

been used to assess the performance of the proposed models for predicting FPI.

The results show that the prediction capability and accuracy of the CART model

is better than other models.
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• As noted before, the result of GP analysis which was a series of formulas was 

deemed not suitable since the formulas incorporates a series of quotients that do 

not have any physical meaning and are dimensionally incorrect. 

Furthermore, to examine the accuracy/ efficiency of the CART model, the operating 

and as-built geological data collected during the construction phase of the lot 2 of 

Zagros water conveyance tunnel (ZWCT), chainage 5 to 15 km, which has not been 

utilized for model development, was used to compare the calculated machine per-

formance by common prediction models such as QTBM and NTNU as well as CSM 

models.  Following conclusions can be made based on the comparison of the results 

of the proposed model with those of existing TBM performance prediction models. 

• As shown, ROP or difference between predicted penetration rates by CSM, 

NTNU, and QTBM models and the recorded penetration rates are high, exceeding 

100% in some tunnel sections. The NTNU model seems to underestimate, while 

CSM and notably QTBM seem to overestimate the ROP. 

 

• The results of the QTBM model were often higher than the actual values. The main 

reason could be the consideration of some parameters such as, in-situ stress in 

the model which its influence on TBM performance in the Zagros Lot #2 project 

used for validation purposes. 

 

• The results achieved from the original CSM model don’t match the measured 

ROP values, perhaps because, the CSM model has been fundamentally devel-

oped for massive rocks with no significant fracturing. So, where the rock mass is 

massive it works better, but when the rock mass is fractured to intensely frac-

tured, the estimated values of ROP are far from actual values.  

 

• Among the three models, including NTNU, QTBM, and CSM, NTNU seems to offer 

more reasonable and relatively good matches with the actual results, for the test 

dataset. This is because, the NTNU model applies rock mass parameters.  

 

• Among the studied models, the best results were obtained from the CART model, 

which has been developed based on data analysis of 61.03 km bored tunnels in 

various rock types & different rock mass as well as ground conditions.  

 

• The estimated ROP by CART model reveals a slightly lower error rate in com-

parison with the Hassanpour et al. (2011) model. This can be attributed to the 

partial similarity in data-compilation for model developments. However, it can 
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be expected that, in strong massive rock masses, the developed CART model in-

dicates higher accuracy contrasting to Hassanpour et al. (2011) model, since in 

the CART model allows for incorporating joint spacing ( Js ) and joint condition 

( Jc ) in the calculations. As such, the limitation of the Hassanpour model for 

strong massive rock masses (less fractured) is mitigated by the presented CART 

model.  Moreover, the impact of rocks with similar RQD andUCS but different 

joining conditions cannot be captured by the Hassanpour model but can be dis-

tinguished by the CART model. 

• In brief, it can be concluded that, for the selection of an empirical model to predict

TBM performance in a new project, one should pay attention to the application

range of the model and geological conditions that the original model was based

on to produce the most reasonable estimates.

9.3 Recommendations for Future Research 

Based on the findings and conclusions of this study, the following recommendations are 

offered for further study of performance prediction of hard-rock TBMs in the future. 

• One of the main findings of this research is that rock type would be one of the

best parameters that can be used for the distinction of various geological settings

of the job sites, and it could contribute to the development of more accurate per-

formance estimation formulas. There is a need for further investigation of this

parameter, either by including the rock type code in the analysis or by averaging

the performance of TBMs on the basis of different rock types.

• It is well known that the orientation of discontinuities (bedding and joint planes)

can play a significant role in the TBM boring process, but, due to lack of detailed

and relevant information, this factor has not been used in this study. Therefore,

this parameter can be used for future investigation.

• Rock abrasiveness is recognized as an important parameter in cutter wear pre-

diction and one of the common indexes that are used to predict the wear is Cer-

char Abrasivity Index (CAI). Thus, it is recommended to consider this parameter

or quartz content for future investigations. Further study would be needed to

come up with a cutter wear and cutter consumption evaluation using detailed

data and to account for the impact of rock structure on cutter consumption/life.

This mainly impacts machine utilization due to the need for frequent cutter

change, but it also impacts the FPI since worn cutters have a wider tip and take

more force to penetration a certain amount into the rock surface.
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• Since the CSM model was basically established for massive rock, additional work

is needed to incorporate factors related to joint conditions and make the model

applicable in rock masses.  This allows for using the inherent strength of the CSM

model, which is including machine design features such as cutter size, tip width,

and cutterhead design, and extend it to the jointed rock masses where the joints

can dominate machine performance.

