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Preface of the editor

The Institute of Geotechnical Engineering at the University of Stuttgart (IGS) publishes
with issue no. 70 of its proceedings the dissertation of Dr.-Ing. Fursan M. Hamad ti-
tled ’Formulation of a Dynamic Material Point Method and Applications to Soil–Water–
Geotextile Systems’. The thesis presents a new and unique approach to simulate the
installation process and the behaviour of geosynthetics systems for geomechanical ap-
plications.

In recent decades geosynthetic materials have been increasingly used in geotechnical
and water engineering applications comprising reinforcement, protection, filtration and
screening. Especially in coastal and scour protection new geosynthetic concepts combin-
ing geotextiles with available or dredged materials such as sand or slurry mixture have
proven as an efficient technical and economical alternative to conventional construction
materials like rock or concrete amour units. Such geosynthetic–soil systems, like geotex-
tile bags, tubes or containers, have to be designed and manufactured in a way to survive
the installation process considering large displacements and withstand the often forbid-
ding working conditions.

The numerical simulation of such systems, i.e. modelling of a thin membrane in in-
teraction with soil of complex constitutive behaviour under large deformation, is a chal-
lenging task especially when additionally the fluid–structure interaction should also be
simulated. On modelling these problems with a Lagrangian finite element method, the
mesh can become too distorted and remeshing is essential. In the past decades, con-
siderable efforts have been made to adopt what is called meshfree methods to mitigate
the problems related to mesh distortion. One of these methods is the Material Point
Method (MPM) that represents the continuum field as Lagrangian material points (par-
ticles), which can move through the fixed background computational mesh. Within the
MPM framework Dr. Hamad elaborated a new membrane development which models a
tensile membrane using two–dimensional tri–angular elements. This membrane mesh is
free to move through a three–dimensional mesh of non–structured tetrahedral elements.
Coupling the finite element membrane with the MPM soil has more accurate and less
stress oscillation than the classical MPM membrane.

Dr. Hamad shows the great potential of the MPM method with the coupled formu-
lation of membrane by modelling different geotechnical applications of geosynthetics.
A challenging and very impressive application is to model the releasing of a geocon-
tainer from a split barge considering the interaction between the filled geotextile and
the barge as well as the fluid–geocontainer interaction during container sinking. The
effect of geocontainers’ interaction has been investigated by dropping a second geocon-
tainer. Another application which demonstrates the potential of the new approach for
many onshore geosynthetic systems is the investigation of the stability of a reinforced
embankment by simulating its failure mechanism. The effect of the embedded geotex-



tile is clearly illustrated on the displacement field which is referred to a non–reinforced
embankment.

The thesis of Dr. Hamad demonstrates that the simulation model he developed is
a powerful and versatile tool for a better understanding of the complex soil–water–
geotextile interaction as well as for the technical and economical optimisation of innova-
tive geosynthetic systems.

Christian Moormann
Stuttgart, July 2014



Preface of the supervisor

In recent years coupled Eulerian–Lagrangian Finite Element Methods have been applied
successfully for solving large–deformation problems, e.g. for simulating pile driving,
but it is difficult to extend this approach straightforwardly to soil–fluid interaction prob-
lems as typical in branches of geotechnical engineering. For this reason, I have intro-
duced the so–called Material Point Method (MPM) at the Institute for Geotechnical En-
gineering of Stuttgart University in 2005. Professor Zdzisław Więckowski, the second
supervisor of this thesis by Fursan M. Hamad, largely inspired me to do so.

This thesis by Fursan M. Hamad is the third one in row on MPM that I supervised at
Stuttgart University. The first one by Lars Beuth (2012) is on quasi–static problems and
single–phase material behaviour. The second one by Issam Al–Kafaji (2013) includes
dynamical problems and two–phase material behaviour, i.e. the generation and dissipa-
tion of excess pore–pressures in water–saturated soil. In the present thesis on MPM by
Fursan Hamad extension is made to free water, i.e. the field of Computational Fluid Dy-
namics (CFD). Moreover a novel elegant way of modelling geomembranes is introduced
and shown to be by far superior to an existing approach. Finally numerical procedures
are applied to simulate the dropping of so–called geocontainers in water.

On considering both free water and groundwater, numerical solutions of boundary–
value problems tend to suffer from spurious pressure oscillations, at least on using MPM.
I am extremely happy that Fursan found a remedy by introducing an averaged (nodal)
water pressure.

Before coming to Stuttgart Fursan Hamad as well as his colleague Issam Al–Kafaji
were employed at the University of Baghdad, but because of the political situation it
was hardly possible to maintain contact to this university. No doubt, the fracturing of
Iraq has significantly damaged this previously strong university. However, I am happy
to observe that alumni, like Fursan Hamad, are doing so well.

After his first year as a PhD student at the University of Stuttgart Fursan continued
his work for nearly two years at the consulting and research establishment ’Deltares’ in
Delft, The Netherlands. This stay at Deltares was possible with financial support from
the European Commission, being embedded in the so–called ’Geo–Install’ project; an
IAPP project within the framework of the European Marie Curie FP7 research funding
programme. It provided Fursan the opportunity of working also in an industry envi-
ronment and obviously in another European country. No doubt, Fursan had to adjust
himself to different ways of working and together with his family he had to get used
to different places of living. However, despite such disruptions Fursan maintained full
focus on his work and contributed significantly to further developments of MPM.

Pieter A. Vermeer
Nederhorst den Berg, Netherlands, July 2014
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Abstract

Geosynthetic materials have a growing use in geomechanical applications as a con-
struction material employed largely for reinforcement, protection and screening. In
coastal and hydraulic engineering, the innovative use of thin geosynthetics combined
with dredged materials provides efficient alternative for conventional materials. Major
concern of manufacturers and engineers is to built soil–geosynthetic units able to sur-
vive the installation process and withstand the working conditions. Loading condition
might not only be time dependent, though it is commonly associated with large material
movement and deformation.

Numerical modelling of thin–structures joined with history–dependent materials un-
der large deformation is challenging topic for the traditional methods. Additional diffi-
culty is expected if water or liquid behaviour material is involved such that treatment of
the fluid–structure interaction formulation is necessary. Several modern methods, em-
ploying the concepts of particles in meshless or mesh–based scheme, offer the ability
to handle multiphysics problem in one computational framework. The material point
method (MPM) is an arbitrary Lagrangian–Eulerian description suited for granular ma-
terial and geomechanical simulations. Although MPM represents the continuum by ma-
terial points, solution is performed on the computational mesh. Thus, imposing bound-
ary conditions in MPM is not aligned with the material representation. In this thesis,
two sets of material points are introduced. The first is obtained by tracking the surface
orientation and hence traction boundary condition is applied accurately. On the other
hand, the prescribed boundary particles set is designed for tracking the non–zero kine-
matic boundary condition.

Coupled FE–MP method is a novel scheme introduced in this research to incorporate
the thin membrane using finite element formulation in the MPM frame allowing large
movement of the thin structure. The FE membrane and other MPM substances con-
tribute to the same computational mesh where the equations of motion are solved. The
proposed approach has shown less mesh sensitivity and smoother stress distribution as
compared to an existing MPM membrane formulation. Furthermore, it has been found
that the suggested methodology predicts lateral deformation much accurately than the
other. Giving the explicit nature of the current MPM algorithm obliges assigning sen-
sible mass to all materials, which causes numerical difficulties when geotextile material
has extremely small mass as compared to soil. Even though, the coupled approach was
able to estimate the correct solution for negligible amount of membrane mass.

Similar to other Lagrangian particle methods, MPM accommodates material convec-
tion by the natural movement of the material points. Therefore, fluid is integrated in
MPM in a similar fashion to the solid materials considering the difference in the mate-
rial evolution. However, the high bulk modulus of liquids causes numerical instability,
which requires applying a stabilisation technique. Therefore, a combination of nodal

v



Abstract

mixed discretisation and average nodal pressure approaches is found to be essential to
achieve fairly smooth pressure distribution. The capacity of the algorithm to capture the
real time dynamic behaviour and the steady–state solution has been examined for two
validation cases. On top of that, an algorithm based on the continuous density field is
suggested in order to detect the free surface condition in the flowing fluid.

Geocontainers are large geotextile containers filled with sandy materials and dropped
in place using a split barge. Special attention has been paid to simulate this problem in
MPM. The container releasing stage from the barge is carried out where the effect of the
frictional contact between the barge and geotextile material is investigated. After seating
the container on a subsoil layer, a second container is released where interaction between
the two containers is taking place. Proceeding with the stage of dropping geocontainers
into water, the results of two experiments have been reproduced: lab scale test and full–
model test. While validating the fluid model with the controlled lab test is the aim of the
first test, more focus has been addressed to the geotextile forces as compared to the field
measurements in the second simulation.
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Zusammenfassung

In den vergangenen Jahrzehnten wurden immer häufiger Geotextilien in der Baupraxis
eingesetzt mit dem Ziel der Bewehrung, Filtration, Schutz und Trennung von Bodenma-
terialien. Vor allem in der marinen Geotechnik und im Wasserbau werden Geotextilien
für innovative Lösungen eingesetzt: Hier werden Geocontainer bei der Herstellung von
z. B. Dämmen, Deichen oder Wellenbrechern eingesetzt, welche von einem Schiff di-
rekt ins Wasser abgelassen werden. Bei der Bemessung dieser Geocontainer, einer Ver-
bundkonstruktion aus Geotextil und Boden, sind der Phasen des Herstellungsprozesses
und der Verwendung z. B. als Damm maßgebend. Die Bemessung muss die dynamis-
chen Belastungen berücksichtigen, welche aus der Herstellung und der Belastung z. B.
aus Wellen resultiert. Praktische Anwendungen und Laborversuche zeigen, dass hierbei
große Verformungen der Verbundkonstruktion auftreten.

Diese Dissertation ist thematisch in die folgenden Teile unterteilt:

Kapitel 2: In diesem Kapitel werden die kontinuumsmechanischen Grundlagen zusam-
mengestellt, welche für die Simulation von großen Verformungen mittels numerischer
Methoden erforderlich sind. Es werden die Euler’schen und Lagrange’schen Meth-
ode erläutert und miteinander verglichen. In diesem Zusammenhang werden netzfreie
Methoden und die netzabhängige Material Point Methode (MPM) erklärt. Beide nu-
merische Methoden werden bei der Simulation einer inkompressiblen Flüssigkeit und
von dünnwandigen Strukturen beispielhaft angewendet.

In Kapitel 3 wird eine detaillierte kontinuumsmechanische Herleitung der dynamischen
Material Point Methode (MPM) vorgestellt. Die Weiterentwicklung und Verbesserung
dieser numerischen Simulationsmethode ermöglicht die realitätsnahe Abbildung von
vorgeschriebenen kinematischen Bedingungen und Oberflächen, welche exemplarisch
in einer Parameterstudie angewendet werden. Die Ergebnisse der Simulation des Kol-
lapses eines granularen Materials mit MPM werden mit experimentellen Messwerten
verglichen.

Kapitel 4: Aufbauend auf diesen Erkenntnissen, werden zwei Formulierungen zur Ab-
bildung einer Membran hergeleitet: Die erste Herangehensweise verwendet eine MPM
Formulierung in Kombination mit der klassischen Membrantheorie [191]. Die zweite,
alternative neue Herangehensweise simuliert die Membrane als Lagrange’sches Kontin-
uum, welche sich durch das MPM Netz bewegt. Beide Methoden werden hergeleitet und
miteinander verglichen. An Hand eines Feder–Masse Systems werden die Netzsensitiv-
ität und die Prognose von Spannungen und Verformungen untersucht. Die neue Meth-
ode zeigt in allen untersuchten Fällen Vorteile gegenüber der klassischen MPM Theorie
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Zusammenfassung

in Kombination mit der klassischen Membrantheorie [191]. Dieser Ansatz wird für die
Simulation einer dreidimensionalen Fragestellung erweitert, wodurch die Interaktion
von Boden und Geotextil unter Berücksichtigung von großen Verformungen möglich
ist. Dies wird in einem Validierungsbeispiel aufgezeigt.

In Kapitel 5 wird die MPM Modellierung von inkompressiblen Flüssigkeiten dargestellt.
Um die explizite Zeitintegration einer inkompressiblen Flüssigkeit durchführen zu kön-
nen, wird dem Fluid eine geringfügige Kompressibilität zugewiesen. Stabilisierung
dieser numerische Methodik, werden Algorithmen aufgezeigt, mit deren Hilfe realis-
tisches von Druck– und Geschwindigkeitsfeldern berechnet werden können. Darüber
hinaus wird ein Algorithmus zur Bestimmung der Wasseroberfläche abgeleitet. Diese
Modellierungsansätze werden an einem theoretischen Fallbeispiel angewendet, das den
Kollaps einer Wassersäule simuliert. In einer weiteren Parameterstudie zur Interaktion
zwischen Fluid und Struktur wird die Effizienz der verwendeten Algorithmen beispiel-
haft dargestellt.

Kapitel 6 beinhaltet eine umfassende Fallstudie zur Simulation von Geocontainern. Ein
Geocontainer ist ein mit Sand gefülltes Geotextil, welches von einem Schiff ins Wasser
ablassen wird und vor allem im Küstenschutz eingesetzt wird. Zur untersuchung des
Komplexen Herstellungsvorgangs wurden verschiedene experimentelle Untersuchun-
gen durchgeführt, welche Grundlage für analytische Näherungslösungen in der Bemes-
sung waren und in dieser Fallstudie zum Vergleich mit den MPM Simulationsergeb-
nissen dienen. Die dynamische Material Point Methode wurde zum Abbilden dieses
Prozesses verwendet, um die komplexe Interaktion zwischen Boden, Fluid und Geo-
textil abzubilden. Dieser Vorgang wird zweistufig simuliert, um die Effektivität der en-
twickelten Algorithmen darzustellen: In einem erste schnitt wird das Wasser vernachläs-
sigt, um die Zugkräfte im Geotextil als auch die Interaktion zwischen dem Geotextil und
dem Schiff zu untersuchen. In weiterführenden Untersuchungen wird auch das Wasser
berücksichtigt, um den Vergleich mit Labor– und Feldmessungen durchführen zu kön-
nen. In diesem Kontext wurden die beobachteten Geschwindigkeitsfelder miteinander
verglichen. Neben diesen Untersuchungen wurde auch der Herstellungsvorgang von
mehreren Geocontainern untersucht, wobei besonderes Augenmerk auf die Interaktion
gelegt wurde.

Im abschließenden Kapitel 7 werden die Themen dieser Dissertation zusammengefasst
und Empfehlungen für zukünftige Forschung gegeben.
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Chapter 1

Introduction

In recent decades, geosynthetic materials are becoming more popular as a construction
material in civil engineering. The growing applications of these materials are mainly
tailored in reinforcement, filtration, protection and separation. For at least one of such
functions, different products are available like geotextiles, geomembranes, geogrids, and
other geocomposites [144].

In coastal and hydraulic engineering, conventional construction materials like rock
or concrete armour units might be expensive or not accessible. Therefore, geotextile
systems are acknowledged as an efficient economical alternative built on site by com-
bining geotextile with available materials such as sand or slurry mixture. The geotextile
systems or geosystems can take different shapes according to the purpose of the design.
Examples of famous geosystems used for bank construction and protection structures
are illustrated in Figure 1.1. Furthermore, geosystems are widely applied for land recla-
mation and temporary structures.

The geocontainer is a large sand or dredged material unit capsulated inside a prefabri-
cated geotextile and placed in the desired position using a split barge. Single container
can be employed to isolate contaminated materials, or structure of many containers is
commonly used for constructing breakwaters and dams, or to build artificial reefs. For
dam construction, the core or the deep layer is built of geocontainers whereas geotubes
are applied for the upper layers. The geotube is made of highly resistant permeable
geotextile forming long tube, which is then filled with soil and water mixture. Beside
dikes construction, geotubes are frequently adopted for erosion and shoreline protec-
tion. For river bank stabilisation or slope protection, contained soil in geotextile fabric
can be applied as well as geocurtain in which the permeable geotextile is holding the solid
materials while water flows through, see Figure 1.1. More geotechnical applications us-
ing geosynthetic materials are highlighted in numerous references; e.g. [92, 101, 144].

pump

sand

watersand+

fill hose

tube

barge

geocurtaingeotube

water

geocontainer

Figure 1.1: Applications of getextile systems [144]
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Chapter 1 Introduction

1.1 Motivation

Owing to the variation in application type, different geosynthetic materials are produced
[64, 173]. One of the key issues for the manufacturer is to deliver products able to sustain
various working conditions where the geosystem might be subjected to heavily dynamic
loads like geotubes under a wave attack, or the stability of a containers structure due to
possible failure mechanisms. In some applications, the construction procedure has more
significance than the running condition itself, which might not vary so much. For such
cases, studying the installation effects on the geosystem unit becomes an obligation. Be-
side concerns of the geosynthetic manufacturer to deliver products able to survive the
severe conditions, contractors and engineers are interested in the feasibility of imple-
menting such a relatively new construction methods. For example, safe dumping of a
geocontainer on the sea bed without rupture is excellent job, however, it is economically
questionable if it is drifted far away from the tolerable zone. Therefore, studying instal-
lation and working conditions of geosystems should be covered where soil, water and
geotextile are involved.

Theoretical models based on equilibrium analysis provide the basic understanding to
the physics of soil–water–geotextile systems. However, field measurements offer more
reliable formulas though reproducing tests with similar conditions is not possible. Be-
side high expenses and technical difficulties, the large–scale measurements require con-
trol of many parameters depending on the objective of the test. In addition to the field
tests, scaled lab tests are also popular in this area where the focus is oriented toward
specific phenomena as scaling the entire model properly is difficult. Figure 1.2 shows
different physical modelling of dropping sand filled container in water where the drop-
ping velocity and stability of structure of containers are well predicted.

In general, numerical modelling provides a flexible tool to analyse the physical field
in full scale and to investigate the effects of controlling parameters. Accordingly, the ex-
periments can be steered in more economic direction. In spite of the enormous expand
in numerical techniques, there is a lack of developing a unified scheme able to simulate
applications of geosystems in which granular material and thin structures might experi-
ence large movement and deformation in the presence of water.

open channel test [32, 49] field measurements [26, 152]tank model test [23, 25]

Figure 1.2: Various physical test of dumping geocontainer in water
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1.2 Research aims

1.2 Research aims

The research aims of the present work are to develop a numerical framework capable of
modelling the dynamics of granular materials under large deformation combined with
the thin–walled structure. More focus is attributed to geosystem applications during
installation stage. Since most of these geotextile–soil systems are designed for coastal
engineering and shoreline protection, water effects should be included. Acknowledging
the efforts being dedicated by scientists for decades to develop numerical methods for
soil, water and geotextile or coupling two of them, the sought numerical scheme must
exploit this experience. In other words, the development direction should be guided
more in coupling schemes and algorithms to be suitable for the intended applications.

To this end, the material point method (MPM) is an attractive numerical scheme to
tackle the problem of large deformation in granular materials. The MPM algorithm in-
cluding membrane formulation is implemented in a unified framework. Performing
basic tests for the existing membrane algorithm [191] prove that it suffers from spuri-
ous stress distribution as well as underprediction of lateral deformation. As a result, the
method requires very fine discretisation to improve. Moreover, the explicit nature of the
adopted MPM version obliges assigning sensible mass to the geotextile, which has prac-
tically negligible mass as compared to soil. Thus, a novel treatment for the membrane
is introduced here, which is shown to be free of the previously mentioned drawbacks
associated with the existing algorithm.

Aiming for the simulation of geocontainers release, the split barge should be modelled
as a prescribed velocity condition. For this purpose, material points with prescribed ve-
locity are incorporated in MPM. Furthermore, the concepts of surface discretisation has
proven to be efficient to track the interface surface between the barge and the geocon-
tainer. As next, the releasing process of a granular material inside geotextile material is
simulated in MPM where some control parameters are discussed.

To accomplish the previously mentioned goals, water is integrated in the computa-
tional scheme. Implementing high bulk modulus fluid in explicit scheme requires some
stabilisation techniques. Two enhancement methods found in finite element literature
are applied and validated. Although there is no intention to build sophisticated fluid
dynamics model in this thesis, however, the free surface formulation was necessary to
introduce in some validation cases.

1.3 Thesis layout

The thesis is divided into seven chapters. The present chapter, Chapter 1, provides an
introduction to the geomechanical applications involving soil, water and geosynthetic
textile in which the objective of the research is outlined. Chapter 2 reviews continuum–
based numerical methods being developed for large deformation problems. A brief
overview about Eulerian and Lagrangian methods is given. Furthermore, the concepts of
the meshless methods are highlighted briefly, whereas more elaboration has been given
to the material point method (MPM) as one of the mesh–based methods. In spite of the
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different motive for developing MPM and meshless methods, both are applied to model
compressible fluid and thin–walled structures as demonstrated in this chapter as well.

Chapter 3 details the MPM formulations for a continuum solid material. Two types of
material points are added: boundary particles obtained from the surface discretisation
and particles with prescribed velocities where the non–zero kinematic conditions are ap-
plied. Some development and enhancement methods are also included in this chapter
due to their necessity for later cases. In order to prove the validity of the current MPM
implementation for modelling the dynamics of granular material, collapse of granular
column is compared with experimental measurements.

Chapter 4 describes two membrane formulations. The first follows the standard MPM
considering the membrane theories [191], while the second given the name coupled FE–
MP method is more novel formulation treating the membrane as a Lagrangian continuum
moving through the computational mesh. Mathematical background of both methods
is given along with simple test of spring–mass system. In all tests of mesh sensitivity,
stress prediction and lateral deformation, the coupled FE–MP approach shows advan-
tages over the other method. For the rest of the chapter, a procedure of suppressing
compression stresses in the membrane to resemble geotextile materials as well as re-
quired modification to accommodate for large deformations are presented. Validation
example about soil–geotextile interaction is given by the end of this chapter.

As water is being involved for most geosystem applications, Chapter 5 underlines the
modelling of fully incompressible fluid using fractional step method. Little compress-
ibility has been assigned to the water so that the explicit integration scheme is applicable.
In order to stabilise the numerical scheme, two enhancement schemes are shown to be
essential in order to get acceptable pressure and velocity fields. Moreover, an algorithm
based on a continuous density field is developed so that the free surface can be detected.
The free surface algorithm as well as the smoothening schemes are examined for the sim-
ulation of water column collapse. The efficiency of the fluid model to converge toward
the steady–state solution with enhancement is tested for the problem of geotube.

More focus has been given to the application of dropping geocontainer in Chapter
6, which is quite challenging application to simulate. Similar to the tradition in con-
ducting experimental tests, the MPM container is assumed to be released from the split
barge in dry condition without water. The experience of adding some folds in the geo-
textile along the barge has shown its effectiveness in the numerical model. The effect of
geotextile–barge friction coefficient on the geotextile tensile forces has been investigated
for different values. Furthermore, interaction of multigeocontainers has been studied by
simulating the installation process of two containers. Evaluating the terminal velocity of
dropping container in water is important to identify the most critical condition of stress
peak when the container hits the ground. Therefore, the MPM fluid model is evaluated
first with a lab controlled test. As next, the numerical model is extended to compare
with field measurements. In spite of the two–dimensional assumption in the numerical
model, some figures and numbers of the real three–dimensional model are captured.

As a final summary and conclusion, Chapter 7 presents the key issues and findings in
this research with some recommendations for further research in this area.
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Chapter 2

Computational methods for large deformation
analysis

Numerical simulations are an indispensable active field of the modern engineering and
science development. Considerable effort has been devoted by researchers to develop
numerical methods that are able to simulate practical applications. These are more chal-
lenging when large deformation is involved.

Literally, granular materials can be simulated either using a continuum–based repre-
sentation or particle–based. In spite of the capability of the latter family, such as the
discrete element method (DEM), to model the interaction of grains, it is limited to small
scale problems. Setting parameters for DEM model is difficult to achieve in a reliable
way. Therefore, continuum models such as the finite element method (FEM) are usually
prefered over discrete representations. Methods like MPM or SPH are classified by most
researchers as a combination of the two schemes that is typically used to solve contin-
uum problems.

In continuum–based models, the traditional description of kinematics is either based
on Lagrangian or Eulerian approach where each has its pros and cons. Coupling the
two descriptions in one approach by exploiting the best features of each is desirable. An
overview of the basic two descriptions, as well as concepts of combined schemes, is pro-
vided in Section 2.1. Lagrangian, Eulerian, and coupled methods all indirectly solve the
partial differential equations using a grid with fixed topology. The idea of replacing the
fixed connectivity mesh with points that are free to build neighbour list is introduced by
the meshless methods in Section 2.2.

The inspiration of replacing the continuum with material points able to follow the
movement in a natural manner has the beauty of linearising the convection–diffusion
equation. However, it is not necessary to perform the solution of the equation of motion
on the material points like in meshless methods [116, 128]. Instead it can be accom-
plished on a fixed background computational mesh [73]. The evolved version of the last
method is called the material point method (MPM) [167, 169], which is presented in Section
2.3. The section includes development and enhancement of the basic algorithm as well
as various engineering applications.

In geosynthetics applications, thin–walled structures or more specifically membrane
elements are usually employed. Thin elements often experience large displacement,
which might be combined with moderate deformation. Section 2.4 is dedicated to give
an overview of large deformation in thin structural elements, whereas Section 2.5 and
2.6 provide brief reviews for incompressible fluid modelling and the treatment of fluid
interface, respectively. Some concluding remarks are drawn in Section 2.7.
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Chapter 2 Computational methods for large deformation analysis

2.1 Lagrangian, Eulerian and coupled methods

In order to develop solutions for problems described in terms of differential equations,
several numerical approaches are available. These approaches tend to follow either La-
grangian or Eulerian descriptions. The bookkeeping strategy is the essential difference be-
tween the two. In the Lagrangian approach, the motion of each material point is tracked
in time as it moves through space. On the contrary, the Eulerian frame assumes that the
spatial domain is fixed and the material is studied as it passes through this domain.