• It is recommended that a universal recording system used for TBM data collec-

tion (onboard computer) be used to compile machine operational parameters and

the information to be linked to back-mapping to join the machine operation and

ground condition information. This can lead to the forming of a consistent set of

data and a uniform/homogenous database which can be used in the future stud-

ies.
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Appendix A 

 

 

 

 

#r script developed and modified by Salimi A. for my Ph.D. in Uni Stuttgart  

# welcome back ... 

################################################################### 

#import TBM dataset 

#working directory 

 

#getwd() 

 

setwd("C://Users//admin//Desktop//Ali") 

load('Ali_R_PhD.r') 

 

 

#load libraries 

 

library(vegan) 

library(RFtools) 

library(pairwiseAdonis) 

 

mf = read.table('PCA_noname.csv', header = FALSE, sep=",") 

mf 

 

TTnames <- c('UCS','RQD','Js','Jc','FPI','RTC') 

colnames(mf) <- TTnames 
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mf4 = read.table('mf4.csv', header = FALSE, sep=",") 

TTnames4 <- c('UCS','RQD','Js','Jc','RTC','basic_RMR', 'Q', 'GSI', 'ROP', 'P', 'FPI') 

colnames(mf4) <- TTnames4 

  

gene <- 'Result' 

pip <- 'R' 

pr <- 'Distribution Pattern'  

 

#Distribution analysis  

#GSI vs RMR 

pdf(file=paste('GSI.basic RMR',gene,pip,pr,'pdf',sep='.')) 

plot(mf4$GSI,mf4$basic_RMR,xlim=c(13,90),ylim=c(20,90),xlab='GSI',ylab='basic 

RMR',pch=21,bg='orange') 

abline(v=30,h=40, col="red") 

dev.off() 

 

pdf(file=paste('GSI.Q',gene,pip,pr,'pdf',sep='.')) 

plot(mf4$GSI,mf4$Q,xlim=c(13,90),ylim=c(0.10,166),xlab='GSI',ylab='Q',pch=21,bg='or-

ange') 

abline(v=30,h=0.09, col="red") 

dev.off() 

 

pdf(file=paste('Q.basic RMR',gene,pip,pr,'pdf',sep='.')) 

plot(mf4$Q,mf4$bacis_RMR,xlim=c(0.10,166),ylim=c(10,90),xlab='Q',ylab='basic 

RMR',pch=21,bg='orange') 

abline(v=0.09,h=20, col="red") 

dev.off() 

 

#UCS vs RQD 

pdf(file=paste('UCS.RQD',gene,pip,pr,'pdf',sep='.')) 
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plot(mf$UCS,mf$RQD,xlim=c(1,270),ylim=c(1,100),xlab='UCS MPa',ylab='RQD 

%',pch=21,bg='orange') 

abline(v=20,h=20, col="red") 

dev.off() 

 

#Js vs UCS 

pdf(file=paste('UCS.Js',gene,pip,pr,'pdf',sep='.')) 

plot(mf$Js,mf$UCS,xlim=c(0.3,201),ylim=c(1,270),ylab='UCS MPa',xlab='Js 

cm',pch=21,bg='orange') 

abline(v=5,h=5, col="red") 

dev.off() 

 

 

#UCS vs Jc 

pdf(file=paste('UCS.Jc',gene,pip,pr,'pdf',sep='.')) 

plot(mf$UCS,mf$Jc,xlim=c(1,270),ylim=c(2,31),xlab='UCS MPa',ylab='Jc partial rating in 

RMR basic',pch=21,bg='orange') 

abline(v=25,h=9, col="red") 

dev.off() 

 

 

#RQD vs Js 

pdf(file=paste('RQD.Js',gene,pip,pr,'pdf',sep='.')) 

plot(mf$RQD,mf$Js,xlim=c(1,100),ylim=c(0.3,201),xlab='RQD %',ylab='Js 

cm',pch=21,bg='orange') 

abline(v=20,h=5, col="red") 

dev.off() 

 

 

#RQD vs Jc 

pdf(file=paste('RQD.Jc',gene,pip,pr,'pdf',sep='.')) 
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plot(mf$RQD,mf$Jc,xlim=c(1,100),ylim=c(2,31),xlab='RQD %',ylab='Jc partial rating in 

RMR basic',pch=21,bg='orange') 

abline(v=20,h=9, col="red") 

dev.off() 

 

#Js vs Jc 

pdf(file=paste('Js.Jc',gene,pip,pr,'pdf',sep='.')) 

plot(mf$Js,mf$Jc,xlim=c(0.3,201),ylim=c(2,31),xlab='Js cm',ylab='Jc partial rating in RMR 

basic',pch=21,bg='orange') 

abline(v=5,h=9, col="red") 

dev.off() 

 

################################################################################

####  

#good job! 

#Lets calculate the PCA for basic RMR variables 

 

library(devtools) 

#install_github("vqv/ggbiplot") 

library(ggbiplot) 

 

#PCAs 

TBMrmr.pca <- prcomp(mf[,c(1:4)], center = TRUE,scale. = TRUE) 

 

summary(TBMrmr.pca) 

str(TBMrmr.pca) 

 

#Importance of components: 

                          PC1    PC2    PC3     PC4 

#Standard deviation     1.6288 0.7679 0.7089 0.50485 

#Proportion of Variance 0.6632 0.1474 0.1256 0.06372 
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#Cumulative Proportion  0.6632 0.8106 0.9363 1.00000 

 