In both, the Lagrangian and Eulerian formulations, the governing equations are ap-
proximated throughout the computational domain using for example finite element (FE)
or finite difference (FD) procedures. It is more common to use FD discretisation when
the mesh is fixed such as with the Eulerian methods. On the other hand, the FE ap-
proximation is frequently adopted when the mesh is attached to the material. Owing
to this attachment, numerical difficulties are expected when the material is heavily dis-
torted unless the discretisation is updated. Albeit tying the mesh to the material in the
Lagrangian description limits the deformation, it has an advantage to track the moving
material easily where the history can be remembered at the grid nodes. Furthermore, the
boundary tracking is trivial, whereas this is not the case with the Eulerian description.
For the same reason, the treatment of the material interfaces is resolved naturally and
the application of the constitutive equations are straight forward. Important to men-
tioned here is that by adopting Lagrangian description the nonlinear convective term in
the governing equations is omitted. Finally, following the material deformation does not
restrict the analysis to a predefined spatial domain, however, discretisation in Eulerian
methods should cover the whole region where material is expected to move. More de-
tails about the comparison can be found, for example, in [19].

According to the aforementioned, adopting purely Lagrangian or Eulerian description
for the material kinematics has advantages and drawbacks. Indeed, combining the pos-
itive features of both gives a better approach that is logically more computationally de-
manding. Arbitrary Lagrangian–Eulerian (ALE) is a numerical scheme that makes use of
the classical kinematic descriptions in one computational framework [123]. In ALE, the
relevant governing equations are decoupled into Lagrangian and Eulerian counterparts
by splitting the differential operator. Therefore, the solution algorithm consists of three
steps. The first, which is similar to the updated Lagrangian algorithm, followed next by
the meshing step where the finite element discretisation is updated while the topology
is preserved. Owing to updating the mesh, a third step is essential to map the state vari-
ables that is equivalent to the convection equation. A lot of effort have been devoted to
the last two steps and consequently many versions of ALE are available [18, 19, 54]. As
a conclusion, the difference between the three schemes Lagrangian, Eulerian and ALE is
attributed to the location of the reference configuration, from where the physical motion
of the body is described. The three approaches are depicted in Figure 2.1. In this figure,
the freedom with moving the computational nodes within the ALE description allows
arbitrarily large deformation and avoid mesh entanglement.

Although ALE methods allows moving the mesh nodes in a predefined manner, the
discretisation and the mesh topology are maintained. Therefore, for modelling fluid
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Figure 2.1: One–dimensional illustration of Lagrangian, Eulerian and ALE motions [54]

that undergoes extreme deformation, this approach has limitations. Another form of
exploiting the two classical configurations is observed in problems dealing with fluid–
solid interfaces. For such problems, two discretisations are employed instead of a single
mesh. The coupled Eulerian–Lagrangian (CEL) methods are based on coupling between
Lagrangian body, which is most commonly solid material, and Eulerian for the fluid be-
haviour material. For such an analysis strategy, explicit coupling is obtained by applying
pressure boundary condition on the Lagrangian body, whereas velocity boundary con-
dition prescribed on the Eulerian discretisation for the fluid as demonstrated in Figure
2.2 [19, 138]. More about other coupling methods are provided by Brown et al. [34]. The
method has shown its applicability for geomechanical applications of a Lagrangian ob-
ject being pushed into an Eulerian soil [131, 145].

Lagrangian phaseEulerian phase

velocity pressure

Eulerian discretisation Lagrangian discretisation

Figure 2.2: Explicit coupling solutions of CEL methods
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Chapter 2 Computational methods for large deformation analysis

2.2 Meshless methods

In all previously mentioned methods, the discretised continuum is divided into compu-
tational cells connected together via a topological connectivity or mesh, thus, they can
be classified as grid–based methods [112]. In the Lagrangian FE formulation for instance,
the variables are approximated inside each element by employing interpolation func-
tions. Since building interpolation functions is linked to the mesh and its fixed topology,
it is difficult to accommodate large material distortion. As a solution to this problem,
the meshless or meshfree methods replace the mesh interpolation functions with functions
based on interpolation points able to follow the material movement. The connectivity
between these points is variable and updated within the solution procedure, which gives
these methods an adaptive nature capable of modelling excessive deformation. Li and
Liu [105] provide an elaborated overview about these methods and their history.

Numerous names are given to methods that appear under the meshless umbrella. Be-
lytschko et al. [17] summarise these methods as: smoothed particle hydrodynamics (SPH),
moving least square (MLS) and partition of unity method. Without going into details of the
last two, the SPH is considered as one of the most attractive and efficient computational
technique to solve solid and fluid mechanics problems [116, 128]. The history of the
method goes back to the seventies when it was firstly applied to analyse astrophysical
and cosmological phenomenon. The SPH formulation makes use of the basic integration
concept of a continuous function f (x), with x being the position vector that is defined

f (xi) =

∫

∞

−∞

δ (x− xi) f (x) dx, (2.1)

where δ (x− xi) is the Dirac delta function, which is infinity at x = xi and zero else-
where. Now, if the Dirac function is replaced with a smoothing function W , the integra-
tion reads

f (xi) =

∫

∞

−∞

W (x− xi, h) f (x) dx, (2.2)

with h being a measure of the smoothing length, which can take circular or rectangular
shape. The smoothing function must satisfy some conditions [17] and can be constructed
as exponential or spline functions. According to this definition, the integration point is
always smoothened with a non–zero spatial space that only becomes exact with the Dirac
delta function. Following this theory, the continuum is represented by a cloud of par-
ticles where Equation 2.2 is numerically integrated over these material points, which
carry material information in Lagrangian manner. The particles interact with each other
through the conservation laws where the influence of the individual particle is controlled
by the smoothing length, which in turn affect the solution quality [112].

Unlike other meshfree methods where the points are used only as interpolation points,
the combination of the Lagrangian formulation and particle approximation in SPH gives
the method the power in simulating a wide range of multiphysics applications [4, 105,
106]. For example, Anghileri et al. [4] investigate the impact of a tank filled with water on
rigid ground. In their simulations, four particular fluid models were tested: Lagrangian
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Eulerian

ALE SPH

Lagrangian

Figure 2.3: Water sloshing with different models inside tank modelled with FEM [4]

FE, Eulerian FE, ALE, and SPH methods. Apart from the coupling methodology be-
tween the tank and fluid, the SPH model shows better reproduction for water sloshing
inside the tank as pictured in Figure 2.3.

Like other numerical schemes, SPH also has drawbacks or research points to be ex-
plored, such as the stability of the method under tension [171]. Imposing kinematic
boundary conditions are not defined precisely and requires special treatment. Further-
more, the particles are highly disordered when they undergo large deformations and
impulsive loadings that make the results not always reliable [112].

2.3 Material point method (MPM)

The material point method (MPM) is a numerical method that is developed to treat large
deformation problem of the history–dependent materials. The method is based on the
combination of Lagrangian and Eulerian material descriptions. With regard to the La-
grangian description, a body is represented by collection of material points, which carry
permanent information. The description keeps track of the movement and deformation
of material domain. Interaction of material points is however described by solving the
governing equations on a computational mesh that corresponds to the Eulerian descrip-
tion of motion. Therefore, the method can be considered as a finite element method
formulated in an arbitrary Lagrangian–Eulerian frame of motion.

The Lagrangian material points carry all material properties as well as external loads,
whereas no permanent information are stored on the computational mesh. During one
computational step, the information that is required to solve the equation of motion is
transferred from the material points to the grid nodes. After determining the primary
variables at nodes, as well as strains and stresses at material points, the material points
are convected following the deformed mesh. It is essential to emphasise here that all
materials points belong to different bodies are updated with the same velocity field that
is determined via the computational mesh. While the locations of the material points
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material 1 active nodematerial 2 inactive node

Figure 2.4: Solution procedure of an MPM computational step

are kept, mesh is reset back to its initial configuration. A schematic representation of
one computational step in MPM is illustrated in Figure 2.4. Frequently, this procedure is
regarded in three phases: initialisation, Lagrangian and convection phase [169, 189].

2.3.1 Historical background

The particle–in–cell (PIC) method introduced by Harlow [73] for fluid mechanics is re-
garded as the origin of MPM. PIC evolved later to the fluid implicit particle (FLIP) by
Brackbill and Ruppel [30] as the PIC suffered excessive energy dissipation. The idea of
PIC or FLIP is to solve the equations of motion on a computational grid where the spatial
derivatives can be constructed. Material points are convected naturally by transferring
information from nodes to the Lagrangian points. The essential difference between the
two comes from the procedure of sweeping information between the two discretisations.

Sulsky and Schreyer [166] and their co–workers at New Mexico extend the method
for solid mechanics applications, which was afterward given the name Material Point
Method (MPM) [167]. The weak formulation of the MPM is provided in terms of finite
elements formulation [168, 169]. In the MPM version, the field variables are evaluated at
the material points, which carry the state variables and material parameters. No perma-
nent information is stored on the computational grid that serves as a spatial domain for
solving the equations of motion. MPM, as a particle–based Lagrangian method, has the
advantage of conserving the mass inherently.

Within the MPM procedure, the mapping of information takes place between the mass
points and the grid nodes. Burgess et al. [36] prove that mapping of data between mate-
rial points and the computational nodes implies that the kinetic energy and momentum
are conserved. Owing to the dynamic algorithm used with the MPM, explicit integration
scheme is frequently used [165, 167, 189]. Lumping the mass matrix is computationally
efficient as the inversion of the diagonal matrix is trivial. However, this lumping comes
with the price of dissipating kinetic energy that is evaluated for history dependent and
independent materials in [30, 31, 168].
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2.3.2 Development and enhancement

Over the past two decades, MPM has became increasingly attractive for solving large de-
formation problems. References [168, 169] have largely contributed to outline the basis of
the method. Consequently, several developments to enhance or improve the mathemati-
cal principles of MPM as well as applying the method in various engineering disciplines
grew in parallel. Tracking all these developments or enhancements in one section of a
thesis is not practical. Nevertheless, some of the milestones relevant to this thesis are
highlighted in the following paragraphs.

2.3.2.1 Contact interaction treatment

Owing to the single value velocity field integrated in MPM for updating the locations of
the material points, the no–slip condition between different bodies is applied automati-
cally with no change to the standard MPM algorithm. The interaction of two materials
in the MPM context is shown in Figure 2.4, which shows in the third step (from left to
right) both material points types being updated with a common velocity field obtained
at the grid nodes, whereas the contact surface is detected implicitly. For two bodies in
contact, there should be a limit when the contact relation is broken. The inherent no–slip
condition assumes the two always in contact that causes non–physical extra resistance
with no guarantee of solving the problem with the mesh refinement [169].

An algorithm to detect approaching or separation of different bodies that improves
the energy conservation of the colliding bodies is introduced by York et al. [192]. The
algorithm is based on detecting a variation between the individual body velocity field of
when it combines with others. With similar concepts, Bardenhagen et al. [14] extend the
method to include sliding and rolling with the Coulomb friction criterion using a non–
iterative algorithm able to detect the interface explicitly. Bardenhagen et al. [15] replace
the velocity field criterion with the normal traction criterion that requires the normal
traction at the surface to be in compression. By comparing the two, the latter gives more
reasonable results for a granular material under shear deformation [13]. Nairn [130]
prove that both Bardenhagen’s methods either detect contact too soon or unreliably in
the case of an internal crack, therefore, the velocity criterion algorithm was modified in-
volving the corresponding nodal volume for this purpose. The different velocity fields
around the crack tip provided an efficient algorithm capable of detecting a discontinuity
within the continuum model applied for two and three–dimensional problems [69, 70].

By the same token, Hu and Chen [81] propose using momentum as a criterion for the
contact detection implemented in a multi–mesh environment to avoid the unphysical
behaviour that might be associated with the velocity field algorithm [14]. Owing to the
treatment of tangential velocities of bodies in different discretisations, the method was
unable to simulate friction contact. The multi–mesh approach was improved by com-
bining the velocity criterion algorithm for the tangential component [190] showing its
applicability for different applications [121, 190]. Moreover, the method has been ex-
tended to model the drag interaction of multi–phase material [122, 195].

In the previously mentioned contact methods, the MPM algorithm follows the original
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MPM formulation of collocating the mass of the material point at one point [167, 169].
However, as it will be shown in the context of this chapter, there are some material point
methods that assume a spatial domain in which the mass is distributed [12, 151]. Defin-
ing a space for the material points allowed Zheng et al. [198] to improve the accuracy of
the detecting the contact surface. The overlap of the material points spaces is used as a
criterion to apply contact instead of the nodal velocity fields.

2.3.2.2 Energy conservation and integration scheme

According to the original MPM [169], the stresses are obtained at the end of a compu-
tational cycle known as update stress last (USL). This procedure, as well as the update
stress first USF where the stresses are updated according to the updated velocity field
are examined by Bardenhagen [11] in terms of energy conservation in the material point
method. According to this investigation, the USL dissipates more energy when com-
pared to USF. In the work of [182], where both schemes are tested as well as central
difference, it is shown that the central difference method and USL is considerably better
than USF regarding stability problem and spatial convergence. Furthermore, Wallstedt
and Guilkey [181] explore that the accuracy of the MPM solution heavily depends on the
material point density and location. Hence, they enhanced the linear projection of the
velocity field by making use of the velocity gradient information.

Explicit time integration scheme has been implemented in many MPM applications
[39, 169, 189]. In order to utilise the benefit of the explicit procedure being computation-
ally inexpensive within a time step, the mass matrix must be diagonalised or lumped.
Lumping the mass matrix has the consequence of some numerical dissipation in the ki-
netic energy [36]. In MPM, this matrix is assembled from the discrete distribution of the
mass density concentrated at the material points locations. Więckowski [186] replaces
the concentrated mass by a continuous density function, which was shown to exhibit
less oscillation and better energy conservation for the one–dimensional wave propaga-
tion problem. In other words, the collocated mass is smeared over the element span.

To improve the solution quality or to increase the small time step size with the explicit
scheme, implicit integration has been introduced to the MPM. Some of these schemes ei-
ther based on Newmark integration method [67, 110] where the stiffness matrix is built,
or by implementing a matrix–free iterative procedure [164]. For the applications where
the inertia effect is not of interest, a quasi–static solution is obtained in a fashion similar
to the FE procedure by constructing a global stiffness matrix [22]. However, the expense
of building this matrix can be avoided when dynamic relaxation procedure is employed
[162, 187], where an artificial or viscous damping is introduced helping the energy to
dissipate and the solution converges eventually to the static solution.

2.3.2.3 Grid–crossing error

Low–order elements are often used in most of the MPM codes [39, 169, 189]. By imple-
menting linear interpolation functions for mapping information between the computa-
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tional grid nodes and the material points, a change in the derivative sign causes artificial
oscillation in the internal force commonly referred to as a grid crossing error [12, 68]. As a
proposed remedy for the crossing error, use of higher–order functions that has continu-
ous derivatives at the element boundary has been proposed. By implementing quadratic
functions, lumping the mass matrix is not possible anymore as it might ends up with
negative components due to the nature of the quadratic functions. Beside the expenses
of solving a consistent mass matrix, it might be singular and therefore the approach falls
apart [57]. As an alternative, Steffen et al. [161] propose B–spline functions to mitigate
the numerical noise corresponding to the crossing error, which shows significant im-
provement against the piecewise functions.

In the work of Bardenhagen and Kober [12], the generalised interpolation material point
method (GIMP) introduced a spatial domain for the material point where the characteris-
tic functions are distributed instead of concentrating them at one point. The method was
able to reduce the crossing error, however, it did not eliminate it completely. In recent
years, similar concepts which will be described later in this chapter, have been employed
[151, 198]. Since the material points are distributed over space in all these methods, two
points interact with each other as soon as parts of their domains contribute to the same
computational node. Therefore, one would expect less material separation occurs under
tensile load as compared to the traditional MPM. It should be realised that tracking the
evolution of the material points costs extra computation to the MPM that is computa-
tionally expensive by itself. For example, GIMP is slower than the traditional MPM with
a factor of 2.7 in the case of analysing a simple tension bar [57].

Zhang et al. [194] eliminate the discontinuity in the gradients of the linear functions by
introducing a dual domain material point (DDMP). In contrast to GIMP where the shape
functions are modified, their gradients only are modified in DDMP. In this way, the influ-
ence domain of the material points is enlarged for stresses and consequently the internal
forces provide smoother crossing. All other quantities are computed similarly to the
original MPM where the influence of a material point is bounded by its element. The
method has shown its effectiveness to alleviate the crossing problem for Cartesian coor-
dinates and has more recently been extended to cylindrical coordinates [110, 120].

2.3.2.4 Volumetric locking

In addition to the crossing error linked to employing low–order elements, a non–physical
increase in the resistance against volume change is taking place, which is commonly
known as volumetric locking [18]. Although the locking problem is not related to MPM
itself, spurious variation in the stress field is detected when the material is becoming
nearly incompressible. In the finite element framework, Zienkiewicz and Taylor [202]
supply several methods either based on introducing multi–field variable or by splitting
the governing equation into deviatoric and isochoric parts.

Stolle et al. [162] accommodate incompressibility with enhancement procedure using
an explicit scheme and compared it to an implicit model based on operator splitting
within an MPM framework. As a conclusion of their work, the explicit solution con-
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verged faster to the quasi–static solution when nodal mixed discretisation (NMD) is used.
NMD is a strain enhancement technique derived from involving an assemble of ele-
ments to satisfy the volumetric strain constraint while the deviatoric components are
kept without changes [53]. The NMD has proven to be noticeably efficient in the case
of large–deformation single phase granular material [22, 89], or the case of multi–phase
material with small deformation [90].

In the concepts of splitting up the multi–field, Shin [155] applies the enhancement
scheme to model the simulation of landslide and debris flows. Mast et al. [127] show that
applying the smoothening approach on deviatoric and volumetric components, shear
and volumetric locking were healed. In this work, a smoothening procedure is proposed
on two levels: inside the computational cell, and on the supported zone of the grid node.
However, the combination of both the levels gives smoother pressure distribution for the
break of a water dam problem [126].

2.3.2.5 Material points with spatial domain

In order to mitigate the numerical instability caused by a sudden jump in the gradient
of the shape functions as a material point move between elements, Bardenhagen and
Kober [12] propose the generalised interpolation material point method (GIMP). In this
method, the concentrated mass of a subdomain at one point is replaced by defining a
finite spatial domain. In other words, the Dirac delta function employed in MPM is
smoothened by a characteristic function χ. The general definition for the modified weight-
ing function is established with [12]

N̄ip =
1

Vp

∫

Ωp

χp (x− xp) Ni dΩp, (2.3)

where N̄ip is a modified function of Nip, which is the shape function of node i evaluated
at the material point p, with Vp and Ωp being the volume and the support domain of p,
respectively. Replacing the characteristic function in Equation 2.3 by the delta function
yields the original MPM in which N̄ip = Nip. Alternatively, imposing a unit value in-
stead of χ limits a weighting function with support in adjacent cells and in the nearest
neighbour cells. When Equation 2.3 is compared to the SPH formulation, Equations 2.1
and 2.2, it is seen that GIMP use the smoothing characteristics of the meshless methods.

Material points in GIMP are commonly initialised with rectangular shape, which is
unchanged during computation. Thus, the method suffers from extension instability
when the space between the material points is bigger than the support domain of these
points. To overcome this problem, Sadeghirad et al. [151] suggest to update the material
point shapes with a parallelogram domain that is consistently updated using the de-
formation gradient. As the proposed method convects the initially rectangular domains
into parallelograms, it is called convected particle domain interpolation (CPDI) method. The
CPDI demonstrates its effectiveness for excessive tensile deformation problems [151] or
dynamic impact on fully saturated media [198].

For the case of large deformation, the shape of a material point domain should be up-
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Figure 2.5: Material point with spatial domain and characteristic function [126]

dated. The GIMP version of updating the material point shape in orthogonal directions
is referred to cpGIMP, and uGIMP when the shape is kept fixed [151]. As the initial
shape of the domain is not necessarily rectangular, Mast [126] adds a circular shape and
denoted it as gGIMP. Although cpGIMP behaves better than uGIMP in terms of material
points separation, but it is unable to predict the distortion by shear. Graphical illustra-
tion of the original MPM with other methods with support spatial domain is shown in
Figure 2.5.

Spreading material points to a spatial domain mitigates the instability crossing prob-
lem. On the other hand, one should realise the complexity and computational effort to
track material points shape in the three–dimensional case. Furthermore, imposing com-
patibility between material points borders in a Lagrangian fashion within CPDI raises
the issue of mesh distortion associated with Lagrangian methods.

2.3.2.6 Discretisations

Regular mesh with bi–linear interpolation functions was adopted by early MPM version
[167, 169], whereas Więckowski et al. [189] implement irregular triangular discretisation
to model the silo discharge problem. Low–order triangular discretisation is extended
in the case of three–dimensional problem to four–noded tetrahedral elements that have
been applied to many geotechnical problems with large–deformation [2, 21, 22, 89].

In spite of the convenience of implementing fixed mesh discretisation, refining the
mesh at a region of high deformation gradient is necessary. Andersen [3] suggests the
concepts of local mesh refinement for a regular triangular grid at the region where the
material points gradient tensor exceeds a tolerance level. The refinement at the mate-
rial points through a splitting up procedure is consistent with the fine mesh zone. In a
related work by Tan and Nairn [172], a hierarchical refinement of bi–linear rectangular
mesh is applied for the problem of tracking a crack tip. Using this procedure, the com-
putational mesh is divided into multiple nested levels of refinement where each level
has a different element size. The adaptation technique by partitioning material points
is also applied to the shaped charges modelling where the jet formed exhibits massive
straining [150].
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2.3.2.7 Coupling of numerical methods

While different numerical methods are applied in different engineering areas, selection
of the most suitable method depends on the type of application. Coupling numerical
methods in one computational tool utilising the best features of each gives more flexible
scheme to model multiphysics problems. Often FEM is used to model solid materials,
which can be joined with discrete models to simulate structural–granular material inter-
action; e.g., [175].

In the work by Zhang et al. [196], for instance, an explicit coupling between FEM
and MPM is introduced in a uniform formulation and applied to a hyper–velocity im-
pact simulations in which the projectile is discretised as a Lagrangian FE object while
a regular background grid is provided for the MPM target, which is the potential large
deformation zone. Once the Lagrangian body moves into the predefined computational
grid, nodes are converted into material points whose momentum equations are solved
on the predefined grid. The FEM–MPM explicit coupling in this procedure is carried
out by adopting one method through two predefined regions. In the large deformation
zone, however, both projectile and target are treated similar to the pure MPM. Lian et al.
[108] propose a different type of FEM–MPM coupling for modelling reinforced concrete
subjected to impact loading. The reinforced bar is discretised using one–dimensional
line element. While the steel bar forces are evaluated on the FE grid and then transferred
to the background mesh, the concrete is modelled in a traditional MPM procedure. More
about coupling MPM with the hybrid immersed boundary method to model the fluid–
structure interaction problems can be found in Gilmanov and Acharya [66].

2.3.3 Applications

The material point method has been applied to a wide range of engineering problems.
Considering that MPM is well suited for modelling solids with history–dependent state
variables, the pioneering works were devoted to model impact problems [165, 165, 167,
169] and impact–penetration [166]. Bardenhagen et al. [13, 14] apply MPM to model
granular materials exploiting the advantage of the frictional contact algorithm.

Some applications related to mechanical and industrial engineering include: mod-
elling extrusion and cutting processes [185], simulating an upsetting compression model
[164], surrogate shaped charge [150], explosion and fragmentation phenomena [10], as
well as gears conjugation action [81]. Furthermore, MPM has been used to model the
impact of Taylor bar [120, 167]. Propagation of internal crack has also been carried out in
MPM with the aid of the frictional contact algorithm [130, 172]. Different contact algo-
rithms have been tested for the impact–penetration problem [83, 190]. It is common for
such applications to have relatively small deformation in the projectile, while the target
suffers from large deformation or is even fragmented. A coupling procedure of FEM
Lagrangian model with MPM provides a convenient framework to model reinforced
concrete subjected to impact load [107–109, 196].

As a powerful tool for large deformation in history–dependent materials, MPM has
been applied to geotechnical applications extensively. Więckowski [185] models the fail-
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ure of a retaining wall, whereas different related slope stability problems are treated in
[3, 162, 187]. The flow pattern of a granular material due to filling or discharging pro-
cess in silo has been widely investigated with MPM [39, 184, 189], as well as flowing of
granular materials during the collapse of a sand column [3, 158]. The inherent feature of
detecting the structure–soil interface in MPM encourages using the method to simulate
the anchor pull–out problem [39, 40], or hammering pile into soil [2, 110]. Another type
of applications about debris flow in a channel with structures interaction can be found in
[126, 155]. Structural elements have also been implemented in MPM to model a landfills
reinforced by a geomembrane [199].

The dynamics of soil–water interaction is brought to MPM by implementing the wa-
ter as well as soil material points. For example, the impact problem of saturated porous
media is investigated in [195, 198]. On the same topic with different implementation, the
dissipation of excess pore water pressure for a dike under wave attack has been studied
by Jassim et al. [90]. Providing that the root of MPM development was dedicated for
fluid modelling [73], the modern MPM is able to model the compressible [193] or in-
compressible fluid encapsulated in membrane [63]. Fluid flow problems also have been
employed in MPM like the collapse of water column [127, 155].