#List of 5 

# $ sdev    : num [1:4] 1.629 0.768 0.709 0.505 

# $ rotation: num [1:4, 1:4] -0.5 -0.55 -0.479 -0.466 0.528 ... 

#  ..- attr(*, "dimnames")=List of 2 

#  .. ..$ : chr [1:4] "UCS" "RQD" "Js" "Jc" 

#  .. ..$ : chr [1:4] "PC1" "PC2" "PC3" "PC4" 

# $ center  : Named num [1:4] 97.4 66.5 31.6 16.5 

#  ..- attr(*, "names")= chr [1:4] "UCS" "RQD" "Js" "Jc" 

# $ scale   : Named num [1:4] 68.79 24.15 29.3 5.36 

#  ..- attr(*, "names")= chr [1:4] "UCS" "RQD" "Js" "Jc" 

# $ x       : num [1:580, 1:4] -1.882 -1.864 -0.789 -2.133 -1.235 ... 

#  ..- attr(*, "dimnames")=List of 2 

#  .. ..$ : NULL 

#  .. ..$ : chr [1:4] "PC1" "PC2" "PC3" "PC4" 

# - attr(*, "class")= chr "prcomp" 

 

#PCA for characters 1 vs 2 

TBMrmr.pca = prcomp(mf[,c(1:4)], center = TRUE,scale. = TRUE) 

pdf(file=paste('PCA1&2',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggbiplot(TBMrmr.pca, choices = 1:2, scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

  TRUE, var.axes=10, varname.size=3, varname.abbrev=TRUE, varname.adjust = 1.5,  

  labels.size=3, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

  cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.2) 

dev.off() 

 

#PCA for characters 1 vs 3 

TBMrmr.pca = prcomp(mf[,c(1:4)], center = TRUE,scale. = TRUE) 

pdf(file=paste('PCA2&3',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggbiplot(TBMrmr.pca, choices = 2:3, scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 



Appendix A 

322 

  TRUE, var.axes=10, varname.size=3, varname.abbrev=TRUE, varname.adjust = 1.5,  

  labels.size=3, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

  cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.2) 

dev.off() 

 

#PCA for characters 1 vs 4 

TBMrmr.pca = prcomp(mf[,c(1:4)], center = TRUE,scale. = TRUE) 

pdf(file=paste('PCA1&4',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggbiplot(TBMrmr.pca, choices = c(1,4), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

  TRUE, var.axes=10, varname.size=3, varname.abbrev=TRUE, varname.adjust = 1.5,  

  labels.size=3, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

  cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.2) 

dev.off() 

 

#PCA for characters 2 vs 3 

TBMrmr.pca = prcomp(mf[,c(1:4)], center = TRUE,scale. = TRUE) 

pdf(file=paste('PCA2&3',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggbiplot(TBMrmr.pca, choices = c(2,3), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

  TRUE, var.axes=10, varname.size=3, varname.abbrev=TRUE, varname.adjust = 1.5,  

  labels.size=3, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

  cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.2) 

dev.off() 

 

#PCA for characters 2 vs 4 

TBMrmr.pca = prcomp(mf[,c(1:4)], center = TRUE,scale. = TRUE) 

pdf(file=paste('PCA2&4',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggbiplot(TBMrmr.pca, choices = c(2,4), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

  TRUE, var.axes=10, varname.size=3, varname.abbrev=TRUE, varname.adjust = 1.5,  

  labels.size=3, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

  cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.2) 

dev.off() 
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#PCA for characters 3 vs 4 

TBMrmr.pca = prcomp(mf[,c(1:4)], center = TRUE,scale. = TRUE) 

pdf(file=paste('PCA3&4',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggbiplot(TBMrmr.pca, choices = c(3,4), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

  TRUE, var.axes=10, varname.size=3, varname.abbrev=TRUE, varname.adjust = 1.5,  

  labels.size=3, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

  cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.2) 

dev.off() 

 

#PCA for characters 1 vs 3 

TBMrmr.pca = prcomp(mf[,c(1:4)], center = TRUE,scale. = TRUE) 

pdf(file=paste('PCA1&3',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggbiplot(TBMrmr.pca3, choices = c(1,3), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

  TRUE, var.axes=10, varname.size=3, varname.abbrev=TRUE, varname.adjust = 1.5,  

  labels.size=3, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

  cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.2) 

   

dev.off() 

##################################################################### 

#PCA for test 

TBMrmr.pca = prcomp(mf[,c(1:4)], center = TRUE,scale. = TRUE) 

pdf(file=paste('colortest',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggbiplot(TBMrmr2.pca, choices = c(1,3), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

  FALSE, var.axes=10, varname.size=3, varname.abbrev=TRUE, varname.adjust = 1.5,  

  labels.size=3, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

  cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.4)+ 

  geom_point(aes(color = mf2Tunnel) + 

scale_color_viridis(option = "D") 

ggplot(TBMrmr.pca, aes(x = PC1, y = PC2, colour = mf$RTC)) + 

  stat_ellipse(level = 0.95, size = 2, show.legend = FALSE) + 

  geom_point(size = 3) + 
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  geom_segment(aes(x = 0, y = 0, xend = (PC1), yend = (PC2)), 

     arrow = arrow(length = unit(1/2, "picas")), color = "black") + 

 geom_text( aes(label = Variables, x = (PC1), y = (PC2)),  

    color = "black", size = 4, angle = TBMrmr.pca$Angle) + 

      theme_classic() + 

      theme(legend.justification = c(1,1), legend.position = c(1,1)) 

   

dev.off() 