Within the previously mentioned applications, there are validations for MPM via com-
parisons with experimental results; e.g., [10, 39] or with other numerical schemes like
SPH for the hypervelocity impact problem by Ma et al. [119].

2.4 Thin–walled structures modelling

Numerical modelling of thin–walled structures is well defined and formulated in the
FEM literature; e.g., [18, 93, 157]. For geomechanical applications presented in Chapter
1, thin structures and soil material often develop large displacements that might be com-
bined with large deformation as well.

Meshfree methods have been used to model thin–walled structures. Early contribu-
tion in this regard is attributed to Krysl and Belytschko [94] who applied the thin shell
theory using the Element–Free Galerkin (EFG) method where essential boundary condi-
tions were imposed using Lagrange multipliers. The three–dimensional modelling of
thin shell structures were formulated for large deformation problems using meshfree
methods [106]. In this work, essential boundary conditions were implemented by mod-
ifying the shape functions of points near the boundary. Numerical stability problems
due to shear and volumetric locking associated with Lagrangian methods are eliminated
when higher order interpolation is implemented. Liu [111] provides an extensive survey
about applying meshless methods for thin–walled structures.

In MPM, Banerjee [9] adopts plate formulation for curved shell together with explicit
time stepping. He concluded that the stiff nature of the rotational inertia may require
implicit time stepping scheme for shell materials. Ionescu et al. [87] study the failure
of anisotripic soft tissue subjected to finite deformation using MPM. The prominent fea-
ture of the spatially thin structures is the mechanics coupling effect of the curved surface
modelling and the in–plane membrane deformation [204]. For geomechanical applica-
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tions involving thin geosynthetics materials, the membrane effects dominate so that the
flexural rigidity is often neglected. York et al. [192] introduce a membrane element to the
MPM formulation for two–dimensional problems. The MPM algorithm was modified by
considering the in–plane membrane effect of a single layer of material points. This devel-
opment was applied for the fluid–structure interaction where the inherent MPM feature
of no–slip condition is useful [193]. Gan et al. [63] extend the membrane formulation
to three–dimensional problem where the effect of in–plane shear stresses was included.
The injection process of a sperm is modelled in MPM as a spherical membrane filled
with incompressible fluid [62]. Zhou et al. [199] include geomembranes in a landfill un-
der quasi–static conditions. Frictional contact algorithm with the Coulomb criterion was
imposed at the soil–membrane interface to relieve the no–slip condition in MPM.

In membrane applications, it is important to have an accurate computation for a lo-
cal orientation. York [191] examines several algorithms such as distributing a constant
function along the membrane and then obtaining the spatial gradient. Among all meth-
ods, tracking the material point connectivity is considered the best [191]. Thus, Gan
[62] applies the connectivity approach for three–dimensional membrane by connecting
the material points with triangular discretisation. An alternative approach is applied by
Zheng et al. [198] to detect normal–tangential system based on finding the volume gra-
dient at the grid nodes, which is then interpolated at the material points. Care must be
taken that all previously mentioned algorithms are developed and tested for a regular
mesh discretisation with no guarantee to work for an irregular mesh.

2.5 Incompressible fluid modelling

In computational fluid dynamics (CFD) methods, Eulerian description for the fluid motion
is often used. For this purpose, different discretisation methods can be applied such as:
finite element, finite difference or finite volume method; see e.g., [58, 203]. In spite of
avoiding mesh distortion in Eulerian formulation, it is difficult to update the movement
of fluid–structure interface. On the other hand, tracking the movement of the fluid in
Lagrangian manner using material points provides a convenient description for the nat-
ural convection of the material as well as easy tracking for the interface surface.

Lucy [116] introduces SPH as a powerful tool to model the dynamics of astrophysi-
cal problems and galaxy collisions. As a meshless Lagrangian method, SPH can handle
extreme fluid deformation including breaking, merging and splashing [128]. The kernel
approximation implemented in SPH, Equation 2.2, smoothly interpolates the unknowns
of number of surrounding points. Thus, incompressible fluid can be treated without
numerical difficulties. The same reason of interpolating variables over spatial domain
makes the method challenging in terms of numerical computation [105, 112].

Earlier in this chapter, it has been shown that the use of low–order elements in mesh–
based methods is associated with numerical stability problems. Nevertheless, this type
of element is becoming more popular for modelling incompressible fluid as it eliminates
the non–physical deformation modes that is associated with high–order elements [203].
To mitigate locking and spurious pressure variations, numerical schemes based on split-
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ting the differential operator are popular. The velocity correction method or fractional step
method (FSM) is widely used to obtain the steady–state solution for incompressible fluid
problem [134, 205]. An extensive study about these methods is provided in [202, 203]
and the references therein.

As an efficient stabilisation technique for FEM discretisation, the FSM is implemented
in the Particle Finite Element Method (PFEM). In this method, the mesh topology between
Lagrangian points is rebuild each time increment where the differential governing equa-
tions are integrated. While nodes of the mesh move according to the equation of mo-
tion, all physical quantities are stored on the grid nodes before destroying the mesh.
Using geometrical algorithms, the connection between particles is established again to
advance the solution for the next time step, with the boundary conditions and inter-
face conditions being considered for the new mesh. Oñate et al. [139] and the group
in CIMNE (Barcelona) show different applications involving fluid–structure interaction
[85, 86, 100]. More recently, Zhang et al. [197] apply the method to model granular ma-
terial such as collapse of a column or silo discharge problem.

The early development of particle–in–cell method [73] and the later version of fluid
implicit particle method [30] were dedicated for fluid modelling. The material point
method in its formulation [167, 169] has been utilised to model fluid for various appli-
cations such as: compressible [191] and incompressible fluids [62, 63] inside thin mem-
brane, multi–phase debris flow [155], or water flow due to dam breaking [127]. Numer-
ical instability associated with explicit modelling of near incompressible fluid has been
improved by introducing some enhancement techniques. As the spherical component
of the stress is blamed for numerical difficulties, different techniques based on mixed
formulation are utilised to circumvent the volumetric locking problem when low–order
elements are used. Zienkiewicz and Taylor [202, 203] summarise these methods with
the corresponding mathematical background. Detournay and Dzik [53] discuss some
methods valid for history–dependent materials. This approach was then examined and
adopted for MPM by Stolle et al. [162]. Extending this work to a two–phase material
under small deformation analysis is implemented, where the enhancement approach is
applied for soil and water separately [90]. For large deformation problem, however, the
work of Shin [155] and more recently by Mast et al. [127] an algorithm based on aver-
aging spherical component inside the cell as well as around the computational grid is
introduced to mitigate the locking problem.

2.6 Free surface and fluid–structure interaction

According to Ferziger and Perić [58], numerical methods capable of modelling free sur-
face flow are classified as interface tracking or interface capturing. One of the interface
tracking methods is the particle finite element method (PFEM), which tracks the in-
terface surface explicitly by following the movement of the material points placed on
the nodes of a Lagrangian mesh [85, 86, 139]. In Eulerian formulations, the volume–of–
fluid (VoF) method approximated the interface via capturing the discontinuous volume
change across the surface [20, 91].
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With regard to the free–surface formulations, two methodologies are common in mod-
elling fluid–structure interaction (FSI). The partition and the monolithic strategies are fre-
quently implemented in numerical methods [52, 79]. While the partitioning scheme is
an iterative approach, treating the fluid and the solid in two separate computational do-
mains, the monolithic approach adopts single mesh to handle the interface [91, 179].

Motivations for developing meshless or grid–based methods is the free surface flow
problem and the moving fluid–structure interface problem, which arise in many engi-
neering areas with numerous practical aspects. Unlike traditional methods where the de-
termination of the moving free surface is difficult, the Lagrangian particle–based meth-
ods can simulate this topic in a relatively easy way. Among several meshless methods,
SPH has proven its ability to simulate wide rage of complex engineering problems in-
volving free surface [17, 112, 128]. In MPM, as a grid–based method, both fluid and
solid are treated the same inside the mesh except that each of them follows its charac-
teristic constitutive model. In fact, the fluid–structure interface problem has been inher-
ently treated by the no–slip condition in MPM as being applied for different applications
[63, 127, 193]. However, the free surface formulation where the fluid material might sep-
arate or reattach is not yet well established.

2.7 Concluding remarks

As reviewed in this chapter, various procedures can be used to model large deformation
within a continuum mechanics approach. Among all these, there is no best method for all
applications. For example, SPH is a powerful method for modelling fluids [112, 116, 128]
and thin–walled structures [106, 111] as well as granular material [35]. Owing to its La-
grangian adaptive nature, SPH can handle complex large deformation problems involv-
ing free surface. In spite of SPH advantages, one should consider the special treatment
of the essential boundary conditions. Furthermore, there is a big computational demand
in SPH as it reconstructs the particle neighbour list within the computation, which re-
quires a variable bookkeeping procedure. Finally, the initial spacing setup of the par-
ticles needs some experience to obtain good solution, otherwise, poor solution quality
might be achieved. The reader is referred to references for more details [106, 112].

Algorithms developed for FE are applicable to the mesh–based methods such as PFEM
and MPM. Although the obtained solution in both methods is in Lagrangian manner, the
interpretation of material points is different as well as the way of evaluating the consti-
tutive variables. Therefore, most of PFEM applications is related to history–independent
materials where the evolution of the field variables are evaluated at the grid nodes
[86, 139] with some recent applications to granular material [197]. On the other hand,
MPM has been applied to granular material in the presence of plasticity [168]. Więck-
owski [188] implements different constitutive models for the silo discharge problem. In
addition to MPM being well suited for granular material modelling, this thesis is a con-
tinuation work of the MPM development for geomechanical applications [2, 21] with
more focus on the geotextile and water modelling.
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Chapter 3

Dynamic MPM formulation for single–phase
solid mechanics problems

To describe a particular phenomenon numerically, the underlying governing equations
should be approximated in a proper computational framework. The mathematical de-
scription with some continuum mechanics basics are given in Section 3.1. Since large
deformations may develop for some problems, simulating these can be challenging for
schemes based on Lagrangian or Eulerian descriptions as summarised in Chapter 2. The
material point method (MPM) is one of the numerical methods capable of treating these
problems without the shortcoming of the traditional methods. As the concepts of MPM
are similar to the finite element method (FEM), Section 3.2 is dedicated for the FEM dis-
cretisations of a continuum solid body. Two discretisations are adopted in MPM: one
to represent the continuum with Lagrangian material points as well as a background
computational mesh, which is used to perform the solution for the discretised govern-
ing equations. Section 3.3 provides the solution procedure for each time increment to
advance the solution and the required manipulation of the boundary conditions. Within
the description of the method, two types of particles are introduced in this thesis. The
boundary particles, which are obtained from the surface discretisation and used to track
the orientation of the boundary accordingly. The other type of material points is the pre-
scribed particles for defining the non–zero kinematic boundary condition.

Owing to employing low–order element in the current MPM formulation, a non–
physical resistance against volume change is expected. Hence, an enhancement pro-
cedure is adopted here to relax the behaviour of the numerical model, which has shown
its applicability in many geomechanical applications [89, 90, 162]. Furthermore, the fric-
tional contact algorithm [14] is presented and combined with the prescribed velocity
boundary particles. These issues and artificial damping necessary for getting gravita-
tional stresses are combined together in Section 3.4. An overview about the numerical
implementation sequence of the MPM algorithm is offered in Section 3.5.

Giving that one of the objectives of this research is to provide a numerical scheme ca-
pable of handling the dynamics of solid materials under large deformations, the collapse
of granular column is considered as a validation for the numerical implementation. The
collapse of a sand column is simulated in MPM and compared with experimental results
as well as with another numerical method as demonstrated in Section 3.6. By the end
of this chapter, we have at hand a powerful numerical tool suitable for geotechnical ap-
plications where large deformations are expected to take place. Important to remember
here that the pore pressure in granular materials is not considered.
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3.1 Basic concepts of continuum mechanics

This section introduces a brief overview about the required basic concepts for the subse-
quent development. Within the principle of continuum mechanics, it is more convenient
to define physical quantities in terms of macroscopic scale without focusing on the mi-
crostructure interaction. Hence, the distribution of these quantities is approximated with
smooth and continuous variables by ignoring all nonuniformity of the matter.

In order to understand a natural phenomenon via continuum mechanics, three basic
ingredients are required: kinematics, balance laws, and material law [123]. Providing
that kinematics describes the motion of a continuum body and its related deformation
without considering the cause of this motion, the balance laws state how external effects
influence this motion. As the last two set of equations are valid for any type of material,
the material law provides the mathematical description for the physical characteristics
of a particular material. Variational principles provide a more suitable form for the nu-
merical approximation, which will be elaborated in this section, than the balance laws
expressed in differential form.

3.1.1 Notation and variables

We define an initial reference configuration of a continuous body Ω0 enclosed with a
boundary Γ0 at time t0 in a reference configuration, which is subjected to a motion. As a
result, the body deforms to the current configuration Ω with the boundary Γ correspond-
ing to time t. The position of a certain point belonging to the reference configuration is
defined by X , whereas the lowercase symbol x denotes its current position. Due to the
motion, the displacement of a field can be traced giving the two deformation configura-
tions as demonstrated in Figure 3.1.
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Figure 3.1: Configurations of a continuum body under deformation
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3.1 Basic concepts of continuum mechanics

Motion The relative motion between the reference and the deformed configurations
is introduced as the displacement of a material point, which yields

u (X, t) = x (X, t)−X, (3.1)

where the displacement u is a vector, which can be written in index notation as ui with
i ∈ (1, 2, 3). The time t ∈ [t0, tf ], with t0 and tf being the initial and final time, respec-
tively. An alternative definition for the displacement can be applied if the deformed
configuration x is the independent variable instead of the reference configuration X . By
definition, the velocity v is the rate of change of the position vector for a material point,
whereas the acceleration a is the second derivative of this vector. Applying these defini-
tion in Equation 3.1 and using the chain rule for differentiation, the acceleration reads

dvi (xi, t)

dt
=
∂vi
∂t

+ vj
∂xi
∂xj

. (3.2)

in which, d implies the substantial derivative, which is composed of the local and the con-
vective term. The last term is neglected in the case of updated Lagrangian formulation
when the material deformation is tracked [123]. Therefore, there will be no discrimina-
tion between the derivatives with respect to X or the lowercase.

Strain The strain εij , defined as the normalised deformation with respect to a refer-
ence length, is a second order tensor. More often we write the strain tensor in vector
representation such that

ε =
[

ε11 ε22 ε33 2ε12 2ε23 2ε13
]T
, (3.3)

where the strain vector in Equation 3.3 contains the total strain components. For the sake
of material modelling, however, a rate form of strain ε̇ is considered that is given as the
symmetric part of the velocity gradient

ε̇ij =
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

. (3.4)

The strain can be recognised as Lagrangian or Eulerian if it is based on the reference or the
current configuration, respectively [123]. For any measurement reference, strain must
disappear for rigid body motion, otherwise, stress is developed.

Stress Stress develops through a continuum as a result of deformation. Stress applied
on the current configuration is characterised by Cauchy stress tensor, which can be writ-
ten in similar fashion to Equation 3.3 as

σ (x, t) =
[

σ11 σ22 σ33 σ12 σ23 σ13
]T
. (3.5)

The Cauchy stress σ may be regarded as the true stress as it refers to the deformed con-
figuration.
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Chapter 3 Dynamic MPM formulation for single–phase solid mechanics problems

3.1.2 Constitutive equation

The constitutive equation is the description of the material characteristics based on its
internal constitution. In other words, it describes mathematically the relationships be-
tween strains and stresses to permit the formulation of well–posed problems of contin-
uum mechanics. The constitutive equation idealises material response that serves as a
model of the behaviour of real materials. Materials often behave differently for different
loading conditions. Therefore, the constitutive equation would describe certain particu-
lar behaviour of a material instead of describing the material itself.

The principle of material objectivity or material frame indifference states that the material
response is independent of the observer. Strictly speaking the constitutive model should
be written taking into account an objective frame of reference [123]. As the time evolves
for a body under deformation, difference between the reference and deformed config-
uration might take place, which can be neglected if small deformation is concerned. In
case of finite deformation, however, the non–linear problem can be linearised over small
incremental deformation. A general elastic constitutive equation can be constructed in
the form

◦

σ= f (ε̇) , (3.6)

where
◦

σ is an objective stress rate tensor, and f is the constitutive equation. The Cauchy
stress σ is symmetric and objective, however, its material time derivative can be proven
to be not objective. Different forms of objective stress rate can be found in continuum
mechanics [18, 47, 123]. For instance, the Jaumann co–rotational stress rate can be corre-
lated to the Cauchy stress rate via

◦

σij= σ̇ij − ωik σkj + σik ωkj (3.7)

with ωij being the spin tensor defined as

ωij =
1

2

(

∂vi
∂xj

− ∂vj
∂xi

)

. (3.8)

Hill [76] advances Equation 3.7 by introducing the volume change effect. The Hill rate,

which is also called the co–rotational rate of Kirchhoff stress tensor
∇

σij , can be written in
the form

∇

σij= σ̇ij − ωik σkj + σik ωkj + ε̇kk σij , (3.9)

where ε̇kk is the spherical part of the strain rate tensor. The objective stress rate defini-
tion, Equation 3.7 or 3.9, is applicable now for the constitutive equation; i.e.,

∇

σij= Dijkl ε̇kl, (3.10)

in which Dijkl is the constitutive tensor.
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3.1 Basic concepts of continuum mechanics

3.1.3 Conservation equations

Conservation equations are based on balance principles that govern material behaviour
and independent of material properties. An overview of mass conservations, momen-
tum balance principles, and the balance of energy and entropy are presented here.

Conservation of mass Consider the case of closed system where no mass enters or
leaves the boundary Γ of the body Ω. The mass balance reads

∫

Ω

(

d̺

dt
+ ̺

∂vi
∂xi

)

dΩ = 0, (3.11)

where ̺ denotes the material mass density. Since the integral of Equation 3.11 vanishes
for arbitrary choice of Ω, it follows that the integrand mush vanish at each point of a
region in which no mass is created or destroyed [123].

Conservation of momentum The law of conserving linear momentum states that the
rate of change of linear momentum of a continuum body equals the external forces ap-
plied to it. External forces compose of body forces and surface forces. The body forces
act throughout the body and are formulated in terms of unit weight; e.g. gravity force,
whereas the surface forces act on the boundary and are presented in terms of unit area;
e.g. traction forces. By adopting these forces, the momentum equation is given by

d

dt

∫

Ω

̺ vi dΩ =

∫

Ω

̺ gi dΩ +

∫

Γt

ti dΓ, (3.12)

with gi being the gravitational force vector per unit mass and ti refereeing to the traction
vector exerted on the boundary Γt (Γt ⊂ Γ ). The material time derivative of the left hand
side of Equation 3.12 can be performed on the integrand with the aid of Equation 3.11.
Cauchy’s formula is adopted to establish a relationship between the traction vector and
the Cauchy stress tensor in the form

σij nj = ti, (3.13)

in which nj is the outward unit normal vector. Implementing the definition in Equation
3.13 and the divergence theorem to the last term of Equation 3.12 with rearrangement,
finally it reads

̺
dvi
dt

=
∂σij
∂xj

+ ̺ gi. (3.14)

Other considerations Likewise the linear momentum, angular momentum should be
conserved. Angular momentum conservation requires that the rate of change of angular
momentum of a body equals the sum of the moments applied by the external forces and
the distributed body couples. In the absence of distributed body couple, the conserva-
tion of angular momentum entail that the stress tensor σij is symmetric.

First thermodynamics law, or conservation of energy, must be satisfied as well. En-
ergy balance states that the rate of change of kinetic and internal energy of a body equals
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Chapter 3 Dynamic MPM formulation for single–phase solid mechanics problems

to the rate at which external mechanical work done by external forces plus the rate at
which thermal energy is added by heat flux and heat sources. In the class of problems
addresses in this thesis, the heat transfer problem is omitted.

Defining a constitutive law in Equation 3.9 for a specific material should satisfy the
entropy inequality. The entropy inequality, or the second law of thermodynamics, states
that the internal entropy production is always greater than or equal to zero, which can
mathematically expressed by the Clausius–Duhem inequality [123].

3.1.4 Boundary conditions

In order to have a well–posed problem, appropriate boundary conditions are required.
Two types of boundary conditions are typically applied. Prescribed displacement on Γu

and prescribed traction on Γt, with Γ = Γu ∪ Γt. For the displacement boundary condi-
tion, or so–called the essential boundary condition, we write

u (x, t) = ū (t) on Γu (t) , (3.15)

in which, ūi is a definitive value. The traction condition or the natural condition is given as

σ (x, t) · n = t̄ (t) on Γt (t) , (3.16)

where t̄ is the prescribed traction along the boundary Γt. Equation 3.16 can also be writ-
ten in the vector form instead of the tensor form as [204]

GT σ = t̄, (3.17)

with

GT =





n1 0 0 n2 0 n3

0 n2 0 n1 n3 0
0 0 n3 0 n2 n1



 (3.18)

in which n = [n1 n2 n3]
T are the direction cosines of the normal to the boundary Γ .

3.1.5 Principle of virtual work

Owing to difficulties in solving the differential equations, an integral form is more suit-
able to reduce the order of the equations. This implies that the underlying equations of
the problem are satisfied in an average sense. In order to derive the weak form equa-
tions, the principle of virtual displacements is adopted. An example of obtaining the
weak form of the momentum equation is obtained by multiplying Equation 3.14 by a test
function and integrate over the spatial domain. As the test function is chosen arbitrarily,
it can be virtual displacement δu, which yields the principle of virtual work. On the other
hand, selecting virtual velocity δv follows the principle of virtual power [18]. Choosing the
type of virtual work depends ultimately on the primary field variable being discretised.
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3.2 FEM discretisations

This variation is understood to be an arbitrary, infinitesimally small virtual increment,
which is imposed upon the system at a fixed time and in a fixed position.

Although the virtual function is selected to be random, however, the solution function
u and the test function δu should be in the same space [202]. In other words, the test
function should satisfy the homogeneous boundary condition; i.e., the essential bound-
ary conditions represented by Equation 3.15. Whereas it need not conform the natural
boundary where traction is prescribed. Moreover, the function δu should be sufficiently
regular, which implies that the divergence theorem is applicable.

Remembering that the divergence theorem states that the outward flux of a vector field
through a closed boundary equals to the integral of the divergence over the region en-
closed by that boundary, which mathematically reads

∫

Ω

∂σij
∂xj

dΩ =

∫

Γ

σij nj dΓ, (3.19)

with Γ is the boundary of the domainΩ. Applying the principle of virtual work to Equa-
tion 3.14 and integrating the high–order derivatives by parts, with the aid of Equations
3.19 and 3.13, yields

∫

Ω

δui ̺
dvi
dt

dΩ =

∫

Ω

δui ̺ gi dΩ −
∫

Ω

∂ (δui)

∂xj
σij dΩ +

∫

Γt

δui ti dΓ, (3.20)

where the last term is a boundary term appears as a result of integration by part. The
weak form in the last equation is equivalent to the strong form in Equation 3.14. How-
ever, moving the differentiation from the primary variable to a virtual variable allows us
to define stresses on boundary, which is quite useful in the finite element formulation.

3.2 FEM discretisations

A brief overview for the discretisation of the weak form equation into algebraic form
using the finite element procedure is presented in this section. Before this, we rewrite
Equation 3.14 for a three–dimensional spatial coordinate system x1, x2, x3 in a compact
matrix format such that

̺a = LT σ + ̺ g, (3.21)

where a (x, t) is the acceleration, and the linear differential operator L is

LT =

















∂

∂x1
0 0

∂

∂x2
0

∂

∂x3

0
∂

∂x2
0

∂

∂x1

∂

∂x3
0

0 0
∂

∂x3
0

∂

∂x2

∂

∂x1

















, (3.22)
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Chapter 3 Dynamic MPM formulation for single–phase solid mechanics problems

which is also used in the kinematics equation as

ε̇ (x, t) = L (x) v (t) . (3.23)

Similarly, the weak form in Equation 3.20 can be written in the matrix form

∫

Ω

̺ δvT a dΩ =

∫

Ω

̺ δvT g dΩ −
∫

Ω

(L δv)T σ dΩ +

∫

Γt

δvT t dΓ. (3.24)

3.2.1 Spatial discretisation

The aim of the finite element method is to solve a system of differential equations over a
spatial domain. Therefore, the continuum domain is approximated into subdomains, or
finite elements, where the continuous equation is approximated for discrete values. The
approximated function is then interpolated via shape functions inside all elements, which
are linked together via the grid nodes. The mathematical representation of such discreti-
sation is represented by

Ω =
nel
⋃

i=1

Ωi ∀ Ωi ∩Ωj = 0 : i 6= j, (3.25)

where Ω is the spatial domain being discretised into nel elements, and Ωi is the domain
of element i. The location of any point inside an element is interpolated with the aid of
the shape functions as

x = N x̃, (3.26)

with x being the interpolated position inside the element, x̃ is the location of the element
nodes, and N is the shape function matrix given for four–noded tetrahedral elements by

N (x) =
[

N1 (x) N2 (x) N3 (x) N4 (x)
]

, (3.27)

where Ni is a linear interpolation function in the case of the adopted element type as
given in Appendix A. Usually, the interpolation functions are polynomials expressed in
terms of the parent coordinates ξ1, ξ2, ξ3. The role for the parent coordinates will be demon-
strated in the course of this section.