 

ggplot(PCAvalues, aes(x = PC1, y = PC2)) + 

  stat_ellipse(level = 0.95, size = 2, show.legend = FALSE) + 

  geom_point(size = 3)+ 

  geom_segment(data = PCAloadings, aes(x = 0, y = 0, xend = (PC1), yend = (PC2)), 

     arrow = arrow(length = unit(2, "picas")), color = "black")+ 

  geom_text(data = PCAloadings, aes(label = Variables, x = (PC1), y = (PC2)),  

    color = "black", size = 4, angle = PCAloadings$Angle, hjust =  

    PCAloadings$Offset) + 

      theme_classic() + 

      theme(legend.justification = c(1,1), legend.position = c(1,1)) 

 

pdf(file=paste('PCA1&4 for characters grouped by Tun-

nels',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr2.pca, choices = c(1,4), scale = 0, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf2$RTC, col=c25, ellipse = 

TRUE,  

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1) 

dev.off() 

################################################################################

################# 
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#PCA for characters grouped by RTC factor 

 

library(devtools) 

library(ggbiplot) 

library(viridis) 

#Main 

#PCA grouped by RTC 1vs2 

pdf(file=paste('PCA1&2 for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr.pca, choices = c(1,2), scale = 0, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf$RTC, col=c25, ellipse = 

TRUE,  

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1) 

 

dev.off() 

 

#PCA grouped by RTC 1vs3 

pdf(file=paste('PCA1&3 for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr.pca, choices = c(1,3), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf$RTC, col=c25, ellipse = 

TRUE,  

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1) 

dev.off() 

 

#PCA grouped by RTC 1vs4 

pdf(file=paste('PCA1&4 for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 
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 ggbiplot(TBMrmr.pca, choices = c(1,4), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf$RTC, col=c25, ellipse = 

TRUE,  

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1) 

dev.off() 

 

#PCA grouped by RTC 2vs3 

pdf(file=paste('PCA2&3 for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr.pca, choices = c(2,3), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf$RTC, col=c25, ellipse = 

TRUE,  

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1 ) 

dev.off() 

 

#PCA grouped by RTC 2vs4 

pdf(file=paste('PCA2&4 for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr.pca, choices = c(2,4), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf$RTC, col=c25, ellipse = 

TRUE,  

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1) 

dev.off() 

 

#PCA grouped by RTC 3vs4 
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pdf(file=paste('PCA3vs4 for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr.pca, choices = c(3,4), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf$RTC, col=c25, ellipse = 

TRUE,   

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1) 

dev.off() 

 

################################################################################

############# 

#Multi_color 

#PCA grouped by RTC 1vs2 

pdf(file=paste('PCA1&2 multicol for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr.pca3, choices = c(1,2), scale = 0, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf3$RTC, col=c25, ellipse = 

TRUE,  

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1) 

 

dev.off() 

 

#PCA grouped by RTC 1vs3 

pdf(file=paste('PCA1&3 multicol for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr.pca3, choices = c(1,3), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 
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cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf3$RTC, col=c25, ellipse = 

TRUE,  

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1) 

dev.off() 

 

#PCA grouped by RTC 1vs4 

pdf(file=paste('PCA1&4 multicol for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr.pca3, choices = c(1,4), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf3$RTC, col=c25, ellipse = 

TRUE,  

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1) 

dev.off() 

 

#PCA grouped by RTC 2vs3 

pdf(file=paste('PCA2&3 multicol for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr.pca3, choices = c(2,3), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf3$RTC, col=c25, ellipse = 

TRUE,  

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1 ) 

dev.off() 

 

#PCA grouped by RTC 2vs4 

pdf(file=paste('PCA2&4 multicol for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr.pca3, choices = c(2,4), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  
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labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf3$RTC, col=c25, ellipse = 

TRUE,  

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1) 

dev.off() 

 

#PCA grouped by RTC 3vs4 

pdf(file=paste('PCA3vs4 multicol for characters grouped by RTC fac-

tor',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

 ggbiplot(TBMrmr.pca3, choices = c(3,4), scale = 1, obs.scale=1 , var.scale=1 , pc.biplot = 

TRUE, var.axes=10, varname.size=5, varname.abbrev=TRUE, varname.adjust = 1.5,  

labels.size=5, pch=2, cex=4, main='PCA Plot of TBM data', cex.lab=1.5, 

cex.axis=1.5, cex.main=1.5, cex.sub=1.5, alpha = 0.3, groups=mf3$RTC, col=c25, ellipse = 

TRUE,   

arrow.color = green, arrow.linetype = solid, arrow.alpha = 1) 

dev.off() 

 

################################################################################

#################### 

#Screen plots 

library("PCAtools") 

 

pdf(file=paste('Screeplot of the first 4 PCAs',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

screeplot(tbmpcr, type = "l", npcs = 4, main = "Screeplot of the first 4 PCAs") 

abline(h = 1.5, col="red", lty=5) 

legend("topright", legend=c("Eigenvalue = 1.5"), 

       col=c("red"), lty=5, cex=0.6) 

    dev.off() 

 