Similar to the position vector, the deformation can be interpolated across the element
span using an interpolation function. This type of interpolating deformation is called
isoparametric interpolation when the same functions are used for deformation as for loca-
tion, which means

u (x, t) ≈ N (x) ũ (t) , (3.28)

with ũ being the nodal approximation of the displacement. Impeding the approximated
velocity definition in the kinematic equation 3.23 gives

ε̇ (x, t) ≈ B (x) ṽ (x, t) , (3.29)
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3.2 FEM discretisations

where B = LN is the strain–displacement matrix . The dimensions of the B matrix are
defined by the number of constitutive variables in rows and the number of degrees of
freedom per element in column, which then becomes (6× 12) in the case of the four–
noded tetrahedral element, which is used in this thesis. As the interpolation is linear
when using low–order element, the spatial gradients across the element are constant.
Therefore, all components of the B matrix are constant, which implies that strain–rate
prediction, and accordingly the stress–rate, is constant.

Next step in the finite element procedure is to sum the virtual power of all finite ele-
ments by recalling Equations 3.24 and 3.29, which yields

δṽT

nel
∑

e=1

(
∫

Ω

NT ̺N ã dΩ =

∫

Ω

̺NT g dΩ −
∫

Ω

BT σ dΩ +

∫

Γ

NT t dΓ

)

, (3.30)

in which ã is the approximated nodal acceleration vector and δṽT is the nodal discreti-
sation of the virtual velocity, which is not function of the spatial coordinates and can
therefore be brought outside the integral. One has to recognise we are making use of
the thermodynamic property that the mass matrix of the system is the assembly of all
elements, as well as the displacement and velocity at the elements boundary both are
being continuous. Therefore, we construct the equations here for one element and the
extension for the global system must include the aforementioned note. As Equation 3.30
holds for arbitrary virtual velocity, therefore, it arrives at the traditional form of the finite
element system of equations

M c ã = F ext − F int, (3.31)

with

M c =

∫

Ω

NT ̺N dΩ,

F ext =

∫

Ω

̺NT g dΩ +

∫

Γ

NT t dΓ,

F int =

∫

Ω

BT σ dΩ,

where M c is the consistent mass matrix, and the unknown vector ã contains the un-
known variable of the entire discretised domain, with F ext and F int being the external
and internal force vectors, respectively. In Equation 3.31, the external forces are com-
posed of body force and the traction force. Although the latter is an assemblage of all
boundary elements, only exterior boundaries are considered.

Performing the integration of Equation 3.31 along global coordinate system is quite
challenging even though numerical integration is applied. Therefore, it is more com-
mon in finite element to transfer the geometry of the element from x1, x2, x3 coordinate
system into parent element system ξ1, ξ2, ξ3. As the selection of the parent coordinate is
arbitrary, a unit linear tetrahedron is usually chosen to be the reference element. Func-
tions and their derivatives that appear in Equation 3.31 are mapped from global to parent

29



Chapter 3 Dynamic MPM formulation for single–phase solid mechanics problems

coordinate system using the Jacobian matrix. More details about the mapping procedure
can be found in Appendix A. Hence, all matrices in Equation 3.31 can be expressed in
parent coordinate system; e.g., the internal force vector becomes

F int =
nel
∑

e=1

∫ 1

ξ1=0

∫ 1

ξ2=0

∫ 1

ξ3=0

|J |BT σ dξ1dξ2dξ3, (3.32)

where |J | is the determinant of the Jacobian matrix defined in Appendix A. Numerical
integration can now be applied in Equation 3.32 easily in the form

F int =
nel
∑

e=1

nit
∑

i=1

|Ji|BT
i σiwi, (3.33)

with wi denoting the integration weight factor of the integration point i where all vari-
ables of the integrand are evaluated, and nit is the total number of integration points
inside the element. To ensure highest accuracy and efficiency for the integration, more
often such integration point is located at the Gaussian quadrature point.

3.2.2 Time discretisation

The system of algebraic equations given in Equation 3.31 is called the semi–discretised
equation as yet not discretised in time. For this purpose, explicit or implicit time integra-
tion schemes can be adopted. In the explicit scheme, the sought solution obtained at
the end of the computational time step is completely based on known information at
the beginning of this step. Explicit integration is computationally cheap as the system
matrices are known initially without need for inversion. As a consequence of formu-
lating the differential equation in terms of information of the old time step, no solution
can be obtained when the limit of the time step size approaches infinity. Hence, the
explicit integration is conditionally stable meaning that the time step size is restricted to
ensure stability. On the other hand, the updated solution with the implicit scheme cou-
ples some or all quantities evaluated at the end of the computational step and therefore
no stability restriction of the time step size is needed, which is known as unconditionally
stable. Adopting this method, the solution is advanced by inverting matrices or an itera-
tion process, for relatively large time steps.

Decision of using implicit or explicit integration scheme depends mainly on the type of
problem aimed to solve and the degree of accuracy. Care should be taken when explicit
scheme is adopted that the accumulation of the rounding error might drift the numer-
ical solution away from the correct one. Applying implicit approximation reduces this
error, which then should be valuable as compared to the computational demands. For a
non–linear static problem, the iteration through a sequence of computational steps helps
to converge toward the final state solution. For such a type of applications, the implicit
scheme is quite attractive to obtain the finial solution with smaller number of steps than
if explicit dynamic is used. An extensive talk on explicit and implicit time integration
schemes can be found in; e.g., [84, 202].
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3.2 FEM discretisations

In this work, only explicit time integration is considered. Owing to the advantage of
using explicit scheme is being computationally efficient, the mass matrix must be di-
agonalised, or lumped. Lumping the consistent mass matrix will remove the coupling
between the algebraic equations, which makes the solution of the momentum equa-
tion easy. Numerous techniques of lumping can be found in literature; see for example
[18, 84]. The essential requirement in all these methods can mathematically expressed by

∑

i

Mii =

∫

Ω

̺ dΩ, (3.34)

where Mii is the diagonal for a component of the lumped mass matrix M . The lumping
procedure for linear interpolation elements is straight forward, however, the accuracy
with higher order elements is questionable. In this regards, Hinton et al. [77] proved the
accuracy of obtaining lumped mass matrix by scaling the diagonal terms of the consis-
tent one with the satisfactory of Equation 3.34. By the same token of preserving accu-
racy of lumping high–order elements, Fried and Malkus [61] used the sampling points
at nodes instead of the Gauss quadrature, which allows the off–diagonal terms in the
mass matrix to vanish. Such integration by locating the sampling points at the nodes is
applicable in the case of structural elements like beams and plates where the Newton–
Cotes integration rule might be used. Loosing accuracy is possible not only with the
high–order elements where the lumping is not unique, however, low–order element also
loss some accuracy, which is not comparable to the advantage of using it [201]. For the
four–noded tetrahedral element being adopted in this research, however, using any of
the lumping procedure gives the following

M =
nel
∑

e=1

nit
∑

i=1

|Ji| ̺i N (xi) wi, (3.35)

where M is a vector written in matrix form denotes the lumped mass. It can proven that
the components of M in Equation 3.35 is the same as the summation of the correspond-
ing rows of the consistent mass matrix. The inverse of the lumped mass matrix can be
obtained directly and therefore Equation 3.31 can be rewritten in the form

ãn = [Mn]−1 (
F ext − F int

)n
, (3.36)

with the superscript n being a time step counter. Getting the nodal acceleration from
Equation 3.36, the grid velocity is obtained explicitly as

ṽn+1 = ṽn +∆t ãn, (3.37)

where ∆t denotes the time increment, ṽn and ṽn+1 are the nodal velocity vectors at the
beginning and the end of the time step, respectively. Finally, the increment of nodal dis-
placement is used to update the grid implicitly via

ũn+1 = ũn +∆t ṽn+1, (3.38)

in which ũ is the nodal displacement vector.
Since the material might be history dependent, the internal variables must be updated
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as well as kinematics quantities; i.e.,

σn+1 = σn +

∫ t+∆t

t

σ̇ (σ, ε, ε̇, · · · ) dt, (3.39)

where the last term is obtained by integrating the constitutive equation, Equation 3.10.
The incremental strain tensor ∆εi for an integration point i is obtained from

∆εn+1
i = ∆tBn+1

i ṽn+1
e , (3.40)

where the subscript e indicates the element where the integration point i is located. As
the mass of the material point is kept constant during the calculation, the density of
the material is implicitly updated since the volume of the integration point is updated
through

wn+1
i = wn

i (1 + ∆εv,i) , (3.41)

in which, ∆εv,i is the volumetric strain increment of the integration point i. This lineari-
sation is reasonable given the small time steps that are taken when using an explicit time
marching scheme.

As mentioned earlier, the explicit integration has limited time step size. Therefore, in
order to get stable solution, the maximum time step size of the explicit finite difference
scheme is bounded with [16, 18]

∆tcrt =
2

ωmax

, (3.42)

where ∆tcrt is the critical time step, and ωmax is the maximum frequency of the system.
For the purpose of getting maximum frequency, an eigenvalue analysis should be car-
ried by solving

‖K − ω2
maxM‖ = 0, (3.43)

in which K is the stiffness matrix of the system. Since the stiffness matrix is not con-
structed during the explicit procedure, Equation 3.43 is applied on element level rather
than on the entire system. The Courant–Friedrichs–Lewy (CFL) stability condition [41] is
often considered, which has been detailed in finite element books [16, 84]. This condition
replaces Equation 3.43 by the form

∆tcrt =
lc
cp
, (3.44)

with lc being the characteristics length of the element, and cp is the compression wave
speed computed from

cp =

√

Ec

̺
, (3.45)

where Ec is the constraint elastic modulus and ̺ is the material mass density. The char-
acteristic length lc conducted in this study as the minimum height of the tetrahedral
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3.3 Dynamic MPM representation

element [2]. However, there are some ways of defining lc for the tetrahedral element;
e.g., as triple the tetrahedral element divided by the maximum triangular area [136].

The minimum time step presented in Equation 3.44 is in fact to ensure stability of the
explicit scheme only. To achieve accuracy in the time integration of the system in Equa-
tion 3.31 and the constitutive law, Equation 3.39, smaller time should be considered.
Therefore, Equation 3.44 is multiplied with α, 0 < α < 1, which is a factor introduced to
improve stability and accuracy of the explicit algorithm. The reader is referred to more
specific references where the constitutive equation development is the focus of interest,
see for example [163, 183, 200].

3.3 Dynamic MPM representation

The material point method (MPM) is a numerical technique for solving continuum prob-
lems in fluid and solid mechanics. MPM has its origin from the particle in cell (PIC) for
fluid mechanics in the fifties, thereafter, it became more applicable in dynamics of his-
tory dependent materials in the nineties, as reviewed in Chapter 2. The concepts of the
method is based on combining the advantages of Eulerian and Lagrangian methods to
deal with the problems of large displacements and deformations.

In MPM, the computational domain is discretised using two type of discretisations.
First, the Lagrangian discretisation where the continuum body is represented by mate-
rial points, or particles, which are tracked during the computation. To solve the mo-
mentum equation, the computational mesh is introduced as a second discretisation that
provides a convenient means of calculating discrete derivatives and carrying out inte-
gration. Whereas for FEM, the material points are tied tightly to the elements, for MPM
the material points are allowed to move from one element to another in Eulerian fashion
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Figure 3.2: Continuum body (left) discretised with MPM (right)
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such that the state properties remain with the material points. Care should be taken here
to make a clear distinction between pure Eulerian process, where the total derivative of
local and convective components is applied, while the latter does not exist within the
MPM framework. Giving that the movement of the Lagrangian material points through
the computational cell is traced, the convection of the material is resembled naturally.
Illustration of MPM discretisations for a continuum body is shown in Figure 3.2.

In this thesis we follow the original MPM formulation [166, 169], in which a body is
defined in terms of material points. In other words, the properties and state variables
such as stress and momentum are collocated at the material points. Other description for
the descretisation; e.g. GIMP and CPDI where the material points domains are spatially
extended, which is not considered in this research. Chapter 2 of this thesis provides the
concepts of these methods, while more details can be found in [12, 151, 198] and the ref-
erences mentioned therein.

3.3.1 MPM discretisation

Following the original MPM description, the continuum body Ω shown in Figure 3.2 is
discretised into subdomains, where the mass of the subdomain w is concentrated at the
location xp of the material point p such that

̺ (x) =

np
∑

p=1

mp δ (x− xp) , (3.46)

in which mp is the mass of the material point p, np is the number of material points, and
the Dirac delta function δ is defined by

δ (x− xp) =

{

0, x 6= xp

+∞, x = xp
with

∫ +∞

−∞

δ (x− xp) dx = 1, (3.47)

where Equation 3.46 is not applicable to the boundary particles, see Figure 3.2, as these
particles represent the boundary Γ . The concept of performing integration at material
concentration point in MPM is similar to FEM, except that the material points are able to
move within the computation and therefore not to be surely at the Gaussian point. The
discretised system, Equation 3.31, can be written in terms of material points as

M ã = F ext − F int, (3.48)

in which, the associated changes to the FE description are considered next.

3.3.1.1 Mass matrix

Within the MPM procedure, mapping of information is taking place between the two dis-
cretisation configurations presented earlier. Burgess et al. [36] had shown that mapping
of data between particles and the nodes implies that the kinetic energy and momentum
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are conserved. Furthermore, diagonalising the mass matrix by lumping causes a dissi-
pation in the kinetic energy with the order of magnitude (∆t)2 [169], which compensate
the cost of inverting this matrix in explicit procedure. The kinetic energy amount being
dissipated is evaluated for history dependent and independent materials [30, 31, 168].

Considering that the MPM particles might change elements during the computation,
the mass matrix changes accordingly. Each diagonal entry of the lumped mass matrix is
obtained from the corresponding row sum of the consistent one. Alternatively, the mass
(mi) associated to node i referring to the element level can be expressed as

mi =

np
∑

p=1

mpNi (xp) , (3.49)

where np is the number of material points and mp is the mass of material point p. The
variable xp indicates the location where the shape function Ni is evaluated. The shape
function acts as a weighting function to correctly distribute the mass among the nodes.

3.3.1.2 External forces

The external forces contain traction applied at the exterior boundary of the region and
body forces. The body forces in this research contains the gravitational force only. Both
forces, traction and gravitational, are defined so far in terms of fixed number of grid
vertices in the FE framework. In MPM, however, the size of the equations of motion is
varying during the computation as the particles change elements. Hence, the external
forces should be represented on the particles, which represents the Lagrangian body.

Body force The body force, which is represented as a unit force per unit volume or
mass, is assigned to the material points. After initialising the mass of the material points
from Equation 3.46, the gravitational force is initialised at the material points via

f grv
p = mp g, (3.50)

with f grv
p being the gravitational force vector carried by the particle p. As the discretised

form of the governing equations given in Equation 3.48 is performed in terms of the
computational mesh, the gravitational force in Equation 3.50 should be transferred from
the material points to the grid nodes at the beginning of each time step. The transferring
of this force is weighted by the interpolation function as

F grv =

np
∑

p=1

NT (ξp) f
grv
p , (3.51)

where F grv is the gravitational nodal force defined for the entire mesh.

Traction force In MPM with small deformations, the load can be applied directly at
the boundary grid nodes with no distinction from FE, whereas this treatment for the
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traction boundary is not applicable if large deformations exist. Therefore, it is more con-
venient to follow the motion of the deformed body in a Lagrangian manner by applying
the traction force on the material points.

At the beginning of the computation, the external load can be directly assigned to
the material points, or alternatively, mapped from the computational grid nodes. Ac-
tual boundary should be tracked each time step by mapping information back and forth
between the particles and the mesh [2, 198]. This procedure has been extended in the
present thesis by introducing surface discretisation wrapping the Lagrangian body, see
Appendix B. As the coarseness of this surface is not related to the MPM discretisation,
it can be selected reasonably fine to improve the traction mapping instead of the first
row of particles [2]. In this way, the surface orientation can be tracked easily, which be-
comes important in the case of large surface deformation. Furthermore on the purpose
of defining this surface that the local normal vector can be detected easily by tracking
this surface during the calculation as will be demonstrated later.

Let us assume an irregular mesh discretisation, as described in Appendix B, and
the traction load is properly integrated and discretised at the preprocessing stage on
the boundary nodes. Therefore, we start by giving the surface traction as nodal force t̃,
which then is mapped to the boundary points as illustrated in Figure 3.3 and given by

f trc
b =

nt
∑

i=1

Ni (ξb) t̃ (xi, t)
Γb

Γi

, (3.52)

where f trc
b is the surface traction force associated to the boundary particle b, Ni is the in-

terpolation function of node i on the triangular face, with nt being the number of nodes
per face, which is reduced to 3 in the case of the 4–noded tetrahedral element. Equation
3.52 clearly indicates that the surface traction force is weighted by the corresponding
surface area of the boundary particle Γb and the area being represented at node Γi. As
the particle b is overlain on the surface, the interpolation function N of the tetrahedral el-

Γb

nodal corresponding area

triangular face computational nodeparticle

boundary particle

t̃i

i

Γi

f trc
b

Figure 3.3: Mapping surface load from nodes to the boundary particles
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ement is reduced to the surface triangular interpolation function. Taking the advantage
of introducing the boundary particles to present an alternative to Equation 3.52, where
the surface traction force can be obtained directly on the material points without the aid
of the computational mesh as

f trc
b = t (ξb, t) Γb, (3.53)

in which, the continuous traction t is approximated in a stepwise manner over the par-
ticle domain for a fairly fine surface discretisation. Similar to Equation 3.51, the traction
force can be mapped to the computational discretisation using the shape function eval-
uated at the boundary material point, in the form

F trc =

nb
∑

b=1

NT (ξb) f
trc
b , (3.54)

where F trc denotes the traction nodal force vector, and nb is the number of boundary
particles where the traction is applied.

3.3.2 MPM solution process

The MPM calculation cycle goes through three phases: initialisation where information
is transferred from the material points to the computational grid nodes; Lagrangian
phase that parallels a finite element calculation; and a convection phase where the lo-
cation of particles is updated [40, 169, 189].

3.3.2.1 Initialisation phase

In spite of defining two discretisations in the framework of MPM solution procedure,
however, the solution of the momentum equation is performed in a Lagrangian manner.
Therefore, Equation 3.48 is expressed in terms of the computational nodes by transform-
ing information from the material points to the nodes. For this purpose, Equation 3.35
is recalled to get the lumped mass matrix, whereas the internal force is obtained from
Equation 3.33. We keep in mind that the external force is the combination of the gravity
force and the traction force formulated in Equations 3.51 and 3.54, respectively. Within
the initialisation phase of the MPM solution cycle, the initial velocity of the grid nodes
at the beginning of the time step is obtained by solving the following equation system

Mn vn =

np
∑

p=1

mp N
T
(

ξnp
)

vn
p , (3.55)

where v and vp are the velocity evaluated at the grid nodes and the material points, re-
spectively, with n being a time step counter. Equation 3.55 follows from the least square
method in which the masses of material points play a role of weights [169].
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3.3.2.2 Lagrangian phase

After initialising data at nodes, the solution of the discrete momentum equation becomes

an = (Mn)−1 (
F ext − F int

)n
, (3.56)

where an denotes the acceleration vector at the beginning of the time step, which then is
exploited to update the velocity of the material points as

vn+1
p = vn

p +∆t
nn
∑

i=1

Ni(ξ
n
p )a

n
i , (3.57)

where nn is the total number of nodes. In a similar fashion to Equation 3.55, the veloc-
ity field across the mesh is obtained via mapping the particles momentum to the nodes as

Mn vn+1 =

np
∑

p=1

mp N
T
(

ξnp
)

vn+1
p . (3.58)

Giving the nodal velocity at the end of the time step in Equation 3.58, the incremental
nodal displacement ∆un+1 is achieved as described in the Lagrangian FEM formulation
in Section 3.2 implicitly using

∆un+1 = ∆tvn+1, (3.59)

where ∆t denotes the time step size. Equation 3.59 is then employed to get the strain
increment and the material evolution through the constitutive equation and finally con-
tribute to the calculation of internal force in the next time step. Simultaneously, the
material points are advanced for new positions as a last step in the Lagrangian phase,

xn+1
p = xn

p +∆t
nn
∑

i=1

Ni(ξ
n
p )v

n+1
i , (3.60)

where xn
p and xn+1

p are the position of the material point p at the beginning and the end
of the time step, respectively. It can be clearly noticed that the present MPM procedure
is slightly different from the Lagrangian procedure mentioned in Section 3.2 by using
the momentum instead of the velocity when information is mapped from the material
points to the computational mesh [164]. The advantage of adopting the momentum for-
mulation scheme can be recognised when a material point crosses the element boundary
to an empty element. Therefore, the interpolation function to the other side of the empty
element being evaluated at the material point location will have very small value, and
eventually very small mass, which leads to unphysical large acceleration at the outer el-
ement edge. In the case of momentum formulation, however, the division by nodal mass
is avoided and therefore the small mass problem is eliminated. In other words, the mass
matrix lumping in this procedure improves the robustness of the MPM by smoothening
the acceleration to update the nodal velocity [169].
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3.3.2.3 Convection phase

Up to now, the position of material points is advanced in time and the internal variables
are updated. Within the convective phase, the material points are kept fixed [164] and
new mesh discretisation can be introduced [31, 168], or to use the same existing mesh by
resetting it back to the undeformed configuration. Although using one mesh discretisa-
tion is more convenient, adaptive mesh can be introduced to solve the sharp deformation
gradient in the evolving solution and the interface [40]. For example, particles can split
into smaller particles when the determinant of the deformation tensor exceed certain
tolerance [150]. While increasing the number of material points for the same discretisa-
tion improves the instability of the grid crossing problem, refining the grid is essential to
improve the accuracy of the gradient evaluation. Therefore, Tan and Nairn [172] intro-
duced a hierarchical elements that automatically refine into smaller elements and more
material points in regions of high gradients.

3.3.3 Initial and boundary conditions in MPM

As the solution of the discretised momentum equation in MPM is performed for the
computational mesh, the boundary conditions should be enforced at the mesh nodes,
which might be varying during the computation. The weak formulation is built in a
way that the virtual velocity is kinematically admissible. In other words, it satisfies the
essential boundary condition where the velocity is prescribed. In contrast to the essential
boundary conditions, the natural boundary condition should be carried by particles. As-
signing surface traction to the boundary particles leads to spreading these forces across
one element thickness that can be improved by refining the mesh, or moving the bound-
ary surface where the traction is applied [21].

In the following, the treatment of the initial and boundary conditions is explained in
the context of MPM. More elaboration has been given to the prescribed velocity condi-
tion, which is implemented in the problem of dropping geocontainer in Chapter 6. Fur-
thermore, frictional contact boundary condition can be resembled by a traction boundary
condition. Finally, the silent boundary boundary is reviewed in the framework of MPM
when the infinite domain is truncated at the computational domain boundary, therefore,
the effect of the reflected waves off the rigid boundary are eliminated or reduced.

3.3.3.1 Initial condition

For the initial boundary value problem, initial condition need to be defined for the en-
tire domain. In Lagrangian FEM, initial kinematic and stress fields are prescribed at the
grid nodes and the integration points, respectively. Moreover for constitutive equations
initialisation with initial values of the internal variables in terms of which they evolve
in time must be given. Similar treatment can be adopted in MPM at the beginning of
the computation when the material points are initialised inside the mesh, except that the
nodal velocity is obtained from Equation 3.55. In addition to initialising velocity and
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stresses, external forces should be assigned at the material points as well.
For some cases where the quasi–static solution is sought using the dynamic formula-

tion, local damping is introduced to facilitate dissipating the kinetic energy. Different
damping factor can be given for different materials, or for the same material with differ-
ent loading condition. In contrast to the material damping, which is initialised with the
material parameters, the local damping is artificial and should be updated at the begin-
ning of each load step.

3.3.3.2 Prescribed kinematic condition

The prescribed displacement, or prescribed velocity in the dynamic analysis, is to define
the kinematic constraint for part of the boundary as given in Equation 3.15. Constraining
the movement of the node can be alternated by applying a reaction force and momen-
tum in the direction of the constraint with respect to a local coordinate system.

In MPM, the easier case would be if the node is constraint with zero value or free to
move, which then no specific treatment for the boundary is needed comparing to FEM.
In the case of non–zero prescribed value, however, the active boundary nodes should
be tracked. Tracking the active boundary is not trivial especially for more than one–
dimensional problems, where the concept of moving mesh has limitation [2, 21].

In this thesis, the non–zero kinematic condition is developed as shown in Figure 3.4
where additional set of particles is introduced. The task of these particle is to resemble
the moving boundary by carrying the time–dependent boundary evolution. At the be-
ginning of the time step, the velocity v̄p (xp, t) of the prescribed particle p is assigned. Next,
the prescribed velocity should be mapped from the prescribed particles to the computa-
tional nodes, where the discrete equations are solved. Nodes belonging to the elements
where the prescribed particles are located are then tagged to be boundary nodes. Indeed,
the thickness of the boundary now becomes of one computational element, which we
will try to improve when the prescribed velocity is transferred to the boundary nodes.
The prescribed values can be assigned directly at the boundary nodes. As an alternative,
a weighted mapping procedure can be used, which is more consistent with the princi-

prescribed particle

prescribed velocitysoil particle

computational node

wp

v̄p

v̄i

eI
eII

Figure 3.4: Prescribed velocity in MPM with the prescribed particles
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ples of MPM. In which, the velocity of the boundary nodes is obtained from

v̄i =

∑

p

Ni (ξp) wp v̄p

∑

p

Ni (ξp) wp

, (3.61)

where v̄i is the prescribed velocity of node i, Ni (xp) is the shape function of node i be-
ing evaluated at the location of the material point p, wp is a mass or volume dependent
property of the prescribed particle p, whereas the summations in this equation run over
the number of prescribed particles. According to the location of the boundary particles,
the number of the boundary nodes is updated consequently as well as their values from
Equation 3.61. Knowing these information at hand allow us to apply Equation 3.55 eas-
ily after considering the prescribed velocity condition.

Following the present formulation of defining the prescribed velocity in MPM, one
should expect that the accuracy of defining the boundary is within the order of one ele-
ment thickness. For example, the triangular element eI in Figure 3.4 has all its nodes
recognised as boundary nodes having different values depending on the location of
the prescribed particles inside. Therefore, the deformation of this element might not be
properly reproduced and consequently some stress oscillation might be detected along
this layer. On the other hand, the next element eII should produce more physical de-
formation. This fact is demonstrated better in the geocontainer releasing problem in
Chapter 6 where an oscillation of stresses next to the prescribed rigid barge has been
shown. Of course, refining the mesh reduces the thickness of this layer.

3.3.3.3 Traction condition

As mentioned earlier, surface discretisation is proposed in this research as boundary
particles to refine the description of the solid boundary particle [2, 37]. The concept of
moving the mesh for time–independent problem [21] is extended for dynamic problems
[2], in which part of the computational mesh follows the velocity of the body, while the
rest of the mesh either is being compressed or stretched. Therefore, a precise descrip-
tion for the surface traction always exists. However, aligning the discretisation of a body
for certain velocity is valid for hardly deformable body only when it is moving in one–
direction. Even though giving different velocities for different parts of the deformable
body is plausible, whereas it is not efficient and practical for some applications.

3.3.3.4 Frictional boundary

In the kinematic constraint condition, the body is assumed to follow the boundary sur-
face without possibility of relative tangential movement. If relative movement is al-
lowed, frictional forces will be developed, which can be evaluated for example with
Coulomb friction law as demonstrated in Figure 3.5. The interpretation of this figure
that the bodies in contact are sticking to each other and the tangential forces are directly
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relative velocity

frictional force (ff )

µ ‖fn‖

-µ ‖fn‖

µ : friction coefficient

fn : normal force
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Figure 3.5: Coulomb frictional force of a dry friction

proportional to the normal force. The friction coefficient (µ) is the constant of proportion-
ality, which depends on the surface type. More common is to define this coefficient in
terms of the friction angle (φ) is such that µ = tanφ. Up to a limit condition, the sticking
or also called static contact is valid. While exceeding this condition is not allowed, slid-
ing between the surfaces will take place. Empirically, the frictional coefficient got higher
values during sticking than those in slipping, or the dynamic contact. Due to the relative
movement of the body along boundary, part of the kinetic energy will be dissipated as
thermal energy. The non–linearity of the frictional boundary condition can be linearised
in a step–wise manner during the explicit numerical scheme. For this purpose, the MPM
contact algorithm introduced by Bardenhagen et al. [14] is employed in this thesis and
will be reviewed shortly in later section.

3.3.3.5 Silent boundary

When semi–infinite problem is modelled in finite domain analysis, the boundary condi-
tions should be able to absorb the outgoing wave, which resembles the real case. The
principle of infinite element [201] and the viscous boundary [117], which have long tra-
dition in finite element literature can be applied. The latter introduces dashpots in the
vertical and horizontal directions of the rigid boundary to reduce the effect of primary
and secondary waves, respectively. This element is introduced to MPM in the case of
fluid model, where the primary wave is dominant [62] or even for the solid materials
where shear wave must be suppressed as well [2]. The stresses obtained using viscous
boundary are treated as discrete traction applied at the boundary particles similarly to
the traction condition, for example the normal component of the surface traction related
to the normal dashpot is given as

tvbp = −f vb ̺ vp

√

E (1− ν)

̺ (1 + ν) (1− 2ν)
, (3.62)

where tvbp is the normal traction assigned to particle p in the normal direction to the
boundary, f vb is a unitless parameter, vp is the velocity of p, with ̺, E, and ν being the
mass density, elastic modulus, and Poisson’s ratio of the considered material, respec-
tively.

42



3.4 Enhancement and extension of the MPM

3.4 Enhancement and extension of the MPM

MPM is becoming more and more attractive for different engineering applications where
large deformations exist. Hence, enclosing the improvement and development of the
method in one section is not practical. Thus, the objective of this section is to illustrate
the mathematical background of some algorithms being adopted in this research upon
the need. For instance, a dynamic relaxation procedure by adding artificial damping is
essential to obtain gravity stresses. There might be more one procedure available in lit-
erature as given next or in Chapter 2 of this thesis, however, the focus here will be on
using one method.

3.4.1 Mitigation of the volumetric locking

When linear shape functions are integrated in displacement finite elements formulation,
a volumetric locking is expected to appear due to the insufficient representation of an iso-
choric displacement field [18]. Therefore, the material tends to show non–physical stiff-
ness against deformation when it has high bulk modulus. Numerous methods were pre-
sented in the FE framework either based on introducing the volumetric strain as an in-
dependent field variable beside displacement [202, 203] or splitting the differential equa-
tion into deviatoric and isochoric parts and solve two equations separately [134, 205].

Due to its applicability in MPM [89, 90, 162], the nodal mixed discretisation (NMD) is
adopted in this research. The mixed discretisation in this method between deviatoric
and volumetric strain components is achieved via involving an assembly of elements to
satisfy the volumetric strain constraint while keeping the deviatoric components on the
element level intact. As a result, the smoothen volumetric part of the strain tensor allevi-
ates the locking problem. To begin with the mixed formulation involving the velocity v

and volumetric strain εv as independent field variables, the weak form in Equation 3.20
can be rewritten in the form

∫

Ω

̺ δv · dv
dt
dΩ =

∫

Γt

δv · t dΓ +

∫

Ω

̺ δv · g dΩ −
∫

Ω

δε̇ : (τ + δ σm) dΩ, (3.63)

where the stress tensor σ is decomposed into the deviatoric stress tensor τ and mean
stress σm with δ being the Kronecker delta. For an elastic material, it is assumed that the
mean stress rate σ̇m can be correlated to the volumetric strain rate ε̇v. Then, a weak form
of such a relationship reads

∫

Ω

δε̇v (σ̇m −Ks ε̇v) dΩ = 0, (3.64)

where δε̇v is the virtual volumetric strain rate, andKs the bulk modulus of solid material.
However, the mean stress rate in Equation 3.64 can be obtained from the interpolation
of the nodal values, such that

∫

Ω

δε̇v (ǫ̇v + ε̇v) dΩ = 0, (3.65)
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in which ǫ̇v is interpolated using the nodal discretisation of the volumetric strain rate
ǫ̇v and the interpolation function N ; i.e. ǫ̇v ≃ N ǫ̇v. It is important to mention that the
strain rate ε̇v in Equation 3.65 is computed using nodal velocities in a traditional proce-
dure. For an arbitrary δε̇v, Equation 3.65 reduces to

∫

Ω

NT (N ǫ̇v + ε̇v) dΩ = 0. (3.66)

Equation 3.66 provides a least squares fit for nodal volumetric strain rate. Therefore, the
smoothening in this approach is considered as an explicit version of the mixed discreti-
sation where the strains are defined as degrees of freedom beside velocities. Following
up on this idea, the strain rate tensor is modified in the following form

¯̇ε = ε̇− 1

3
ε̇vδ +

1

3
¯̇εvδ, (3.67)

where ¯̇εv is obtained for an element with nen nodes as

¯̇εv =
1

nen

nen
∑

i=1

¯̇εv,i with ¯̇εv,i =

∑

e

ε̇v,eΩe

∑

e

Ωe

, (3.68)

where ¯̇εv,i is the volumetric strain rate evaluated at the node i with e being an element
attached to this node. The NMD approach has been applied to strip footing problem us-
ing MPM where the analytical solution is available [2]. The bearing capacity of the soil
showed an improvement after using the volumetric strain enhancement. Furthermore,
the approach has been extended for two phase flow analysis successfully where a sea
dike under wave attack was analysed [90].

3.4.2 Artificial damping for quasi–static solution

When talking about dynamic oscillation, damping can be introduced to Equation 3.48
as the force that tends to reduce the amplitude of the oscillation by acting in opposite
direction to the motion; i.e.,

M ã = F ext − F int + F dmp, (3.69)

with F dmp being the damping force. In order to obtain the quasi–static solution, dynamic
relaxation process is adopted. Various types of problems in nonlinear structural analysis
have been reviewed by Underwood [176]. As one option, introducing viscous damping
based on the mass would be the best. However, solving the eigenvalue problem using
modal analysis non–linear problems to find the natural frequencies is demanding task
makes this option not practical. In the dynamic relaxation, an artificial damping is intro-
duced to converge the solution to the equilibrium state where the objective is to dissipate
energy without focusing on the dynamic response.

Using distinct element codes for geomechanical applications, two approaches are ap-
plied to get the static analyses [51]. The adaptive global damping is the first, in which the
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viscous damping forces are adjusted in such a way that the absorbed power is a con-
stant proportion of the rate of change of kinetic energy [43]. On the contrary, the local
non–viscous method [44], assumes that the damping force magnitude is not proportional
to the velocity but to the unbalanced force, while its direction is still taken contrary to
the velocity vector. Although both methods have shown the convergence to the same
quasi–static solution [44], experience has shown that the last damping scheme performs
very well in non–linear continuum and discrete softwares [51].

In the following MPM implementation, the local non–viscous damping has been ap-
plied such that the damping force in Equation 3.70 reads [88]

F dmp
i = −α |F ext

i − F int
i | sign (vi) , (3.70)

where α is the damping coefficient and sign (vi) is the sign of the velocity at node i de-
fined as vi/|vi|.

By setting up an artificial damping scheme, the solution eventually approach static
equilibrium state. The static equilibrium state might be a quasi–static case in the solid
problems or steady–state flow in the fluid dynamic. In both cases, a stopping criterion is
required to avoid the unnecessary computation. For this purpose, two criteria has been
considered in which the first is based on the velocity and the second on the unbalance
force; see for example [202]. Therefore, the velocity criterion checks that the velocity
field approaches zero in global sense, whereas the force criterion estimates how close
the solution is to the quasi–static one. To normalise both criteria, the velocity is replaced
with the kinetic energy, which is normalised with respect to the external work as [2]

Ev ≥
KE

W ext
, (3.71)

with

KE =
1

2

nn
∑

i=1

mi v
T
i vi

W ext = W ext
0 +∆uTF ext,

where Ev is the tolerance based on kinetic energy. On the other hand, the force criterion
is built such that [33]

Ef ≥ ‖F ext − F int‖
‖F ext‖ , (3.72)

in which, Ef is the tolerance based on forces. Although it has be experienced that the
kinetic energy criterion is satisfied faster than the force one, a value of 0.01 for both cri-
teria is assumed for all cases along this thesis where the quasi–static solution is obtained.

3.4.3 Frictional contact algorithm

In MPM formulation, the material points are relocated using the nodal information and
the interpolation functions for the computational domain, which are continuous be-
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tween elements. Therefore, a non–slip condition between particles/objects is enforced
with prevention of interpenetration. The existence of such a condition adds extra re-
sistance when a body is penetrating an object, for example. Furthermore, the no–slip
condition in MPM glues bodies in contact even though the are moving away from one
another. This fact is experienced in the early version of MPM with the underestima-
tion of the penetration depth of an elastic steel ball being thrown into aluminium target
[169]. Although the non–physical glue between the two objects exists when they share
one computational node, however, no evidence that refining the mesh will solve the
problem or at least smoothen it. Thus, developing a contact algorithm consistent with
the MPM theory is essential.

As a first improvement in the basic MPM algorithm in modelling two colliding bodies,
York et al. [192] introduced a criterion to check whether the bodies are approaching or
moving apart. Accordingly, the MPM algorithm applied only when they approach one
another, otherwise, separation is taking place and each one should consider its own ve-
locity field without sharing at the common nodes. In other words, the MPM procedure
is applied only when the following inequality is satisfied for both bodies, I and II , in
contact

(

ṽ
n+1,(I)
i − ṽ

n+1,(I+II )
i

)

· nn,(I)
i > 0, (3.73)

where n
n,(I)
i is the outward unit normal of body I at node i at the beginning of the time

step, with ṽ
(I )
i and ṽ

(I+II )
i being the velocity vector of body I alone and the combination

of both, respectively. The visual illustration of this formula is shown in Figure 3.6.
As an advancement of the simple approaching/separation algorithm, Bardenhagen

et al. [14] proposed an MPM algorithm, which allows sliding and rolling with friction.
The traction due to contact is incorporated into the discretised momentum equation as
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Figure 3.6: Correction procedure in the MPM contact algorithm [14]
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an external force, Equation 3.48, where the solution of this equation is performed sep-
arately for each body in contact. An extra solution for the combination of all bodies,
referred here as the system, is needed. Thus, one should expect to solve the equation of
motion as many times as the number of bodies in contact plus one. Solving this num-
ber of equation actually does not add a cumbersome computation as the solutions of
these equations are trivial. Getting the acceleration of the individual solution and con-
sequently the corresponding velocity fields at hand, the non–iterative algorithm detects
the contact points by comparing the nodal velocity of each body with the one of the
entire system. If a difference is detected, Equation 3.73 is applied to check whether the
bodies are approaching or separating from each other. Individual velocity fields are used
if separation is taking place with no change, otherwise, the interpenetration of objects is
precluded using the following correction

˜̃v
n+1,(I)
i · nn,(I)

i = ṽ
n+1,(I+II )
i · nn,(I)

i , (3.74)

with ˜̃v
n+1,(I)
i being the modified velocity of body I that is adjusted according to the nor-

mal component of the system solution. Equation 3.74 can be rewritten, involving Equa-
tion 3.73, in the form

˜̃v
n+1,(I)
i = ṽ

n+1,(I)
i −

[(

ṽ
n+1,(I)
i − ṽ

n+1,(I+II )
i

)

· nn,(I)
i

]

n
n,(I)
i , (3.75)

where the correction term can be interpreted as an external force applied at the interface
node such that

f
n+1,(I)
i,norm = −m

n,(I)
i

∆t

[(

ṽ
n+1,(I)
i − ṽ

n+1,(I+II )
i

)

· nn,(I)
i

]

n
n,(I)
i , (3.76)

in which f
(I)
i,norm is the force applied at body I in the normal direction to node i, and m

(I)
i

is the corresponding mass of node i obtained for body I . While the interpenetration of
objects is prevented at this stage, the frictional traction needs to be applied next. As-
suming that the two bodies are sticking to each other, the required force keeping them
together is obtained from the tangential component of the relative velocity that is illus-
trated as dashed line in Figure 3.6, which reads

f
n+1,(I)
i,stick = −m

n,(I)
i

∆t
n

n,(I)
i ×

[(

ṽ
n+1,(I)
i − ṽ

n+1,(I+II )
i

)

× n
n,(I)
i

]

, (3.77)

with f
(I)
i,stick is the tangential force required to hold the two bodies glued together. In or-

der to model frictional sliding properly, there should be a limit for the tangential forces;
e.g., by the Coulomb friction law as shown in Figure 3.5. Hence, the tangential forces is
bounded with Coulomb criterion as

f
(I)
i,tang =

f
(I)
i,stick

‖f (I)
i,stick‖

min
(

µ ‖f (I)
i,norm‖, ‖f

(I)
i,stick‖

)

, (3.78)

where f
(I)
i,tang is the tangential component of the frictional contact force, and µ is the fric-

tion coefficient. It is considered that all the forces in Equation 3.78 are obtained at the
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end of the time step.
The separation criterion formulated in Equation 3.73 assumes free separation of the

two bodies with no influence on each other, whereas it is more logic to have a gradual
separation. Therefore, Bardenhagen et al. [15] improved this algorithm by replacing the
velocity criterion with the normal traction criterion, which says that separation should
take place only if the normal traction is becoming tension. The modified algorithm is
found to be dissipating slightly more energy than the original one [13].

Another attempt to model the contact problem in the MPM framework was suggested
by Hu and Chen [81]. In their approach, the concept of velocity field is replaced with the
momentum by introducing multi–mesh environment, which is more harmonised with
the MPM basics and supposed to avoid the unphysical phenomena with Bardenhagen’s
algorithm. The method was able to simulate contact, sliding and separation of the gear
contact process where the normal component is computed in the common background
mesh while the tangentials are obtained on the corresponding individual mesh. Be-
cause the tangential velocities of different bodies are assumed independent, the method
was unable to simulate friction. An improved multi–mesh contact algorithm for three–
dimensional problem is proposed by employing the Bardenhagen’s velocity criteria to
detect the contacting nodes of different bodies whereas the normal and tangential veloc-
ities are obtained from the multi–mesh algorithm [190]. Considering this technique of
combing the two contact approaches, the collision of plastic spheres and the impact of
a Taylor bar are modelled [121, 190]. Similar concepts is also applied to model the drag
interaction between multi–phases material [122, 195].

In order to ensure the impenetrability condition between bodies, Huang et al. [83]
implemented the Lagrange multiplier form. Furthermore, they compared the impact
and penetration simulation with the velocity based algorithm, which shows more stable
solution than the first. It is clear from what aforementioned that the velocity contact
algorithm [14, 15] is robust and widely used in MPM community. One of the big short-
coming of this algorithm that the bodies in contact feel each other when they share one
computational node, or about two elements thickness. In the context of defining particle
domain [12, 151] instead of collocated mass at one point in which the contact is detected
when the this spatial domain intersect another element [198].

In the present work, as we have followed the original MPM implementation where
the density is represented via Equation 3.46, the improvement proposed by Zheng et al.
[198] is not applicable. However, the original contact algorithm [14] has shown its effi-
ciency in many geomechanical applications [40, 72, 89]. The improvement we introduced
here is about obtaining the normal vector at the material points using the connectivity
approach, instead of using other approaches [102, 191] which are not yet appropriate in
the case of irregular mesh the discretisation being adopted in this research. In the con-
nectivity approach [62, 191], the normal vector along the boundary particles, Figure 3.6,
is tracked during the computation. So that the deformed surface is followed and then
mapped to the computational grid node through the following procedure

ni =

∑

np

‖∑np‖
, (3.79)
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where ni is the outward unit vector for node i, and the summations runs over the num-
ber of boundary particles located inside elements attached to node i.

In the case of prescribing boundary velocity with frictional contact, prescribed par-
ticles introduced in Section 3.3 of the present chapter is adopted. For this purpose,
the nodal velocity solution should satisfy the prescribed boundary condition. In other
words, the nodal prescribed velocity obtained by Equation 3.61 should replace the sys-

tem velocity ṽ
n+1,(I+II )
i at the places where boundary nodes are detected. The rest of the

contact algorithm, from Equation 3.74 to Equation 3.78 stays the same with no changes.
In order to validate this approach, a square of 1m side and unit weight of 10 kN/m3

supported by prescribed particles with zero velocity being discretised irregularly as de-
picted in Figure 3.7 is considered. After calculating of the initial stress field caused by
the gravity, the layer of prescribed particles underneath is moved suddenly with a hor-
izontal velocity of 2m/s. As shown in Figure 3.7, the body is travelling together with
the bottom if standard MPM is applied. In the other case, where rough contact is intro-
duced, the glue condition is broken if the bottom is fast enough. Finally, the absence of
the frictional resistance in the smooth contact case leads to the early separation of the
two bodies.

2 m
s

t = 1.6 st = 0.8 stime(t) = 0

prescribed particles

box (1× 1) m

Figure 3.7: Prescribed velocity boundary with contact: (top) standard MPM, (middle)
rough contact, and (bottom) smooth contact
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3.5 Numerical algorithm

In this section, the initialisation of the MPM model with the solution procedure is pre-
sented in steps. The preprocessor being adopted in this thesis is based on irregular tetra-
hedral mesh discretisation. Initially, the MPM model is created in a similar way to the
Lagrangian FE model. As described in Appendix B, particles are initialised in local coor-
dinates. Empty elements are provided in the potential zone of the particles movement.
Within the preprocessor phase, surface traction is applied and represented on the com-
putational mesh. Direct constraints are applied at nodes for zero kinematic boundary
condition, whereas prescribed boundary particles should be created for the prescribed
velocity boundary. After initialising the MPM model, initial conditions and state vari-
ables are applied at the material points. As next, the computation MPM cycle is repeated
till the end of the calculation. The cycle can be summarised with the following steps:

Step one Update the number of active nodes that belong to elements where particles
are located. Excluding empty elements improves the computational efficiency of the
computation cycle where loops are taking place only over active nodes. Next, calcu-
late the minimum time step throughout the entire mesh. As irregular mesh is adopted,
update the time step according to Equation 3.44 only for active elements is more efficient.

Step two Establish the lumped mass matrices of each body in contact as well as the
system matrix using Equation 3.35. Furthermore, internal, gravitational and traction
forces are obtained via Equations 3.33, 3.51 and 3.54, respectively. Local damping is con-
structed if it is applicable. Important to emphasise here that the traction load is trans-
ferred from the nodes to the boundary particles at preprocessing stage and stays there
during the computation.

Step three Map the particle momentum to the active nodes using Equation 3.55 to
obtain the nodal velocity field at the beginning of the current time step.

Step four Considering contact algorithm, the discretised momentum equations are
solved for each individual object and one more solution for the entire system.

Step five Update the velocity of all material points by integrating explicitly the dis-
crete nodal values of the acceleration field using values of shape functions at the material
points as in Equation 3.57. Consequently, the corresponding nodal velocity distributions,
from Equation 3.58, are obtained.

Step six Compare the velocity fields of the corresponding objects with the system ve-
locity and update the individual object velocity accordingly using Equation 3.75. More-
over, the tangential component of the contact force should be bounded by Coulomb
friction in Equation 3.78.

Step seven Evaluate the velocity field at the computational grid by evaluating the mo-
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mentum at the material points. In other words, repeat step three above.

Step eight Obtain the incremental displacement at the computational grid nodes using
Equation 3.59 and then evaluate the deformation rate tensor ε̇ij followed by the consti-
tutive equation 3.10. The particle volume is updated here using Equation 3.41.

Step nine Update the locations of the particles via Equation 3.60. During this stage, the
book–keeping that describes the connectivity of particles–mesh and vice versa should be
updated as well. The searching algorithm for relocating particles in element for the non–
structured mesh is given in Appendix C.

Step ten Track the boundary particles for updating normals. For quasi–static case,
the kinetic energy and external forces criteria are obtained through Equations 3.71 and
3.72 to check whether they satisfied the tolerance criteria.

3.6 Experimental validation: collapse of granular column

As the aim of this chapter is to introduce a numerical method able to handle large de-
formations of granular materials, a validation for the numerical implementation of the
method becomes essential. For this purpose, the collapse of granular column is selected.
The problem of granular column collapse plays important role in many engineering ap-
plications dealing with granular or powder materials. Beside industry, collapse of gran-
ular material has numerous applications in geophysics; e.g., landslides, avalanches, de-
bris flows, etc. Due to the limitation of the large–scaled models, experiments consist of
sudden releasing an initially confined granular column in response to gravity have been
performed. Swinging gate or lifting up container quickly are commonly used [8, 115]
to release cylindrical [98, 113] or two–dimensional [8, 55, 114] column. Furthermore, re-
lated theoretical studies of the problem are offered by other references [159, 160].

The main outcome of the experimental studies is to correlate the run–out distance
to the initial geometry of the column. A power–law relationship between the run–out
distance and the normalised initial height, which varies for the axisymmetric and two–
dimensional columns [98, 115]. In these laboratory investigations, an initial acceleration
stage is detected followed by constant velocity for the high aspect ratio column. Aspect
ratio is defined as the ratio between the height of the column to its width. Friction be-
comes important factor only at the last stage of deceleration and final stopping [114].

Numerical simulations of the granular flow have been performed with discrete el-
ements [97, 159] and continuum models [3, 126]. Mangeney et al. [124] have proven
that the continuum model overestimates the driving forces involved during the collapse
as compared with granular based models and therefore expects higher run–out for as-
pect ratio greater than 0.7. Similar conclusion has been obtained with an MPM model
by Kumar et al. [95], who expected higher run–out distance as compared with the dis-
crete element method (DEM) for aspect ratio greater than 2. The energy evolution for
continuum based models is well predicted when the frictional behaviour is predomi-
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nant, whereas the lack of collisional energy dissipation mechanism is overpredicting the
run–out distance [95]. Therefore, an artificial damping should be added for the granular
columns with higher aspect ratio [158]. However, it is not so clear how much damping is
required as compared to the physical damping. More details about the mechanism con-
trolling the spreading of the column and the sideways ejection of the mass is examined
by Staron and Hinch [159], who propose a proportional approximation for the spreading
energy to the initial potential energy [160].

3.6.1 Problem description and reference solutions

The objective of the current MPM analysis is not to reproduce experiments with high
accuracy rather than validating our MPM version. For this purpose, the experiment
conducted by Lube et al. [115] is selected as a reference in this research. The experiment
is performed inside a rectangular channel and initiated by uplifting the supporting wall
where the flow remains fairly two–dimensional. Different dimensions for the granular
column are tested whereas the one selected has a height of 63.35 cm and 9.05 cm width
constructed on a 20 cm deep channel. Rough ground is provided by placing a layer of
sandpaper that has a similar roughness order as the internal friction angle of the flowing
material. Large range of granular materials has been tested; e.g., sand, rice, and sugar. In
all materials, the cohesion effects is negligible. For the quartz sand, the following prop-
erties are recorded [114]: solid density 2.6 g/cm3, and angle of repose 31◦. The frontal
gate is removed quickly in the upward direction. During collapse, the free surface is
captured through a transparent side wall.