#Cumulative plot 

pdf(file=paste('Cumulative variance plot',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

cumpro <- cumsum(tbmpcr$sdev^2 / sum(tbmpcr$sdev^2)) 
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plot(cumpro[0:4], xlab = "PCs", ylab = "Amount of explained variance", main = "Cumu-

lative variance plot") 

abline(v = 3, col="red", lty=6) 

abline(h = 0.9362, col="red", lty=6) 

legend("topleft", legend=c("Cut-off @ PC1+PC2+PC3"), 

       col=c("red"), lty=6, cex=0.9) 

    dev.off() 

 

################################################################################

##### 

#new PCA (playing around) 

 

tbmpcr <- prcomp(mf[c(1:4)], center = TRUE, scale = TRUE) 

> summary(tbmpcr) 

#Importance of components: 

                          PC1    PC2    PC3     PC4 

#Standard deviation     1.6288 0.7679 0.7089 0.50485 

#Proportion of Variance 0.6632 0.1474 0.1256 0.06372 

#Cumulative Proportion  0.6632 0.8106 0.9363 1.00000 

 

#install PCAtools 

    if (!requireNamespace('BiocManager', quietly = TRUE)) 

        install.packages('BiocManager') 

 

    BiocManager::install('PCAtools') 

  

plot(tbmpcr$x[,1],tbmpcr$x[,2], xlab="PC1 (66.32%)", ylab = "PC2 (14.74%)", main = "PC1 

/ PC2 - plot") 

 

library("factoextra") 

fviz_pca_ind(tbmpcr, geom.ind = "point", pointshape = 21,  
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             pointsize = 2,  

             fill.ind = "green",  

             col.ind = "black",  

             palette = "jco",  

             addEllipses = TRUE, 

             label = "var", 

             col.var = "black", 

             repel = TRUE, 

             legend.title = "Diagnosis") + 

  ggtitle("2D PCA-plot from 30 feature dataset") + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

#screen plot 

PVEplot <- plot(PVE[c(1:4)]) +  

  geom_line() +  

  xlab("Principal Component") +  

  ylab("PVE") + 

  ggtitle("Screen Plot") + 

  ylim(0, 1) 

   

 #PCAtools 

    if (!requireNamespace('BiocManager', quietly = TRUE)) 

        install.packages('BiocManager') 

 

    BiocManager::install('PCAtools') 

  

  if (!requireNamespace("BiocManager", quietly = TRUE)) 

    install.packages("BiocManager") 

 

BiocManager::install("GEOquery") 
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 library(Biobase) 

  library(GEOquery) 

    library(PCAtools) 

 

 p <- pca(mf, mf = mf(c[1:4]), removeVar = 0.1) 

  x <- exprs(mf(c[1:4])) 

 

  screeplot(TBMrmr.pca, 

    components = getComponents(tbmpcr(c[1:4])), 

    vline = c(horn$n, elbow)) + 

    geom_text(aes(horn$n + 1, 50, label = "Horn's", vjust = -1)) + 

    geom_text(aes(elbow + 1, 50, label = "Elbow", vjust = -1)) 

   

################################################################################

#########   

#Multiple Regression analysis and graphs  

   

fit <- lm(mf$FPI ~ mf$UCS + mf$RQD + mf$Js + mf$Jc + mf$RTC) 

 

summary(fit) 

 

#Call: 

#lm(formula = mf$FPI ~ mf$UCS + mf$RQD + mf$Js + mf$Jc + mf$RTC) 

 

#Residuals: 

    Min      1Q  Median      3Q     Max  

#-30.467  -7.876   0.303   4.693  90.160  

 

#Coefficients: 

#            Estimate Std. Error t value Pr(>|t|)     

#(Intercept)  1.10239    2.82769  -1.880   0.0606 .   
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#mf$UCS       0.12944    0.01170  10.893   <2e-16 *** 

#mf$RQD       0.07116    0.03709   1.838   0.0666 .   

#mf$Js        0.31468    0.02315  13.591   <2e-16 *** 

#mf$Jc        0.38983    0.12884   3.002   0.0028 **  

#mf$RTC      -0.46621    0.54362  -1.286   0.1989     

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

#Residual standard error: 12.87 on 574 degrees of freedom 

#Multiple R-squared:  0.6779,    Adjusted R-squared:  0.6751  

#F-statistic: 241.6 on 5 and 574 DF,  p-value: < 2.2e-16 

 

coef(fit) 

 

#(Intercept)      mf$UCS      mf$RQD       mf$Js       mf$Jc      mf$RTC  

#1..1029169  0.12943574  0.07115533  0.31467594  0.3893486 -0.46621387  

  

#fit <- lm(mf$ln(FPI) ~ mf$UCS + mf$RQD + mf$Js + mf$Jc + mf$RTC) 

 

################################################################################

#### 

#nonLinear multiple regression analysis 

FPI2 = log (mf$FPI) 

fit <- lm(FPI2 ~ mf$UCS + mf$RQD + mf$Js + mf$Jc + mf$RTC) 

fit2 <- lm(FPI2 ~ mf$UCS + mf$RQD + mf$Js + mf$Jc + mf$RTC) 

summary(fit2) 

 

#Call: 

#lm(formula = FPI2 ~ mf$UCS + mf$RQD + mf$Js + mf$Jc + mf$RTC) 

 

#Residuals: 
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#     Min       1Q   Median       3Q      Max  