The sand column collapse is modelled numerically using the generalised interpolation
material point method (GIMP) [158]. Brief description about GIMP is provided in Chap-
ter 2. Two–dimensional bilinear regular elements with the dimension 5mm are adopted
in that model. Nine particles initially are placed inside each element. The sand is mod-
elled with Mohr–Coulomb failure criteria and given a modulus of elasticity 840 kPa with
Poisson’s ratio equals to 0.3. While the angle of repose is used as the friction angle,
very small dilatancy angle of 1◦ is assumed. Following the suggestion in Lube et al.
[114], non–slip contact is considered between the sand material and the ground. Using
the GIMP analysis, the numerical model expects higher run–out as compared with the
experiment, which matches other continuum models conclusion [95, 124]. Therefore,
Sołowski and Sloan [158] suggest adding some artificial damping to replace the energy
dissipation due to particles rotation. Since this procedure is not fully described, it will
be excluded from the current MPM analysis.

3.6.2 MPM modelling

As stated earlier, the aim of this analysis is to validate the current MPM implementa-
tion and to prove that the method is able to capture dynamics associated with granular
material flow. Therefore, the numerical values suggested by Sołowski and Sloan [158]
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will be used in the current MPM model without spending more effort to improve it.
The sand column in modelled using 4–noded tetrahedral elements with ten particles ini-
tially placed inside each element. Regular mesh discretisation is adopted with 5mm grid
apart. Strain smoothening technique introduced in Section 3.4 is considered, whereas
the Mohr–Coulomb failure criteria is employed. Owing to symmetry, only one half of
the domain is modelled and a frictionless side wall is imposed as depicted in Figure 3.8.

Initially, roller support is assumed on both sides of the column to get gravitational
initial stresses. The process of removing the side boundary is omitted from the MPM
analysis, therefore, the roller boundary to the right are removed instantaneously. The
corresponding time for removing the supporting gate is estimated by 0.0417 s, which is
subtracted from the experiment time [158]. Gravitational acceleration is assumed in the
vertical direction taking the value 10m/s2.

The experimental and GIMP results are traced and plotted in combination with MPM
in Figure 3.9. As shown in this figure, due to the high aspect ratio about 3.5, bulk mass of
the collapsed column is moving downward with little lateral displacement at time 0.17 s.
During this time, the MPM results is very close to experiment. As the sand particles start
flowing laterally, the difference increases due to the lack of the dissipating energy cor-
responding to the grains rolling at time 0.33 s. The two flow regimes explained in [114]
can be distinguished when looking at the upper right part moving, whereas the no–flow
triangular area in the lower left corner almost does not move. Soon after this stage, the
column decelerates and comes into rest.

The flowing material passes through two characteristic phases [115]: the spreading
phase, in which the flowing layer moves as a largely deforming and deep bulk flow. The
particles at the free surface layer stay there or are incorporated into a thin layer when the
flow overrun the flow front. During this phase, the interface between moving and static
particles is continuously propagating upward reducing the volume of the flowing layer.
Next flowing phase is the final avalanching phase, which consists of the particles flowing
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Figure 3.8: MPM model for the granular column described in [115]
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along the free surface thin moving layer and the deposit central part. The slow particles
take the form of thin avalanches and modify the free surface further till it stopped.

In this analysis, it has been proven that the simple constitutive model is able to repro-
duce quite complicated dynamic process of granular material. No doubt, more complex
constitutive model can improve the quality of the results. For example, considering the
pressure dependency in the Drucker–Prager or Matsuoka–Nakai yield criteria does not
make a change for the residual height or the run–out only, but rather changes the final
shape of the collapsed column [126]. Furthermore in this analysis, it has been shown
that the standard MPM is able to reproduce comparative results to GIMP. Although the
last introduces spatial domain for the particles, which means that two material points
interact with each other even though the gap between them is greater than one compu-
tational node, it has been found that some particles at the tip of the collapsing column
has lost connection with the neighbours. Similar separation of particles is also detected
with MPM, however, it is rather small and limited.
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Figure 3.9: Evolution of the granular column collapse obtained by MPM compared with
GIMP [158] and experimental results [115]
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Chapter 4

Modelling of membranes in MPM

Considering MPM advantages mentioned in Chapter 3, the method can be applied to
model structural elements in combination with solid elements. Of course, the theory of
these elements should be considered in the basic MPM algorithm. One of the most im-
portant structural elements in engineering applications is the thin–walled structure. An
introduction to the thin–walled structures followed by the mathematical formulation is
presented in Section 4.1 with more attention attributed to the membrane element.

Two membrane formulations are presented, the first follows the membrane procedure
of York [191]. This MPM formulation is described in Section 4.2, supported by a simple
one–dimensional spring–mass system example. A proposed MPM representation for the
membrane, called coupled FEM–MPM membrane is detailed in Section 4.3, along with the
single degree of freedom spring–mass system example.

Both numerical approaches are tested for two other problems with available analyti-
cal solutions in Section 4.4. Mesh sensitivity, stress prediction, and minimum required
mass to get each of the two approaches working have been tested for uniaxial mass os-
cillating. Moreover, the transverse motion of laterally oscillated mass is compared with
the closed–form solution. Up to this point, these examples are restricted for small defor-
mation theory and tension–compression membrane. Section 4.5 introduces the required
modifications to account for large deformations with an example, in which a prestressed
membrane is stretched laterally with 80% extension relative to its original length. As
with other textile materials, the geosynthetic has the property of tensile stiffness only.
Therefore, part of Section 4.5 is dedicated to discus what is so–called the compression
cut–off criterion. Definition of this criterion is accompanied by a validation example
of a hemispherical dome subjected to self weight. Section 4.6 presents an application
in which the failure of an embankment is studied with and without a reinforcement
by geotextile. The analyses of failure mechanism and the embankment stability using
undrained conditions were investigated to determine the embankment height and the
corresponding geotextile strain.

4.1 Thin–walled structures

This section gives an introduction to the numerical modelling and kinematic descrip-
tions of the thin–walled structures. Furthermore, it shows the required changes in the
constitutive equation to accommodate for the structural behaviour of these elements.
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4.1.1 Introduction

In modern technology, thin membranes are often used as a structural element. Mem-
brane elements are the structural elements that are capable of transmitting forces tan-
gential to the surface only. Paying special attention to geomechanical applications, this
structural element is very useful for the analysis of soil–structure interaction where the
membrane has stiffness in tension but not in compression.

The finite element method (FEM) has been widely used to model membranes; see, e.g.,
[93, 157]. This can be accomplished with plate or shell elements by neglecting the flex-
ural components. In case of large deformations, however, traditional FEM membrane
modelling often encounters mesh distortion and element entanglement, which causes
numerical difficulties unless continuous remeshing is adopted. As an alternative, the
Lagrangian particle method has the potential to model extreme large deformation with-
out the difficulties just mentioned. The material point method (MPM) is a method in
which the material is represented by set of particles that are free to move through a com-
putational mesh in the background. York [191] developed MPM for the modelling of
thin membranes, in which a two–dimensional membrane is discretised by a collection of
material points to define a surface. Similar to other membrane algorithms, the MPM re-
quires an accurate procedure to update the local orientation relative to the global frame
of reference. Different algorithms have been investigated to conclude that the most accu-
rate one is accomplished by keep tracking of the membrane particles connectivity [192].
This approach is extended later for three–dimensional membrane by tracing the normal
on triangles used to connect the particles. The three–dimensional membrane is com-
bined with a liquid to model sperm injection [62].

In spite of the fact that MPM can handle large deformation successfully, but for small
deformation it gives lower accuracy than FEM. Hence, a coupling procedure between
FEM and MPM for problems with different deformations scheme produces better re-
sults than pure MPM. Zhang et al. [196] developed an explicit material point finite element
method to study hyper velocity impact. In this method the material domain is discre-
tised by a mesh of finite element, and a regular background grid is defined in the poten-
tial large deformation zone. Once moving into the predefined computational grid, nodes
are converted into particles whose momentum equations are solved on the predefined
grid. The FEM–MPM coupling in this procedure is carried out by adopting one method
through the predefined regions. For this reason the coupling procedure might be good
for small deformation but not when a membrane experiences relatively large deforma-
tion combined with displacement; e.g., the problem of dropping geocontainers.

Lian et al. [108] proposed a hybrid finite element–material point (FEMP) method for mod-
elling reinforced concrete subjected to impact loading. The essence of this method is to
introduce a hybrid bar element into MPM, where the nodal variables are updated from
background grid and the stresses are updated on the element. By this hybrid bar ele-
ment, the reinforced bar in concrete can be easily discretised.

The hybrid FE–MP approach is extended in this thesis to include membrane elements.
Within the context of the analysis, the membrane element has three degrees of freedom
per node, although the element is two–dimensional plane element. A membrane mate-
rial point is placed at each vertex node and the connectivity is preserved throughout the
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computations. The integration of membrane stresses is done using the two–dimensional
triangular mesh. The computed internal membrane forces are then mapped to the tetra-
hedral grid, where the momentum equation is solved for the whole system. In the
present research, the proposed approach does not only has better stress prediction, but
it is also less sensitive to the membrane discretisation than York’s membrane approach.

4.1.2 Kinematics of thin–walled structures

The mathematical theory of the thin–walled structures can be established by defining a
set of points S in the three–dimensional space R3 as part of a body. The boundary of
the body is denoted as Γ . The placement of the surface S in R3 is called configuration.
Each point Mi ∈ S has a unique position vector X ⊂ R3 defining its location at time
t ∈ [t0,∞]. The configuration at t = t0 is called reference configuration, and it is usually
understood to correspond the undeformed state of the structure.

Following the convention of continuum mechanics [18], we mark quantities referring
to the reference configuration with uppercase letter, such that, for instance X denotes
the position vector of a point at time t = t0. As this coordinate refers to the points of the
body, it is called material coordinates and its base vectors e are given as [18]

e (X, t) =
[

e1 e2 e3
]T
, (4.1)

with the superscript T implying transportation. The current or deformed configuration
of the body at a given time t > t0 can be formulated as a map from the reference con-
figuration to the deformed configuration in R3. Quantities referring to the deformed
configuration are written as lowercase letters. For a material point Mi identified by its
position vector x we therefore write

x = x (X, t) . (4.2)

The position vector of a given point with respect to the local coordinates on the mid-

surface in three–dimensional space R3 is denoted by Xc(X̂1, X̂2) [28], where the coordi-

nates (X̂1, X̂2, X̂3) ought to identify a specific location on the surface as shown in Figure

4.1. Here the thickness coordinate (X̂3) lies along the unit normal N at an arbitrary
point. At this point, the position vector in the undeformed domain is defined such that

X = Xc +NX̂3, (4.3)

in which, X̂3 varies in the limits

X̂3 ∈



−
h
(

X̂1, X̂2

)

2
,
h
(

X̂1, X̂2

)

2



 ,

where h is the wall thickness and the subscript c indicates quantities defined at the mid-
surface as illustrated in Figure 4.1. The displacements u are defined as the difference

57



Chapter 4 Modelling of membranes in MPM

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������������������������������

������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������

��
��
��
��

��
��
��
��

�����
�����
�����
�����

����
����
����

����
����
����

������

������

����
����
����
���� x̂1

S

X2

X3

X1

s

N

X̂1

reference configuration

n
X̂2 current configuration

x̂2

xc

Xc

uc

Figure 4.1: Kinematic scheme of thin–walled structure for large deformation

between position vectors in the current and the reference configuration

u (X, t) = x (X, t)−X. (4.4)

Deformation uniquely maps surface S to deformed surface s, which owing to the con-

venience of local coordinates are still defined by X̂ . Originally, the material fibers are
straight and normal to S and assumed to be kept straight and normal to s after stretch-
ing. Hence, the position vector is written as

x = xc + n x̂3, (4.5)

where n is the outward unit normal to s. The velocity v and the acceleration a are the
first and the second time derivative of displacement respectively, which yields

v (X, t) =
d

dt
u (X, t) ; a (X, t) =

d

dt
v (X, t) (4.6)

and the strain rate tensor is given by

ε̇ij =
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

. (4.7)

At this stage, it is important to define a natural approach to allow material rotation
with the coordinate system. Defining the corotational coordinate makes it easier to deal
with structural elements. In the corotational approach, a coordinate system is con-
structed for each point in the body with base vectors ê, which are defined in a way
similar to Equation 4.1 such that

Tij = êi · ej, (4.8)

where Tij is the rotation tensor defined in Appendix D. As the rotation tensor is orthogo-
nal, which means that its inverse is given by its transpose, any tensor can be transformed
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4.1 Thin–walled structures

between the two coordinates systems using the orthogonality condition. In other words,
the strain rate tensor defined in Equation 4.7 can be obtained along the corotational co-
ordinated using the following transformation [132]

˙̂εij = Tik ε̇kl Tjl, (4.9)

where, the corotational strain rate tensor ˙̂εij is defined by

˙̂εij =
1

2

(

∂vi
∂x̂j

+
∂vj
∂x̂i

)

. (4.10)

4.1.3 Membrane theory and the constitutive equation

The general structural behaviour of thin–walled structures is characterised by two prin-
cipally different states of deformation, namely, membrane and bending action. In contrast
to pure bending action where the midsurface fibers preserve length, the membrane dom-
inated deformations have strains in the midsurface. In the present study, the membrane
is assumed to have membrane action only. As the typical membrane model assumes all
strain and stress components to be constant with respect to the thickness coordinate, the
structural behaviour is defined exclusively via in–plane strains of the midsurface. Con-
ceptually, the simplest approach is to consider the actual body being infinitely thin, thus

X = Xc, x = xc, x = X + u (4.11)

where, in this sense, thin membrane elements can be considered as curved plane–stress
elements. After defining the strain rate of the membrane model a relationship is es-
tablished between the stresses and strains by the constitutive equation. The constitutive
equation has to follow the continuum material law and impose the membrane plane–
stress theory point wise.

To account for the rotation of the material, the constitutive equation has to be frame–
invariant rate. Put it differently, the stress rate tensor has to be objective with respect to
material rotation. Hence, either objective stress rate has to be considered or the constitu-
tive equation must be applied on the corotated coordinates, which yields [18]

˙̂σij = D̂ijkl
˙̂εkl, (4.12)

where D̂ijkl is the membrane tangent stiffness tensor defined in Appendix D, and ˙̂σij is
the corotational Cauchy stress rate tensor where the plane–stress theory is applied, in
which

σ̂ij =





σ̂11 σ̂12 0
σ̂21 σ̂22 0
0 0 0



 . (4.13)

The Cauchy stress tensor σ defined in global coordinate system can be obtained by
utilising the rotation tensor T in the inversed direction to Equation 4.9.
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Chapter 4 Modelling of membranes in MPM

4.2 MPM membrane modelling after York

This section, presents the MPM membrane formulation as given by York [191]. The
same standard MPM procedure is employed here except that the stresses of the mem-
brane material points are computed with respect to local, rotated coordinate system x̂

where a plane–stress condition is satisfied rather than computing them with regard to
the global framework. A technique is proposed to initialise the mass of particles for ir-
regular discretisation. A similar technique is used later to tackle the problem of large
deformation by updating the membrane surface. In other words, the integration weight
of the particles is updated according to the deformed configuration. Solving a single de-
gree of freedom spring–mass system using York’s scheme shows good agreement with
the analytical solution, whereas care should be taken regarding mesh sensitivity and
stress prediction when more complex problem is treated as will be shown in this chapter.

4.2.1 Mathematical formulation

As stated previously, the membrane is a structure that has stiffness in–plane with no stiff-
ness in bending. Stress and traction components through the thickness are assumed to
be constant. In York’s approach [191], a continuous membrane is discretised by a single
layer of material points that is overlaid on an computational mesh, see Figure 4.2. As-
suming a single layer of material points through the thickness enforces the condition of
constant traction through a section automatically. A locally–rotated frame of reference is
defined by a component perpendicular to the membrane surface with two components
tangent to the surface at each material point. By updating the tangential strains, the
stress update at the material point is straightforward assuming linear elastic and plane–
stress behaviour. The stresses are then projected back to the global coordinate system
where the internal force vector is calculated without distinction between membrane and
solid material points. Basically the same momentum equation for solid material is ap-
plicable for the membrane as well. Some differences are pointed out later in this section.

Internal forces The internal forces, which are obtained from integrating the internal
membrane resistance over the spatial domain, should consider the membrane theory in
their formulation. Hence, this consideration of the plane–stress theory should start from
the calculation of the strain increment at each material point.

The incremental strain tensor, which is evaluated at the beginning on the global coor-
dinates, is projected onto local coordinates attached to the membrane using the transfor-
mation formula of Equation 4.9 on incremental level, which yields

∆ε̂p = T ∆εp T
T , (4.14)

where ∆ε̂p and ∆εp are the incremental strain tensor of particle p for local and global
coordinates, respectively. The incremental stress tensor ∆σ̂p is then obtained from ap-
plying the membrane constitutive model on local coordinate in the form
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Figure 4.2: York’s representation of a membrane showing the plane–stress theory ap-
plied on material points

∆σ̂p = D̂ : ∆ε̂p, (4.15)

in which D̂ being a matrix consistent with the plane–stress assumption as given in Ap-
pendix D. Implicit in Equation 4.15 is the assumption that the increments are small
enough that rotational effects can be assumed to be negligible. For cases where strain
increments are large, the constitutive law must be objective [123]. Finally, the local stress
increment is transformed to the global frame of reference

∆σp = T T ∆σ̂p T , (4.16)

where ∆σp is the increment, which is used to update the global stress tensor at the end
of the time step. It is important to mention here that the dimension of the incremental
rotated stress tensor ∆σ̂p is extended to match the incremental global stress tensor by
imposing zeros. The global stress tensor is updated explicitly at the end of the time step
by adding up the contribution of Equation 4.16 in the following form

σn+1
p = σn

p +∆σn+1
p , (4.17)

in which n is a step counter at time tn. The internal force vector corresponding to the
membrane particles Fm is then calculated in the usual way without distinction between
solid and membrane material points; i.e.,

Fm =

np
∑

p=1

BT (xp) σp (xp, t) hwp, (4.18)

where np is the total number of membrane particles and B is the strain–displacement
matrix evaluated at the location xp of the particle p. h and wp are the thickness and area
of the membrane associated with p, respectively. In other words, in York’s approach, the
internal force vector is calculated using the B matrix of the three–dimensional element
and the integration is performed by summing over the material points, including those
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Figure 4.3: Update information at the membrane particle: (left) lumping mass matrix
procedure of area and (right) calculation of normal by averaging

of the membrane. The consequence of this procedure on the prediction of the membrane
stresses is demonstrated later.

Mass matrix In practice, the membrane mass is small enough to be neglected as com-
pared to the combined structure. However, a sensible mass must assigned to the ma-
terial points for the explicit dynamic algorithm, as this procedure employs only a mass
matrix with no stiffness matrix on the left hand side of the momentum equation. More
detail about the minimum mass required for the membrane particle as compared with
the other solid particles is presented later.

As long as the considered membrane has only transitional degrees of freedom, the
same lumping procedure used before for solid material can be used here. Otherwise,
rotational inertias must added for the rotational degree of freedom [18]. Each particle in
the single layer membrane must be assigned a mass taking into account the membrane
density and the membrane thickness. As proposed by York [191] and Gan et al. [63], the
membrane mass is assumed to be equally distributed as

mp =
̺mAm h

np

, (4.19)

where mp is the mass of the membrane particle p, which is applied for all number of
membrane particles np and weighted by the total area of the membraneAm, mass density
̺m and thickness h. The assumption of equal mass to all particles holds only for a regular
surface discretisation. Therefore, the variable spacing of the material points in the case
of non–regular mesh discretisation has to be considered. To achieve this, the surface is
approximated first by a collection of triangular elements. Then, the membrane material
points are defined at the vertices of the two–dimensional mesh. In the present procedure,
the effect of triangle sizes is included for the particle mass initialisation using lumped
mass approach for triangular elements as depicted in Figure 4.3
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4.2 MPM membrane modelling after York

mp = ̺m h

Ntri
∑

i=1

Ai
tri

3
, (4.20)

where Ntri is the number of neighbour triangles to p and Ai
tri is the area of the triangle i.

Integration weight In the finite element method theory with large deformation, the
formulation is based on the deformed configuration. The area or the integration weight
of the membrane changes when forces are applied [33]. Thus the previous procedure
of initialising membrane mass can be used for updating the integration weight for the
entire calculation process, that is

wp =

Ntri
∑

i=1

Ai
tri

3
, (4.21)

in which wp is the updated integration weight of the membrane particle p. The illustra-
tion of the area lumping mass matrix procedure is shown in Figure 4.3.

Calculation of normals A proper application for the membrane theory requires the
computation of the normal and tangential vectors. Several approaches were investigated
to determine the material point normal such as simple colour function approach, interpola-
tion method, mass matrix approach and point–set method [174, 191]. It was found that the
connectivity method could better handle complex geometries and provided better accura-
cies when using low order elements. The disadvantage of the additional storage space
for the connectivity data is no longer an issue for modern powerful computers.

Adopting the connectivity method for two–dimensional problems simply requires av-
eraging the normals of the neighbour lines to get the normal at the intersection point.
This idea was extended for membranes in three–dimensional space by Gan [62]. In other
words, the normals of all neighbouring triangles are averaged to obtain the normal at
the intersection point as shown in Figure 4.3. The averaging formula takes the form

np =

∑

ni

‖
∑

ni‖
, (4.22)

where the summation runs over the number of neighbour triangles Ntri, with np and ni

being the unit normal at the material point p and the triangle i, respectively. For low
order elements, the normals are constant over each element.

After identifying the normal at a material point np, two tangential vectors ê1 and ê2

are calculated, in which the first tangent ê1 can be constructed by cross product of np

with any other arbitrary vector. For this purpose, an arbitrary vector êr can be chosen
such that it is selected to be aligned with one of the global coordinate axes. To reduce
numerical error, the chosen axis corresponds to the normal vector component which has
the closest value to zero. For instance if the minimum component of np is in the direc-
tion of the global axis x1 then the random vector is aligned with x1 axis, êr = e1, where
e1 is the unit vector in x1 direction. Therefore, the first tangent followed by the second
tangent vector ê2 are computed from
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ê1 = np × êr and ê2 = np × ê1. (4.23)

With the tangent vectors ê1 and ê2 combined with the unit normal np, the rotation
matrix T is fully constructed for the updated position of the considered particle.

4.2.2 Numerical algorithm

Implementation of the numerical algorithm for the membrane is similar to the algorithm
of the solid materials presented in Chapter 3. Keeping in mind, the constitutive model of
the membrane should contain the plane–stress theory. Apart from the algorithm itself,
defining a new particle set for the membrane is more convenient in terms of the compu-
tational efficiency. In this way the membrane and the solid material points are treated
separately and coupled via the momentum equation of the entire system. This imple-
mentation allows sweeping the information related to the membrane over the elements
containing membrane particles only. Furthermore, having separate data structure for the
membrane particles gives more freedom for the initialisation process. For the purpose
of completeness, the entire calculation algorithm is summarised here, where most of the
steps are repeated from the numerical algorithm of the general MPM procedure:

Step one All material parameters and state variables are initialised at the material
points. The membrane mass is assigned to each individual particle according to Equa-
tion 4.20, with the rotation tensor being constructed at this step using Equations 4.22 and
4.23.

Step two Form the lumped mass matrix of the entire system including solid and mem-
brane particles based on Equation 3.35. In comparison to the solid particles mass, the
membrane particles have nearly zero mass. Nevertheless, it should be assigned a value
which must be big enough to get the MPM dynamic algorithms working properly.

Step three Map the velocity field from all material points to the computational grid
using Equation 3.55. This mapping procedure is equivalent to the momentum conser-
vation calculated at the material points and the one computed at the computational grid.

Step four Calculate the external force vector given by Equations 3.51 and 3.54, which
is composed of the gravity force and the traction boundary condition.

Step five Calculate the internal force vector using Equations 3.33 and 4.18 for the solid
and the membrane, respectively.

Step six Calculate the nodal acceleration vector by solving the system of equations
of the three–dimensional grid.

Step seven Update the velocity of all material points by integrating explicitly the dis-
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4.2 MPM membrane modelling after York

crete nodal values of the acceleration field using values of shape functions at the material
points as in Equation 3.58.

Step eight Evaluate the velocity field at the computational grid by evaluating the mo-
mentum at the material points. In other words, repeat step three.

Step nine Use the velocity field obtained from step eight to get the incremental dis-
placement field evaluated at the material points using Equation 3.60.

Step ten Obtain the strain increment and consequently the stress increment for solid
and membrane particles. For membrane particles, Equation 4.14 is used to represent the
strain increment with respect to the local coordinate system. After applying the mem-
brane constitutive equation to get the stress increment, this is rotated back to the global
coordinates where the stress tensor is assembled. The integration weight of the solid
particles are updated by the change in volumetric strain using Equation 3.41, while of
the membrane particles is performed via Equation 4.21.

Step eleven Set the time step size for the next calculation step and repeat the previ-
ous procedure starting from step two. Explicit time integration is carried out on the
global system of equations. An important consideration for the integration process is
the selection of appropriate time step size. The Courant–Friedrich–Lewy (CFL) condition
used for solid elements, see; e.g., [169, 189] is also adopted for the membrane element.
Stability analysis for the membrane problem shows that this criterion is applicable [191].
The time step ∆t is chosen to be equal to or less than the critical time step ∆te of each
element e, ∆t = α∆te, whether membrane or solid element, with

∆te =
le
cp

(4.24)

in which, le is a characteristic length within the element e, for example the shortest
(height) of a triangle as illustrated in Figure 4.4, cp is the speed of the elastic compression

membrane 1D element

e

solid node

membrane node

solid 2D element

le

Figure 4.4: Two–dimensional solid reinforced by a linear membrane element
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wave, and the factor α should be kept below 1 to maintain stability and accuracy. For
all cases considered in this thesis, the factor α is chosen to be 0.8 6 α 6 0.98 [18]. One
should recognize that the time step criterion is related to the most critical condition in
the mesh, with the critical time step elsewhere in the domain being greater.

4.2.3 Validation example: spring–mass system

For validation purposes, the single degree of freedom spring–mass system shown in Fig-
ure 4.5 was modelled with MPM. The spring has an initial length l0 = 0.5m and spring
constant k = 40 kN/m while the oscillating block has a mass of m = 20 kg. In this appli-
cation, the normal direction of the spring/membrane is trivial and constant through the
computation. The analytical solution of the oscillating mass in the x–direction with time
t can be constructed for the instantaneous deformation u as [71]

u (t) = u0

[

1− cos
(

√

k/m t
)]

, (4.25)

in which u0 is the displacement of the mass at equilibrium, and the period is defined

as 2π/
√

k/m. In MPM, the spring is represented by a membrane with stiffness Em and
thickness h, and is extended through the 4–noded tetrahedral elements as shown in Fig-
ure 4.5. In this figure, ten layers of the tetrahedral elements for the spring discretisation
are employed with one extra layer for the mass which is represented by a solid mate-
rial attached to the membrane strip. In the MPM model, the expected zone of particle
movement should be covered with elements, some of which are initially empty. The
discretisation of the membrane via particles was chosen fine enough to ensure that the
analytical solution could be approximated closely. Furthermore, the membrane is as-
signed a very small mass, approximately 1% of the oscillating body mass. Thus, wave
propagation effects can be neglected. A comparison in Figure 4.6 confirms that the al-
gorithm allows the MPM to approximate the analytical solution reasonably well. A tiny
difference is noticed between the analytical and the MPM solution.

d

Em =
k lo
h d

mg
vu

x

kl0

h

front view side view

Figure 4.5: Spring–mass system with its MPM representation
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Figure 4.6: Displacement of the oscillating mass using York’s approach

4.3 Coupled FEM–MPM membrane

It is known in the MPM literature that non–physical stress oscillations noise are observed
when a material point crosses the boundary between two elements, which is referred to
as the grid crossing error. This is attributed to the change in the sign of the shape func-
tion gradient as a material point crosses the boundary, which in turn has an influence on
the internal load vector. Increasing the number of material points per element reduces
but does not eliminate the grid crossing error. Procedures have been proposed to cor-
rect this problem. Bardenhagen and Kober [12] showed that the generalised interpolation
material point method (GIMP) performs better by providing a higher level of continuity
in the interpolation between material points and the computational grid as it provides
gradient functions of higher degree of smoothness. Sadeghirad et al. [151] extended the
GIMP by convecting the particle domain. This method, which is given the name con-
vected particle domain interpolation (CPDI), has been demonstrated to perform better than
GIMP for cases where extreme deformations develop. Both, GIMP and CPDI, replace
the grid basis function with a modified one in which the internal force integration is per-
formed in the particle domain.

Following an approach proposed by Lian et al. [108] for modelling the interaction
between reinforcement and concrete, a coupled FE–MP method is introduced in this re-
search to model a thin–walled structure in combination with the solid material. In this
approach, the membrane can be discretised using a two–dimensional triangular mesh
with the membrane nodes being free to move through the three–dimensional tetrahedral
mesh. The displacement at each node is obtained from the solution of the momentum
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Figure 4.7: Schematics of the coupled FEM–MPM: (a) initial configuration, (b) deformed
configuration, (c) stress developed due to strain, and (d) forces mapping

equation on the computational mesh, but the increments of membrane strain and stress
are based on the deformation of the triangular mesh. It is a distinct entity that is treated
within the conventional finite element framework. The membrane strains and stresses
are calculated at the Gauss integration points, not material points. The connection of the
membrane influence on the three–dimensional mesh is through the mapping of internal
membrane forces to the computational nodes.

Consider, for example, the schematics shown in Figure 4.7 going from (a) to (d), where
a membrane element is within an empty two–dimensional rectangular element. In the
initial configuration (top left) displacements are applied along the top of the rectangular
element. The displacements produce a horizontal strain εξ and a corresponding stress
σξ due to the kinematic constraints between the deformation of the rectangular element
and the membrane; i.e., the displacements in the membrane are obtained from the nodal
displacements and shape functions corresponding to the rectangular mesh. The stresses
are then used to determine the internal forces in the membrane. Since the internal forces
due to the membrane are determined with respect to the membrane grid and then trans-
ferred to the tetrahedral mesh, grid crossing error is avoided as the membrane moves
through the tetrahedral mesh. The soil is modelled using the original MPM integra-
tion scheme, where properties are collocated at distinct material points [166, 169]. An
enhancement technique can be applied to reduce the grid crossing effect [2, 194]. The
Gauss quadrature enhancement scheme is adopted in this research to improve the MPM
integration [21, 22].
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4.3 Coupled FEM–MPM membrane

4.3.1 Mathematical formulation

In the proposed representation, the membrane is discretised by a two–dimensional trian-
gular mesh as shown in Figure 4.8. The mesh connectivity is maintained during the com-
putation where the membrane nodes are free to move through the three–dimensional
tetrahedral mesh. The displacement of these nodes is obtained from the solution of the
momentum equation on the three–dimensional computational mesh, but the increment
in membrane strain and stress is based on the deformation of the triangular mesh. The
membrane strains and stresses are calculated at the integration point as shown in Figure
4.8. As long as 3–noded triangular elements are adopted in this scheme, the location of
the integration point can be anywhere inside the triangle and does not need to corre-
spond to the Gaussian point.

The formulation of a plane element in thee–dimensional space with three translational
degrees of freedom per node was used to model the membrane. The formulation of a
general shell element presented by Bathe [16] was applied with simplification for the
considered membrane. Using the discretisation shown in Figure 4.8, the continuous ge-
ometry of the membrane is approximated using the following transformation

xi (ξ1, ξ2, ξ3) ≃
nn
∑

j=1

Hj xij +
ξ3
2

nn
∑

j=1

hj Hj n
j
i , (4.26)

where, xi is the position vector represented in global coordinate, xij is the discretised
form of xi at node j with Hj being the corresponding interpolation function that de-
pends on the natural coordinate (ξ1, ξ2, ξ3) (see Appendix E), nn is the number of nodes
per element, h is the membrane thickness, and ni is the component of the outward unit
normal n. For specific application of the low order element with constant membrane
thickness h, Equation 4.26 reduces to

xi (ξ1, ξ2, ξ3) ≃
3
∑

j=1

Hj xij +
ξ3 hni

2
. (4.27)
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Figure 4.8: Membrane discretisation using the coupled FE–MP approach
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Following the isoparametric concept, where the geometry and the displacements are
approximated with the same shape functions, displacement is approximated as

umi (ξ1, ξ2, ξ3) ≃
3
∑

j=1

Hj u
m
ij +

ξ3 hni

2
, (4.28)

in which, the incremental displacement of the membrane grid nodes ∆um is interpo-
lated from the continuous displacement field of the tetrahedral mesh by ∆umi (xm

i , t) =
N (xm

i ) ∆u (t), where N (xm
i ) emphasises that the shape functions are evaluated at the

global location of membrane node xm
i . The velocity vm and acceleration am are obtained

by taking the first and second time derivatives of Equation 4.28, respectively. In order
to calculate gradients and integrate, the standard transformation rules, including the
determination of the Jacobian matrix is applied; see for example [16]. For the 3–noded
element, the relation between the global coordinates x and the natural coordinates ξ, we
directly obtain

∂xi
∂ξ1

=
3
∑

j=1

∂Hj

∂ξ1
xij ,

∂xi
∂ξ2

=
3
∑

j=1

∂Hj

∂ξ2
xij ,

∂xi
∂ξ3

=
hni

2
, (4.29)

which are implemented in the Jacobian matrix J that involves derivatives of both coor-
dinate systems, such that

∂

∂ξi
= Jij

∂

∂xj
, (4.30)

for i, j ∈ (1, 2, 3). Assuming that the gradients are appropriately determined, the strain–
displacement matrix Bm with regard to the global frame of reference (not the computa-
tional mesh) is given by

Bm = LH , (4.31)

where H represents the interpolation matrix for the membrane element and L is the
linear differential operator as defined in Appendix E. The strain increment ∆ε is deter-
mined using the incremental nodal displacements ∆um of the membrane via

∆ε = Bm ∆um (4.32)

which can then be used to express the strain in terms of local frame of reference ε̂ = Tε ε,
see Appendix D, giving the expression

∆ε̂ = B̂m ∆um (4.33)
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in which B̂m = Tε B
m [18], where the terms of Tε can be extracted from the second

order tensor transformation rule ε̂ = T εT T as shown in Appendix D. The influence
of out–of–plane strains are suppressed by setting the corresponding rows in Tε to zero.
In other words, the energy associated with out–of–plane deformation is assumed to be
negligible; thereby enforcing plane stress conditions.

For a 3–noded element, the gradients are constant and only one integration point is
required. The incremental membrane stress ∆σ̂ at the integration point is now obtained
at the membrane integration point via

∆σ̂ = D̂ : ∆ε̂, (4.34)

where D̂ is consistent with the plane–stress assumption as given in Appendix D. The
membrane stress within the element is updated according to

σ̂n+1 = σ̂n +∆σ̂n+1. (4.35)

The internal membrane force F 2D is calculated on the membrane mesh using standard
finite element integration

F 2D =

∫

S

B̂T
m σ̂n+1 h dS, (4.36)

where the superscript 2D implies that the internal force correspond to the membrane
mesh, however, the forces are written with respect to the global frame of reference de-
fined by e, and S is the membrane surface area. As a final step, the force F 2D is trans-
ferred from the triangular mesh nodes to the tetrahedral mesh, where the computation
is conducted, using the following mapping procedure [108]

Fm
i =

nm
∑

j=1

N j
i F 2D

j (4.37)

where Fm
i is the membrane force vector of tetrahedral element node i, nm is the total

number of membrane nodes in the tetrahedral element, N j
i is the shape function of node

i evaluated at the location of the membrane node j, and F 2D
j is the force vector of node j.

After evaluating the membrane force contributions within a three–dimensional element,
the element contribution is added to the global internal force F int in Equation 3.33. This
is repeated for all tetrahedral elements where applicable.

4.3.2 Numerical algorithm

As shown previously, the coupled FE–MP approach introduces integration points for
the membrane discretisation. In this discretisation the material points, or the membrane
nodes, describe the kinematics only and no information about the stresses is stored there.
In this case the data structure type to be remembered by the membrane particles is differ-
ent from that of the solid particles, which confirms a need to define totally new particle
set for the membrane. It is important to say that setting only the kinematic information
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Chapter 4 Modelling of membranes in MPM

at the material points is neither obvious nor trivial procedure. It is found to be more
efficient to keep the mass at the material points rather than at the integration points.
Within the MPM procedure, however, momentum has to be mapped from particles to
nodes and vice versa (step three and eight mentioned later), which requires the mass to
be conjugate with the velocity. In other words, the mass should be defined at the same
place where the velocity is defined which is at the membrane particles in this case.

Beside the new particle set, a set of integration points must be traced during computa-
tions. Furthermore, the rotation tensor must be evaluated at the integration points with
no need to move it back to the material point like in York’s procedure. The entire algo-
rithm of the coupled FE–MP method can be summarised in the following steps

Step one Initialise material parameters, except mass as justified before, and state vari-
ables at the integration points for the membrane and at the material points for the solid
material. The rotation tensor is evaluated at the integration points where the constitutive
model is applied. As long as 3–noded triangular element is involved, the rotation tensor
at the integration point is the same as for the element. The normal on a plane of three
known points is combined with Equation 4.23 to form the rotation tensor.

Step two Form the lumped mass matrix of the entire system. The membrane mass can
be introduced at the membrane particles or at the integration points. Finally, it has to be
mapped to the three–dimensional mesh where the computation is carried out. Equation
3.35 is used for the mapping process.

Step three Map the velocity field from the material points to the computational grid
using Equation 3.55. This mapping procedure is equivalent to the momentum conser-
vation calculated at the material points and the one computed at the computational grid.

Step four Calculate the external force vector given by Equations 3.51 and 3.54, which
is composed of the gravity force and the traction boundary condition.

Step five Calculate the internal force vector for the solid and the membrane. The mem-
brane internal force has to be calculated at the integration points first (Equation 4.36)
before mapping these forces to the three–dimensional mesh (Equation 4.37).

Step six Calculate the nodal acceleration vector by solving the system of equations
on the three–dimensional grid.

Step seven Update the velocity of all material points by integrating explicitly the dis-
crete nodal values of the acceleration field using values of shape functions at the material
points.

Step eight Evaluate the velocity field at the computational grid by evaluating the mo-
mentum at the material points. In essence, repeat step three upward mentioned.
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4.3 Coupled FEM–MPM membrane

Step nine Use the velocity field obtained from step eight to get the incremental dis-
placement field evaluated at the material points using Equation 3.60.

Step ten Obtain the strain rate and consequently the stress rate for solid and mem-
brane particles. The incremental membrane stresses are evaluated and updated at the
integration points in Equation 4.34 and 4.35, respectively. Also, the integration weight
of the membrane can be updated, for large deformation problems, by updating the area
of the two–dimensional mesh or kept constant during the calculation.

Step eleven Set the time step size for the next calculation step and repeat the previ-
ous procedure starting from step two. The smaller critical value of the time step for the
solid and the membrane material is chosen. Similar to York’s procedure, Equation 4.24
is applied compute the critical time step for the coupled approach.

4.3.3 Validation example: spring–mass system

The elementary problem of an oscillating mass presented in Section 4.2 is repeated here
using the proposed approach of coupled FEM–MPM with the same discretisation. The
displacement of the oscillating mass is shown in Figure 4.9, which demonstrates excel-
lent agreement with the analytical solution. At first glance, both membrane approaches
show good agreement with the analytical solution. However, the sensitivity of each so-
lution scheme for some parameters will be investigated in details next.
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Figure 4.9: Displacement of the oscillating mass using the coupled FE–MP approach
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4.4 Comparison of the two membrane approaches

Comparing the mathematical formulations of the two presented membrane approaches
shows that the essential difference is the way of calculating the internal force. Use of low
order elements within MPM makes the gradients of the shape functions discontinuous
at element boundaries. Hence, when material points change elements during the calcu-
lation, the sign of the internal force contribution changes for conventional formulations,
which causes grid crossing error. An important motivation to develop the coupled FE–
MP approach was to reduce the effect of grid crossing error, which causes the numerical
oscillation. Two examples are presented that compare the solution from York’s approach
to that obtained from the proposed procedure in this thesis.

4.4.1 Mesh sensitivity

Nonphysical membrane rupture may happen when using insufficient number of par-
ticles due to the separation of membrane particles by one or more cells. It has been
mentioned that the membrane discretisation in the spring–mass problem must be cho-
sen fine enough to capture the analytical solution. Here we address the required fineness
of the membrane mesh. To help with the discussion, an objective criterion is required to
describe membrane mesh refinement relative to the three–dimensional mesh. Gan [62]
suggests a trial procedure to reach a balance between the number of membrane particles
and the computation cost. In this study, we use a Mesh Ratio MR that is defined by

MR =
3
√
V̄

2
√
Ā
, (4.38)

as a measure of relative fineness, where V̄ and Ā are average values of volume and
area of all tetrahedral and the triangular elements, respectively. Knowing MR, a priori,
helps identify the minimum number of allowable particles, below which nonphysical
behaviour is predicted. Implicit in the use of Equation 4.38 is that the elements are of
similar size. The previous spring–mass results are correspond to a mesh ratio of 8.

In order to determine the sensitivity of each algorithm to the membrane discretisation,
the mesh ratio was reduced from 8 to 3 to 1 by changing the triangular mesh and letting
the tetrahedral mesh remain fixed. The density of the membrane particles relative to
the tetrahedral mesh is shown in Figure 4.10. A comparison of displacement histories
in Figure 4.11 clearly shows that York’s approach requires a higher mesh ratio to obtain
a good solution. The coupled approach is seen to be not as sensitive to the membrane
particle density. The poorer performance of York’s approach is attributed to stresses
being calculated using the strains for the tetrahedral element, where the material point
resides. On the other hand, the coupled FEM–MPM derivation provides stepwise stress
variations along the membrane that are independent of the tetrahedral gradients. This
helps mitigate the problem of stress oscillation, as well as non–physical oscillations of
internal forces and the velocity field.
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4.4.2 Stress prediction

A comparison between the two approaches with regard to stress prediction can be best
achieved by considering a tension bar 3l long and composed of four membrane particles
arranged distance l apart. Two linear elements are used to perform the solution with σ0
initial stress. A prescribed displacement d is applied at the end of the second element for
three load steps. For the linear displacement interpolation inside the element, the value
of d is chosen to have a displacement of l/2 at the last membrane particle. Aiming for a
quasi–static solution, one can find the solution for both membrane approaches using the
following procedures:

York’s approach The total length of the bar 3l is regularly distributed over the four par-
ticles to assume equaled integration weight 3l/4 for all particles as illustrated in Figure
4.12. The initial stress value σ0 is applied directly at the material point. Before applying
the first load step, the internal force contribution from element I is computed from the
initial stress times the integration weight of the first three particles

f left = +
3
∑

i=1

(

3

4
l σ0

)

i

, (4.39)

where f left is the contribution of element I to node j, the counter i is the particle number
in element I . In a similar manner the force f right is the contribution of the single particle
in element II to the node j is calculated from the stress value at this particle multiplied
by its integration weight such as

f right = − 3

4
l σ0, (4.40)

in which, the minus sign means that the force direction is to the left while the plus means
to the right. Summing up Equations 4.39 and 4.40 gives f j , or the internal force at node
j, which yields

f j
0 = 0.5 l σ0, (4.41)

Figure 4.10: Refinement of the membrane discretisation for the same tetrahedral mesh:
(left) fine MR = 8.0, (middle) medium MR = 3.0 and (right) coarse MR = 1.0
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Figure 4.11: Sensitivity to the mesh ratio: (top) York’s approach and (bottom) coupled
FEM–MPM
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where the superscript indicates the load step number. Applying the first load step gives
a uniform deformation through all membrane particles, yielding the stress update

σ1 = σ0 + 0.17Em, (4.42)

in which the strain value 0.17 is obtained from the uniform deformation (d = 0.83 l) di-
vided by the length of the two elements 5 l. By normalising the stress with respect to the
membrane stiffness Em, Equation 4.42 reduces to σ1 = 1.17σ0. Repeating the procedure
of getting the internal force, Equations 4.39, 4.40 and 4.41, gives

f j
1 = 0.5 l σ1 = 0.58 l σ0. (4.43)

Until now no crossing of particles occurs and the internal force increases gradually at
the grid node j. As the displacement d increased, when a particle crosses the boundary
in the second load step, the number of particles becomes equaled in each of the two lin-
ear elements. As a result the internal force becomes zero at node j.

Coupled FEM–MPM membrane In this approach, the initial stress σ0 is applied at the
integration point whereas the integration weight equals l for all elements as illustrated in
Figure 4.13. Consequently, the internal force is evaluated at the membrane particles first
rather than directly at the node j of the linear elements. For this specific case of equaled
integration weight, the stress integration over the membrane elements contributes with
an equal force for the membrane particle i as follows

f̄ i = f̄ right + f̄ left, (4.44)

where f̄ i is the internal force at membrane particle i. Using a similar procedure, the in-
ternal forces for all membrane particles can be computed as

f̄ 1 = −l σ0 : f̄ 2 = 0 : f̄ 3 = 0 : f̄ 4 = l σ0, (4.45)

where the superscript is the counter index for the membrane particle starting from left
to right. The next step in the coupled FE–MP approach is to map the forces to the global
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Figure 4.12: Position of the material points in York’s approach: (a) initial configuration,
(b) first load step, (c) second, and (d) third load step
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discretisation via the shape function of the membrane particles according to Equation
4.37, or simply

f j =
4
∑

i=1

Nj (xi) f̄
i, (4.46)

with Nj (xi) being the shape function of node j evaluated at the location of the mem-
brane particle i and the summation runs over the number of particles that contribute to
the node j. In this summation, the second and third particle have zero forces while the
contribution of the first particle is weighted by zero shape function and becomes zero as
well. Therefore, the only force contribution to the nodal force f j comes from the fourth
particle which is computed by substituting the force value from Equation 4.45 and its
corresponding shape function Nj (3 l) = 0.8, as illustrated in Figure 4.13, yielding

f j
0 = 0.8 l σ0, (4.47)

where the superscript indicates the load step number. In a similar way, the stress at the
integration point is updated to σ1 = 1.17σ0. Thereafter, the internal force of the first load
step is obtained at the material points and then transferred to the computational grid via

f j
1 = Nj (x4) f̄

4 = 0.6 l σ1, (4.48)

in which the internal force at node j is simplified to 0.7 l σ0. The results of the other two
steps are included in Figure 4.14.

Internal force oscillation Comparing the two approaches via displacement control
problem shows that York’s approach has a larger oscillation in internal force values,
see Figure 4.14. The force increases in the first load step until particle crossing occurs
then it becomes zero suddenly. The coupled FE–MP approach shows a much smoother
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Figure 4.14: Variation of stresses (top) and internal force (bottom) for the two membrane
approaches

variation of the internal force values as compared with York’s approach. The internal
force oscillation is independent of the stress variation, which is shown to be equal in this
simple example as shown in Figure 4.14.

Considering the problem of the spring–mass system, Figure 4.15 shows that the pro-
posed algorithm yields an axial stress solution, which better matches the analytical so-
lution when compared to that obtained via York algorithm. The theoretical value of
the vertical stress at the maximum deformation should be 4 kPa. The stresses obtained
by the coupled approach have a piecewise uniform stress variations about the analyt-
ical solution and shows virtually no spatial spurious stress distribution. On the other
hand, York’s approach predicts spurious variations in stress over the entire membrane
strip. The banded stress pattern predicted by the proposed model is associated with the
connection between the membrane and the computational (tetrahedral) mesh. As the
membrane moves though space, the calculations for displacement are carried out on the
computational grid as indicated previously. These displacements are then mapped from
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4

6
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Figure 4.15: Vertical stress distribution in the membrane of spring–mass problem: (left)
York’s approach and (right) coupled FEM–MPM

the computational grid to the membrane nodes using the interpolation functions of the
tetrahedral elements. The membrane stresses are then determined from the membrane
displacement via the strain calculations. Had a finer tetrahedral mesh been used, the
bands would have been narrower, but not necessarily eliminated.

4.4.3 Minimum required mass

In order to perform a solution within the MPM procedure, mass must be assigned for
all particles. On the other hand, in most engineering applications, the mass of the mem-
brane is very small and is often neglected. In the spring–mass problem the membrane
has been given very small mass of about 1% of the oscillating mass. Nevertheless, check-
ing the minimum required mass of each membrane approach to get the correct solution
is investigated by changing the mass ratio SR. Three mass ratios have been considered
(10−2, 10−4 and 10−6) for the oscillating mass problem by reducing the membrane mass
and letting the number of particles constant.

Figure 4.16 clearly shows that York’s solution starts to deviate from the analytical so-
lution when reducing the membrane mass, whereas the other approach gives the correct
solution for all considered mesh ratios. The deviation of the first approach can be inter-
preted by the non uniformity of the deformation along the spring as a consequence of
poor stress prediction.

As stated before, increasing the number of material points reduces the inherent spuri-
ous stress variation in the MPM algorithm but does not eliminate it completely. On the
other hand, this particular problem has an extreme mass difference between the oscil-
lating mass and the spring mass. As a result, the solution quality is sensitive to noise
in the internal force calculation. Returning back to the discretised momentum equation,
both schemes have the same mass matrix and the gravity force vector but different in-
ternal force. As a suggested remedy for York’s approach, the particles density must be
increased more in order to improve the result quality.
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Figure 4.16: Sensitivity to the mass ratio: (top) York’s approach and (bottom) coupled
FEM–MPM
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4.4.4 Sensitivity to transverse oscillation

Referring back to the single–degree–of freedom spring–mass system, the motion was
only along the membrane direction as the angle θ between the applied load and the
membrane direction is zero. The following example compares the solution obtained
from each approach for the case of transverse oscillation. The representation of this
problem, which is composed of two springs with equal initial length l0 and stiffness k,
attached to one mass m, is shown in Figure 4.17. A mass oscillates due to gravitational
acceleration g in the transverse direction to the two springs as depicted in Figure 4.17.
Owing to nonlinearity, the effective spring stiffness acting on the mass is a function of
the mass location x. Applying Newton’s second law yields

mg − 2 k (l − l0) sin θ = mẍ (4.49)

where ẍ is the mass acceleration in x–direction and l is the deformed length. Assuming
small angle theory, Equation 4.49 becomes

ẍ = g − 2k

m

(

1− l0
√

l20 + x2

)

x. (4.50)

To determine the out–of–plane displacement, the second–order non–linear ordinary
differential equation was solved numerically, using the Runge–Kutta method together
with the parameters used for the previous example.
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Figure 4.17: Laterally oscillating mass model and its MPM representation
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Owing to symmetry, only one half of the problem is simulated with MPM. The spring
with stiffness k is replaced by a membrane with modulus Em and thickness h that give
the equivalent stiffness. A solid material with mass m is used to simulate the oscil-
lated mass, which has much bigger value when compared with the membrane mass.
Thus wave propagation in the membrane can be ignored. The mesh discretisation using
tetrahedral elements is illustrated in Figure 4.17, with the membrane being discretised
with high mesh ratio of 26. Unlike for the uniaxial problem, the 1% mass added to the
membrane was not enough to get stable results with the York procedure. Therefore, the
membrane mass was increased to 5% of that of oscillating body. Providing that the max-
imum stretch in the spring is 0.175m, obtained from Equation 4.50 at the lowest location,
produces a maximum strain evaluated from ε = ln (l/l0) is 5.8%. Therefore, the ten-
sile force is 58 kN/m calculated from the membrane stiffness times the developed strain,
see Figure 4.17. For the numerical model, the stresses along the membrane were with a
range of 58− 60 kN/m.