#-1.60547 -0.20584  0.01632  0.21321  0.85817  

 

#Coefficients: 

#             Estimate Std. Error t value Pr(>|t|)     

#(Intercept)  1.7635334  0.0707257  24.723  < 2e-16 *** 

#mf$UCS       0.0032486  0.0002926  11.102  < 2e-16 *** 

#mf$RQD       0.0123444  0.0009277  13.306  < 2e-16 *** 

#mf$Js        0.0052290  0.0005791   9.029  < 2e-16 *** 

#mf$Jc        0.0079601  0.0032226   2.470   0.0138 *   

#mf$RTC      -0.0912347  0.0135970  -6.489 1.87e-10 *** 

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

#Residual standard error: 0.3218 on 574 degrees of freedom 

#Multiple R-squared:  0.7791,    Adjusted R-squared:  0.7776  

#F-statistic: 519.9 on 5 and 574 DF,  p-value: < 2.2e-16 

 

#Regression graphs 

 x = mf$UCS + mf$RQD + mf$Js + mf$Jc + mf$RTC 

 y = FPI2 

 

 pdf(file=paste('Multiple linear Regression',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggplot(mf, aes(x = x , y = y)) + 

  geom_point() + 

  geom_point(colour="purple")+ 

  geom_smooth(method = "lm", se = FALSE, size = 0.5) + 

  labs(x = "Variables", y = "FPI", 

       title = "lm(FPI ~ UCS, Js, Jc, RTC, RQD)") 

     

dev.off() 
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library(dplyr) 

mf$FPI2 <- factor(mf$FPI2) 

mf$FPI2 <- recode(mf$FPI2, "0" = "Automatik", "1" = "Schaltgetriebe") 

 

mod2 <- lm(FPI2 ~ x) 

 

library(ggplot2) 

library(broom) 

pdf(file=paste('Multiple linear Regression col-

oured',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggplot(augment(mod2), aes(x = x, y = y, color = FPI2)) + 

  geom_point() + 

  geom_line(aes(y = .fitted)) + 

  labs(x = "Variables", y = "FPI", 

       title = "lm(FPI ~ UCS, Js, Jc, RTC, RQD)") 

    dev.off() 

     

# Zwei Regressionsgeraden mit Interaktionseffekt 

 

mod2b <- lm(y ~ x ) 

summary(mod2b) 

pdf(file=paste('Multiple linear Regressionsgeraden mit Inter-

aktionseffekt',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggplot(mf, aes(x = x, y = y, color = x)) + 

  geom_point() + 

  geom_smooth(method = "lm", se = FALSE) + 

  labs(x = "Variables", y = "FPI", 

       title = "lm(FPI ~ UCS, Js, Jc, RTC, RQD)") 

 

dev.off() 
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pdf(file=paste('Multiple linear Regressionsgeraden mit Inter-

aktionseffekt2',gene,pip,pr,'pdf',sep='.'),width=6,height=6) 

ggplot(augment(mod2b), aes(x = x, y = y, color = y)) + 

  geom_point() + 

  geom_line(aes(y = .fitted), size = 1) + 

  labs(x = "Variables", 

       y = "FPI", 

       title = "lm(FPI ~ UCS, Js, Jc, RTC, RQD)") 

 

dev.off() 

 

################################################################################

# 

#3D surface plots 

install.packages("plot3D") 

library("plot3D") 

 

#3D surface plot for variables UCS and RQD 

pdf(file=paste('3D surface plot for variables UCS and 

RQD',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

scatter3D(UCS, RQD, FPI, phi = 0, bty = "g",pch = 20, cex = 2, ticktype = "detailed", 

xlab="UCS (MPa)", ylab="RQD (%)", zlab="FPI (kN/cutter/mm/rev)") 

dev.off() 

 

#3D surface plot for variables UCS and Js 

pdf(file=paste('3D surface plot for variables UCS and 

Js',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

scatter3D(UCS, Js, FPI, phi = 0, bty = "g",pch = 20, cex = 2, ticktype = "detailed", xlab="UCS 

(MPa)", ylab="Js (cm)", zlab="FPI (kN/cutter/mm/rev)") 

dev.off() 
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#3D surface plot for variables UCS and Jc 

pdf(file=paste('3D surface plot for variables UCS and 

Jc',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

scatter3D(UCS, Jc, FPI, phi = 0, bty = "g",pch = 20, cex = 2, ticktype = "detailed", 

xlab="UCS (MPa)", ylab="Jc (partial rating)", zlab="FPI (kN/cutter/mm/rev)") 

dev.off() 

 

#3D surface plot for variables RQD and Js 

pdf(file=paste('3D surface plot for variables RQD and 

Js',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

scatter3D(RQD, Js, FPI, phi = 0, bty = "g",pch = 20, cex = 2, ticktype = "detailed", 

xlab="RQD (%)", ylab="Js (cm)", zlab="FPI (kN/cutter/mm/rev)") 

dev.off() 

 

#3D surface plot for variables RQD and Jc 

pdf(file=paste('3D surface plot for variables RQD and 

Jc',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

scatter3D(RQD, Jc, FPI, phi = 0, bty = "g",pch = 20, cex = 2, ticktype = "detailed", 

xlab="RQD (%)", ylab="Jc (partial rating)", zlab="FPI (kN/cutter/mm/rev)") 

dev.off() 

 

#3D surface plot for variables Js and Jc 

pdf(file=paste('3D surface plot for variables Js and 

Jc',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

scatter3D(Js, Jc, FPI, phi = 0, bty = "g",pch = 20, cex = 2, ticktype = "detailed", xlab="Js 

(cm)", ylab="Jc (partial rating)", zlab="FPI (kN/cutter/mm/rev)") 

dev.off() 

 

#3D surface plot for variables UCS and RTC 

pdf(file=paste('3D surface plot for variables UCS and 

RTC',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

scatter3D(UCS, RTC, FPI, phi = 0, bty = "g",pch = 20, cex = 2, ticktype = "detailed", 

xlab="UCS (MPa)", ylab="RTC", zlab="FPI (kN/cutter/mm/rev)") 
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dev.off() 

 

#3D surface plot for variables RQD and RTC 

pdf(file=paste('3D surface plot for variables RQD and 

RTC',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

scatter3D(RQD, RTC, FPI, phi = 0, bty = "g",pch = 20, cex = 2, ticktype = "detailed", 

xlab="RQD (%)", ylab="RTC", zlab="FPI (kN/cutter/mm/rev)") 

dev.off() 

 

#3D surface plot for variables Js and RTC 

pdf(file=paste('3D surface plot for variables Js and 

RTC',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

scatter3D(Js, RTC, FPI, phi = 0, bty = "g",pch = 20, cex = 2, ticktype = "detailed", xlab="Js 

(cm)", ylab="RTC", zlab="FPI (kN/cutter/mm/rev)") 

dev.off() 

 

#3D surface plot for variables Jc and RTC 

pdf(file=paste('3D surface plot for variables Jc and 

RTC',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

scatter3D(Jc, RTC, FPI, phi = 0, bty = "g",pch = 20, cex = 2, ticktype = "detailed", xlab="Jc 

(partial rating)", ylab="RTC", zlab="FPI (kN/cutter/mm/rev)") 

dev.off() 

 

################################################################################

################## 

#go ahead!  

#Classification and Regression tree 

 

#install and load following libraries: 

 

install.packages("rsample")      

install.packages("dplyr")      
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install.packages("rpart")       

install.packages("rpart.plot")  

install.packages("ipred")        

install.packages("caret")    

     

library(rsample)     # data splitting  

library(dplyr)       # data wrangling 

library(rpart)       # performing regression trees 

library(rpart.plot)  # plotting regression trees 

library(ipred)       # bagging 

library(caret)       # bagging 

 

 

m1 <- rpart(formula = FPI ~ UCS + Js + RQD + Jc + RTC, data = mf, method  = "anova") 

rpart.plot(m1) 

plotcp(m1) 

 

m2 <- rpart(formula = FPI ~ .,data    = mf, method  = "anova", control = list(cp = 0, xval = 

10)) 

 

pdf(file=paste('Regression tree (Tree size evalua-

tion)',gene,pip,pr,'pdf',sep='.'),width=8,height=8) 

plotcp(m2) 

abline(v = 25, lty = "dashed", col="red") 

dev.off() 

 

m1$cptable 

 

 

m3 <- rpart(FPI ~ UCS + Js + RQD + Jc + RTC, data = mf, method  = "anova",  

control = list(minsplit = 12, maxdepth = 7, xval = 10)) 
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m3$cptable 

 

hyper_grid <- expand.grid(minsplit = seq(5, 20, 1),maxdepth = seq(8, 15, 1)) 

 

head(hyper_grid) 

 

models <- list() 

 

for (i in 1:nrow(hyper_grid)) { 

   

   

  minsplit <- hyper_grid$minsplit[i] 

  maxdepth <- hyper_grid$maxdepth[i] 

 

  models[[i]] <- rpart( 

    formula = FPI ~ ., 

    data    = mf, 

    method  = "anova", 

    control = list(minsplit = minsplit, maxdepth = maxdepth) 

    ) 

} 

   

  # function to get optimal cp 

get_cp <- function(x) { 

  min    <- which.min(x$cptable[, "xerror"]) 

  cp <- x$cptable[min, "CP"]  

} 

 

# function to get minimum error 

get_min_error <- function(x) { 



Appendix A 

341 

  min    <- which.min(x$cptable[, "xerror"]) 

  xerror <- x$cptable[min, "xerror"]  

} 

 

hyper_grid %>% mutate(cp    = purrr::map_dbl(models, get_cp), 

  error = purrr::map_dbl(models, get_min_error)) %>% 

  arrange(error) %>% top_n(-5, wt = error) 

   

  optimal_tree <- rpart(formula = FPI ~ .,data    = mf, method  = "anova", 

    control = list(minsplit = 11, maxdepth = 7, cp = 0.0001)) 

 

pred <- predict(optimal_tree, newdata = ames_test) 

RMSE(pred = pred, obs = mf$FPI) 

 

 

bagged_m1 <- bagging(formula = FPI ~ .,data    = mf,coob    = TRUE) 

   

bagged_m1 

 

ntree <- 10:50 

 

# create empty vector to store OOB RMSE values 

rmse <- vector(mode = "numeric", length = length(ntree)) 

 

for (i in seq_along(ntree)) { 

  # reproducibility 

  set.seed(123) 

   

  # perform bagged model 

  model <- bagging( 

  formula = FPI ~ ., 
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  data    = mf, 

  coob    = TRUE, 

  nbagg   = ntree[i] 

) 

  # get OOB error 

  rmse[i] <- model$err 

} 

plot(ntree, rmse, type = 'l', lwd = 2) 

abline(v = 25, col = "red", lty = "dashed") 

# Specify 10-fold cross validation 

ctrl <- trainControl(method = "cv",  number = 10) 

# CV bagged model 

bagged_cv <- train(FPI ~ .,data = mf,method = "treebag",trControl = ctrl, 

importance = TRUE) 

# assess results 

bagged_cv 

## Bagged CART  

##  

## 2051 samples 

##   80 predictor 

##  

## No pre-processing 

## Resampling: Cross-Validated (10 fold)  

## Summary of sample sizes: 1846, 1845, 1847, 1845, 1846, 1847, ... 

## Resampling results: 
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##  

##   RMSE      Rsquared   MAE      

##   36477.25  0.8001783  24059.85 

 

################################################################################

############ 

# plot most important variables 

 

pdf(file=paste('Desicion tree, important varia-

bles',gene,pip,pr,'pdf',sep='.'),width=4,height=3) 

plot(varImp(bagged_cv), 5)   

dev.off() 

################################################################################

############ 

#pruning the trees 

spac.tree = rpart(FPI ~ ., data = mf, cp = 10^(-6)) 

> spac.tree = rpart(FPI ~ ., data = mf, cp = 10^(-6)) 

> names(spac.tree) 

 [1] "frame"               "where"               "call"                

 [4] "terms"               "cptable"             "method"              

 [7] "parms"               "control"             "functions"           

[10] "numresp"             "splits"              "variable.importance" 

[13] "y"                   "ordered"             

spac.tree$cptable[1:10, ] 

spac.tree$cptable[dim(spac.tree$cptable)[1] - 9:0, ] 

cp9 = which(spac.tree$cptable[, 2] == 9) 

spac.tree9 = prune(spac.tree, spac.tree$cptable[cp9, 1]) 

print(spac.tree9) 

rpart(formula = FPI ~ ., data = mf, cp = 10^(-6)) 

 

pdf("Regression tree.pdf", width = 40, height = 15) 
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post(spac.tree9, file = "", title. = "Classifying TBM FPI", 

bp = 18) 

dev.off() 

save.image('Ali_R_PhD.r') 
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Appendix B 

 

 TBM performance database, Zagros tunnel lot 2 “Chainage 0 – 5.3 km” 

No. Station UCS (MPa) RQD0 (%) 

Average 

joint 

spacing 

(m) 

Jc (partial 

rating in 

basic 

RMR) 

FPI (kN/cut-

ter/mm/rev) 
Lithotype 

1 317 30 70 0.2 15 14.68720889 
Shale 

2 487 30 65 0.2 15 14.68612539 

3 646 70 80 0.25 18 18.29055061 Shaly limestone 

4 717 20 55 0.15 10 10.47976953 
Shale 

5 740 25 45 0.15 10 8.848819053 

6 845 30 65 0.2 15 15.19343494 
Limy shale 

7 941 30 60 0.2 15 17.16555613 

8 1021 40 55 0.15 15 16.63565324 
Limy shale 

9 1203 40 60 0.15 15 16.36392305 

10 1428 30 65 0.2 15 17.09344926 
Limy shale 

11 1487 30 70 0.25 15 16.59278401 

12 1595 20 60 0.2 10 13.21121495 
Shale 

13 1705 20 60 0.2 10 12.30255319 

14 1926 50 65 0.15 10 16.13399821 Limy shale 

15 2019 20 50 0.15 5 13.95513577 Shale 

16 2128 20 55 0.15 10 17.24044408 Shale 

17 2263 90 90 0.35 15 25.58909278 Shaly limestone 

18 2287 90 80 0.35 15 20.46845126 Shaly limestone 

19 2329 30 60 0.2 10 14.19428571 Shale 

20 2532 50 60 0.2 15 15.59130518 
Limy shale 

21 2656 40 55 0.2 15 16.16841004 

22 2773 30 55 0.15 10 8.906495776 
Shale 

23 2921 30 60 0.15 10 11.29782837 

24 3108 30 72 0.2 15 12.08617213 
Limy shale 

25 3304 30 70 0.2 15 11.46791122 

26 3594 30 50 0.2 15 10.57219965 Limy shale 

27 3874 120 80 0.4 20 23.11377948 

Limestone 

28 3923 125 95 0.5 20 26.08035714 

29 4233 125 95 0.4 20 27.15992003 

30 4485 120 75 0.4 20 21.87135142 

31 4510 120 65 0.4 20 19.43755152 

32 4595 150 90 0.5 20 26.47202223 

33 4625 100 70 0.35 20 20.29435789 

34 4970 60 72 0.2 15 21.05146155 Limy shale 

35 5269 60 72 0.25 15 21.77958756 Limy shale 
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