Figure 4.18 compares the analytical solution with that based on York’s approach (Case
1). It is observed that the MPM solution predicts a stiffer behaviour when compared to
the analytical solution. On the other hand, the coupled scheme shows a trend that is
much closer to the close form solution. The coupled approach is less sensitive to the dis-
cretisation of the tetrahedral mesh. This is observed when analysing the same problem
with different mesh discretisation. With reference to Figure 4.18 the solutions from both
formulations are also shown for the case when the computational mesh is rotated 90◦

(Case 2). Whereas the FEM–MPM solution displays negligible sensitivity to the mesh
rotation, the solution based on York’s algorithm is shown to have increasing sensitivity
as the time increases for the interval shown.
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4.5 Considerations for geosynthetics simulation

Geosynthetics modelling is one of the most important applications of membrane in
Geotechnique. They are used to reinforce soil or to be combined with filling material
as a construction element; e.g., soil bags. For some applications, the thin material is ex-
pected to undergo large deflections and deformations before failure. Therefore, large
deformation theory in the membrane formulation must be considered. In addition, the
textile behaviour of geosynthetic materials implies sustaining the tensile forces but not
compression. Hence, the constitutive model of the membrane should include a proper
criteria to cut the compression stresses off. This is introduced in this section.

4.5.1 Large deformation membrane

In the case of large deformation analysis, the behaviour is no longer linear. The stiff-
ness matrix, or the internal force in our explicit formulation, is based on a continuous
deforming configuration. Since the body may undergo large displacements and large
strains combined with nonlinear constitutive relations, an approximate solution can best
be obtained by referring all variables to a previously calculated known equilibrium con-
figuration. This permits linearising the equilibrium equation.

In practice, two formulations are used to tackle the large deformation problems: total
Lagrangian and updated Lagrangian formulations [16]. In the total Lagrangian, or simply
called Lagrangian, all static and kinematic variables are referred to the initial configura-
tion, whereas the variables in the updated Lagrangian scheme are based on the configu-
ration at the previous time step.

During large deformations cases, attention must be paid to correctly model the stress
changes when finite material rotations occur. Therefore the constitutive relation must be
established eliminating the influence of rigid material rotation by using a corotational
coordinate system to describe stresses. The present membrane formulation includes rate
objectivity as introduced in Equation 4.12. Furthermore, the integration weight of the
finite element membrane mesh must be updated for the deformed configuration.

Numerical example: large deflection of a pre–stressed membrane The problem of
large deflection of a pre–stressed membrane subjected to a lateral force presented by van
Langen [178] for which analytical solution is available is repeated. Figure 4.19 shows a
membrane fixed at both ends being subjected to a lateral force mg. The initial stress is σ̂0.
Consequently, the force mg displaced downward in the direction x by a displacement
u. Assuming the updated membrane stress per cross–sectional area and the length to
be σ̂ and l respectively, a relation between the external force can be constructed per unit
depth in the form

mg =
4 σ̂ u

l
. (4.51)

Normalising the stresses and force with respect to the membrane stiffness, the stress

rate ˙̂σ becomes simply l̇/l. Integrating the stress rate equation with respect to time and
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substituting Equation 4.51 into it yields

mg = 4
u

l

(

ln
l

l0
+ σ̂0

)

. (4.52)

This problem is modelled in MPM using the coupled FE–MP approach by adopting
the mesh shown in Figure 4.19. The force mg is applied directly on the last particle
as an external load, with gravity being excluded from the computation. The external
force is increased gradually in a stepwise manner allowing quasi–static equilibrium to be
obtained at each loading step; i.e., equilibrium between the external load and the internal
stresses is reached. The comparison of solutions between Equation 4.52 and the MPM
results is demonstrated in Figure 4.20. In this figure, the only difference between the
MPM curves is updating the integration weight in Equation 4.21. Without considering
large deformation formulation, the MPM result shows a considerable deviation from the
closed–form solution.

4.5.2 Tensile membrane

Setting the bending moments of the structure to zero is justified when the structure has
a very small flexural stiffness for instance such as for materials made from cloth. An
absolutely flexible structure is not able to sustain compressive forces, therefore, these
structures may resist the applied loads only in tension. Because of their geometry the
membranes wrinkle easily when not in tension. This wrinkling has much influence on
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Figure 4.19: Pre–stressed membrane under large deflection: (left) physical model and
(right) MPM representaion
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the stress state and the force transmission.
Fundamentally there are two approaches tackling the wrinkling problem in a mem-

brane. In the first, the membrane is regarded as a thin shell with a very small, but finite
flexural stiffness, whereas the second approach neglects the flexural stiffness and as-
sumes the thin membrane to be capable of resisting only the in–plane tensile stresses,
and the wrinkled surface is replaced with a smooth surface representing average defor-
mations. This second approach is called the tension field approach [129] which is adopted
in this thesis.

In the present study the folds and wrinkles in the membrane are not considered but
rather a simplified version is implemented by correcting the principal stresses to be pos-
itive. By the same token, the principal stresses are adjusted by not allowing compression
components. Hence, this formulation is implemented as a compression cut–off criterion.
A similar technique is adopted for geomechanical applications in the commercial soft-
ware PLAXIS [33]. Using the definition of the rotated stress tensor σ̂ in Equation 4.13,
the principal stresses are given by the Mohr circle as

σ̂I, II =
σ̂11 + σ̂22

2
∓ rm, (4.53)

where σ̂I and σ̂II are the major and minor principal in–plane membrane stresses in the
rotated coordinates, and rm is the radius of the Mohr circle defined as

rm =

√

(

σ̂11 − σ̂22
2

)2

+ (σ̂12)
2. (4.54)

The compression cut–off criterion requires positive signs for the principal stresses; i.e.,
both of them are in tension, otherwise a correction must be applied. A function f is in-
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troduced such that the minor principal stress σ̂11 can not become less than zero; i.e.,

f =
σ̂11 + σ̂22

2
− rm. (4.55)

If the value of the function f in Equation 4.55 becomes positive, no stress correction is
required. Otherwise, correction should be done as follows [46]

σ̂corrected = σ̂ − λ f (σ̂) D̂
∂f

∂σ̂
, (4.56)

with σ̂corrected being the corrected stress tensor of σ̂, D̂ is defined in Appendix D for lin-
ear elastic material, and λ is given by

λ−1 =

(

∂f

∂σ̂

)T

D̂

(

∂f

∂σ̂

)

, (4.57)

which is reduced to λ−1 = Em in the case of zero Poisson’s ratio. Differentiating Equa-
tion 4.55 with respect to σ̂ provides

∂f

∂σ̂11
=

1

2
− σ̂11 − σ̂22

4 rm
∂f

∂σ̂22
=

1

2
+
σ̂11 − σ̂22

4 rm
∂f

∂σ̂12
= − σ̂12

4 rm
. (4.58)

Back substitution of the Equations 4.55 and 4.58 into Equation 4.56 yields the compo-
nents of the corrected stress vector σ̂corrected; i.e.,

σ̂11, corrected =
σ̂11 + rm

2
+

(σ̂11)
2 − (σ̂22)

2

8 rm

σ̂22, corrected =
σ̂22 + rm

2
+

(σ̂11)
2 − (σ̂22)

2

8 rm

σ̂12, corrected =
σ̂12 (σ̂11 + σ̂22)

2 rm
. (4.59)

The graphical representation of the stress correction corresponding to Equation 4.59,
is depicted on Mohr circle in Figure 4.21. In this figure, the minor principal stress σ̂II is
assumed to be in compression and needs to be corrected by shifting it to zero. All related
stress components are corrected accordingly.

Numerical example: hemispherical dome Several researchers have studied the con-
struction of hemispherical domes being subjected to self weight or to an external trac-
tion; e.g. [75, 153]. In these studies, the two principal stresses of a hemispherical dome
with uniform thickness are introduced. The first principal stress acts along the meridian
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Figure 4.21: Compression cut–off criterion on Mohr circle: (left) before and (right) after
correction

direction or the line of longitude arch, and is defined as

σ̂I = − ̺m g r

1 + cosφ
, (4.60)

with the other principal stress being introduced along the circumferential or hoop direc-
tion and is given by

σ̂II = − (σ̂I + ̺m g r cosφ) , (4.61)

in which ̺m g is the unit weight of the membrane, whereas r and φ are the radius of the
hemisphere and the polar angle measured from top point, respectively.

For small φ, near the crown of the dome, both principal stresses are compressive. As φ
increases, however, the hoop stress σ̂II changes sign and becomes tensile which occurs
at φ ∼ 52◦ [75]. For the specific case where φ equals to 52◦, the dome edge is neither
in compression nor tension. This plane of zero hoop stresses is called the neutral plane
similar to the neutral axis for beams. Two simulations are considered, the first without
compression cut–off, and the second with the cut–off criterion being implemented.

The MPM modelling is carried out using one quarter of the hemispherical dome. Both
tetrahedral mesh and the membrane discretisation with the mechanical properties are
shown in Figure 4.22 where roller boundary conditions are imposed for the three orthog-
onal planes. Aiming for quasi–static solution, the final deformation and the principal
stresses are illustrated in Figure 4.23. From this figure, the location where the principal
stress σ̂II becomes zero is checked to be at φ = 52◦ which matches the analytical value.
The analytical principal stresses at points A and B, see Figure 4.23, are obtained from
Equations 4.60 and 4.61. Owing to the numerical singularity of the crown point, it is
decided to shift point A slightly with an angle φ = 13◦ from the very top point. Corre-
spondingly the MPM results are achieved at these two locations and compared with the
analytical results in Table 4.1.
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roller boundaries

̺m g = 1.0 kN
m3

r = 1m

E h = 1000 kN
m

x1

x2

x3

h : physical uniform thicknesscomputational thickness

Figure 4.22: MPM discretisation of the hemispherical dome: (left) tetrahedral mesh dis-
cretisation and (right) particles discretisation

In both MPM membrane formulations, the forces are distributed over a wider area
than the physical thickness h. As shown in Figure 4.22, the computational thickness of
the membrane depends on the mesh size where the computation is achieved. For the
hemispherical dome example, however, the smearing of the membrane does not have a
big influence on the resolution of the results. The analysis of the hemispherical dome is
repeated excluding the compression stiffness by applying the compression cut–off cri-
terion presented earlier. Such a structure would collapse if it were made out of textile

x1

φ

x3

x2

σ̂II : tension

σ̂II : compression

σ̂I

B σ̂II

A

Figure 4.23: Coupled FEM–MPM results: (left) vertical displacement; blue colour is zero
displacement with red is −0.34mm, and (right) principal stresses
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Table 4.1: Analytical and numerical results of the hemispherical dome

point
σ̂I σ̂II

analytical coupled analytical coupled
A −0.51 −0.48 −0.47 −0.47
B −1.0 −1.04 +1.0 +1.05

material. As a result, the final deformation shape of the membrane becomes flat as illus-
trated in Figure 4.24. It should be noted that the compression cut–off criterion does not
count for the shape of wrinkles which is out of the scope of this research.

x1

x3

x2

Figure 4.24: Vertical displacement of the hemispherical dome with compression cut–off
criterion; blue colour is zero displacement and red is −1.0m

4.6 Test study: geotextile–reinforced embankment

Geosynthetics materials are involved in most reinforcement of earth works. Soil slopes,
retaining walls, roads and embankments are some applications that require some form
of stabilisation including the use of geotextiles. To evaluate the effect of reinforcement
numerically, various modelling techniques have been used. These range from the con-
ventional methods derived from limit equilibrium analysis [148] to the continuum mod-
elling based on constitutive relationships, and micro–mechanical modelling for the earth
structures reinforced with geosynthetic [82].

The finite element method has the advantage over traditional analysis techniques that
the displacements and stresses within the soil are coupled. Depending on the constitu-
tive model, more realistic soil behaviour can be represented. Early parametric studies
using large deformation finite element formulations on the effects of reinforcement on
stability and deformations done by Rowe and Soderman [147] and Rowe et al. [149].

The test embankments of Almere in the Netherlands, which were constructed in 1979
have been back–calculated in many references; e.g., [178]. Two embankments were built
on a soft clay deposit to measure the effect of geotextile reinforcement on stability as
shown in Figure 4.25. One of them is reinforced with geotextile whilst the other served
as a non–reinforced reference. After constructing the retaining bank on the subsoil, each
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Figure 4.25: Almere test embankment reinforced with geotextile after van Langen [178]

embankment was loaded by hydraulic sand filling. At failure, the reinforced one had a
sand height of 3m while the non–reinforced failed at a height of 1.75m [178].

4.6.1 Assumptions and material modelling

For the numerical model requirements, boundaries need to be established. The strong
peaty sand layer underneath serves as a fixed bottom for the numerical model while
the side boundaries are assumed rigid in the horizontal directions. The soil is simpli-
fied as an elastoplastic material with a Mohr–Coulomb failure criterion. The geotextile
is treated as linear elastic with an axial stiffness of 1900 kN/m. It is also assumed to be
rough enough that failure would happen inside the soil.

The construction procedure was repeated such that the ditch was excavated in the clay
layer while at the same time the retaining bank was made with the excavated clay. As
next, the hydraulic fill with fully saturated sand was achieved. In this analysis, the em-
bankment is constructed sufficiently quickly such that consolidation of the subsoil can
be neglected. For the loose fill, the shear modulus is proportional to the pressure level,
which is an average of a constant value in this study. The mechanical properties of the
embankment and the filling sand are listed in Table 4.2 [178].

Table 4.2: Properties of the soils

parameter symbol clay sand
saturated weight γsat [kN/m

3] 20 20
stiffness E [kN/m2] 1043 4000
Poisson’s ratio ν [−] 0.49 0.35
cohesion c [kN/m2] 10 1
friction angle φ [◦] 0 32
dilatancy angle ψ [◦] 0 2
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4.6.2 Reference solution (Plaxis) vs MPM

Since the embankment test was achieved in–situ, little much detailed information is
available about failure. Therefore, the finite element software (Plaxis 2D) including large
deformation is considered as a reference solution for this study. A 6–noded triangular
element for the plane–strain problem was adopted. Following the classical procedure
of phase construction, the embankment is numerically built by having the subsoil layer
with K0 = 1 followed by second phase of removing the ditch and constructing the re-
taining bank. Finally, the loading phase is performed by gradually increasing the unit
weight of the 3m height of sand. The horizontal displacement of the toe point is recorded
as a control point as shown in Figure 4.26 for the non–reinforced embankment. Figure
4.27 shows the mesh discretisation related to Plaxis model with the boundary conditions.

In MPM, the embankment problem is modelled using 4–noded tetrahedral elements
with ten particles initially placed in each element. Here, the K0 procedure is not consid-
ered. Instead, the gravity load of the retaining bank is applied in ten load steps. As the
MPM procedure follows a dynamic formulation, some local damping has been added to
obtain the quasi–static solution by reducing the kinetic energy equally over all degrees
of freedom. After constructing the retaining bank, the gravity weight of the sand parti-
cles increased in stepwise manner with a step value of 2 kN/m3. As low order elements
are adopted in the MPM, volumetric locking was expected especially for the clay with
high value of Poisson’s ratio. Therefore, a strain smoothening technique was applied to
enhance the performance of the tetrahedral elements [89].

For the non–reinforced embankment, the load–displacement curve of the toe point
shows very good prediction for the displacements. Similar to the non–reinforced em-
bankment, the reinforced predicts good agreement between MPM and FEM as demon-
strated in Figure 4.26. In this figure, the explicit nature of the MPM scheme is clearly
illustrated in the deviation from the implicit FEM solution. Both solutions at the end
of loading phase predict similar improvement due to reinforcement with maximum dis-
placement value 0.56m as shown in Figure 4.27, corresponding to 1.2m for the non–
reinforced embankment. However, the vertical stress distribution of both solutions show
spurious stress variation at the failed integration points as seen in Figure 4.28. Never-
theless, the failure mechanism of both schemes match quite well after using the strain
enhancement technique. For the developed forces in the geotextile, the MPM underpre-
dict these forces slightly as shown in Figure 4.29, which can be attributed to the under-
predicted MPM deformations, see Figure 4.26.
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Figure 4.26: Horizontal displacement of the toe without reinforcement (top) and with
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Figure 4.27: Total displacements of the reinforced embankment; blue colour is zero dis-
placement and red is 0.56 m: (bottom) Plaxis 2D and (top) MPM

Figure 4.28: Vertical stress for the reinforced embankment; blue colour is zero stress and
red is −130 kN/m2: (bottom) Plaxis 2D and (top) MPM
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Figure 4.29: Comparison of the tensile forces along the geotextile
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Chapter 5

Fluid modelling in MPM

For geomechanical applications involving geotextile and soil, it is most probable that
water is present, especially for coastal works and soil improvement. The presence of
water makes the numerical modelling of the problem more challenging in terms it is in-
compressible or near incompressible. This implies that density is approximately constant.
The governing differential equations of fluid and some fundamental definitions are in-
troduced in Section 5.1. Many numerical schemes dealing with fully incompressible
material introduce some algorithm compressibility to avoid singularity in the discre-
tised equations; e.g., the fractional step method (FSM) [134], which is briefly introduced
in Section 5.2. This section details MPM modelling for nearly incompressible fluid and
provides a one–dimensional validation case.

The property of incompressibility leads to explicit numerical algorithms that predict
inaccurate solutions and are numerically unstable unless very small time steps are taken.
It is essential to introduce enhancement procedures to get an acceptable pressure field.
Although the nodal mixed discretisation (NMD) scheme, which is used for soil [2], helps
improving the solution, a modified average nodal pressure (ANP) scheme [29] is re-
quired to get fairly smooth pressure field. The details regarding the enhancements, and
the corresponding MPM computational algorithm with validation cases are presented in
Section 5.3.

Although MPM replaces the continuum material with distinct material points, the con-
tributions of material points is averaged within a computational cell. Therefore, there is
no precise detection inside a cell for the location of the free surface when the cell is par-
tially filled with points. An algorithm based on a continuous density field is developed
in Section 5.4 and is then applied to the problem of water column collapse, for which
experimental and numerical solutions exist. A related topic to the free surface detection,
is the fluid–solid interaction modelling in MPM, which is elaborated in Section 5.5.

The geotube, which is normally used for shoreline protection, is a geomechanical ap-
plication that combines geotextile with nearly incompressible material inside. The ana-
lytical solution [103] of a simplified geotube that disregards dynamic effects, deformable
ground, and frictional material inside is compared with that of MPM. The predicted final
configuration of the geotextile and the pressure distribution inside are illustrated in Sec-
tion 5.6. Finally, some concluding remarks about the modelling of nearly incompressible
fluid within the MPM framework are presented in Section 5.7.
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5.1 Navier–Stokes equations of fluid dynamics

In fluid dynamics, the conservation equations that characterise the viscous fluid flow are
called the Navier–Stokes equations in which mass, momentum, and energy are conserved
over an infinitesimal volume of the fluid.

5.1.1 Basic definitions

A fluid, in general, is a material that continuously deforms under shear stress, whereas
a solid does not. However, there are some solids that also deform continuously when
the shear stress exceeds a certain limit value resulting in plastic deformations. The me-
chanics of fluid can be investigated in terms of the molecules interactions, however, the
macroscopic scaling is more preferable for engineering applications where the proper-
ties are averaged and represented in terms of a continuum material model.

Stresses and constitutive equation for fluid When fluid undergoes deformation, it
builds up stresses that consist of spherical and deviatoric components. Whereas the de-
viatoric stress vanishes at rest or in uniform fluid flow, solids can have deviatoric stress
at rest. In other words, the fluid stresses are related to the strain rate and pressure by

σij = −p δij + sijkl ε̇kl, (5.1)

where σij is the stress tensor, p is the pressure, δij is the Kronecker delta, sijkl is a sym-
metric fourth–order tensor containing the viscous coefficients, and ε̇ij is the strain rate
tensor defined as

ε̇ij =
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

, (5.2)

in which xi and vi are the location and velocity components, respectively. In the case of
a linear isotropic fluid, Equation 5.1 reduces to the Navier–Poisson law for a Newtonian
fluid [123]

σij = −p δij + λ ε̇kk δij + 2µ ε̇ij , (5.3)

where λ and µ are independent parameters that characterise the viscosity of the fluid,
and ε̇kk denotes the volumetric strain rate. Introducing the strain rate tensor in terms of
the deviatoric and spherical components, ε̇ij = ε̇′ij+ ε̇kk δij/3 with ε̇′ij being the deviatoric
strain rate, Equation 5.3 yields

σij = (−p+ κ ε̇kk) δij + 2µ ε̇′ij , (5.4)

with κ = λ+ 2
3
µ is defined as the bulk viscosity. Equation 5.4 tells us that the thermody-

namic pressure p equals the spherical component of the stress tensor −σkk/3 only when
the term κ ε̇kk vanishes.
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Equation of state In thermodynamics the pressure in a fluid is assumed to be related
to the density ̺ and the absolute temperature θ by an equation of state

̺ = ̺ (p, θ) . (5.5)

In the case of barotropic flow, where the density depends only on pressure, the temper-
ature is dropped from Equation 5.5.

5.1.2 Governing equations

We consider a system Ω in the flow domain with a closed control surface Γ , which coin-
cides with a fixed control volume at certain time t0. As the time advances to t, a difference
between the two configurations is developed as illustrated in Figure 5.1 by the shaded
areas. For such a flow the extensive thermodynamic property ̥, which may be mass,
momentum, or energy, is written such that

̥ (t) =

∫

Ω

̺ f (x, t) dΩ, (5.6)

with f being the corresponding intensive property. The material time derivative of ̥
with respect to the moving system can be correlated to the fixed control volume by ap-
plying the Reynolds transport theorem, which states [123]

d

dt

∫

Ω

̥ ̺ dΩ =

∫

Ω

∂

∂t
(̥ ̺) dΩ +

∫

Γ

̥ ̺v · n dΓ, (5.7)

where t is time, v is the velocity field, and n is the outward unit normal. Alternative
to Equation 5.7, the motion can be described such that the control volume moves with
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Γ = Γv ∪ Γt

material and control volume at time t0

material at time t

n

Ω

Figure 5.1: Finite control volume approach for fluid modelling
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the fluid keeping same fluid particles in the same volume; i.e., the last term of Equation
5.7 is omitted. Therefore, the mass inside stays constant under any deformation that the
volume might experience during the flow. As the mass conserved over the finite volume,
the rate of change of fluid density ̺ is constant in the absence of source or sink and can
be written mathematically as

1

̺

d̺

dt
+
∂vi
∂xi

= 0, (5.8)

which represents the continuity equation. Applying Newton’s second law, we obtain

̺
dvi
dt

=
∂σij
∂xj

+ ̺ gi, (5.9)

where σij is the stress tensor defined by Equation 5.4, and ̺gi is the gravitational force
vector. For the sake of completeness, the conservation of energy equation supplements
the necessary balance between the total energy per unit mass r and the energy dissipa-
tion due to internal stresses. Neglecting the conductive heat flux and the heat generated,
we have

̺
dr

dt
= τij

∂vi
∂xj

− p
∂vi
∂xi

+ ̺ gi vi. (5.10)

where the stress tensor σij = τij − δij p is decomposed into isotropic and deviatoric part
τij . In previous equations, d denotes the material time derivative, which reduces to be
the partial time derivative ∂ in the case of the considered Lagrangian formulation. A
close look at the Navier–Stokes equations (Equations 5.8, 5.9 and 5.10) for a viscous fluid
shows no difference from the conservation equations already shown in Chapter 3 for
solid continuum.

5.1.3 Initial and boundary conditions

In order to have a unique solution for the system of equations, proper initial condi-
tion and boundary conditions must be provided. Since only first derivatives of time are
present in Equation 5.9, it is sufficient to prescribe the initial velocity and pressure fields
at t0 as

vi (x, t0) = V0i and p (x, t0) = p0, (5.11)

where V0i and p0 are the initial fields of velocity and pressure, respectively, specified for
the entire domain. As the boundary conditions provide physical constraints associated
to the problem type, they are derived based on the conservative principles. Apart from
a phase change boundary, we have the following common kinds of boundary conditions:

Solid wall boundary Depending on the fluid viscosity, a no–slip or slip condition can
be applied along a solid wall [154]. The first can be applied for fluids with large viscosity
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values in the form

vi (x, t) = 0. (5.12)

For fluids with negligible viscosity, we only enforce no wall penetration by applying
roller boundary in the following condition

vi (x, t) ni = 0, (5.13)

where ni is the outward unit normal to the boundary Γv (t).

In and outflow boundary The inflow and outflow boundary conditions are applied
when the flow domain is truncated. Therefore, the prescribed velocity at the boundary
Γv is written as

vi (x, t) = Vi (t) on Γv (t) , (5.14)

in which Vi is the prescribed velocity on part of the boundary Γv.

Free surface The interface between a liquid and a gas phase is referred to as a free
boundary, whereas the moving boundary refers to an interface between phases of compa-
rable densities such as solid–liquid or boundary between two different liquids [104].

So far, all previous conditions are related to the momentum equation by specifying
kinematic conditions on the boundary Γv. As next, the free surface condition along the
interface Γt is derived from two conditions. The kinematic continuity which implies that
there is no flow through the surface as

∂Fs

∂t
+ vj

∂Fs

∂xj
= 0, (5.15)

with Fs being the function of the free surface that simply ensures no mass transfer across
the boundary. The second condition is the dynamic free surface condition which states that
the stress is continuous across the interface. In general, this condition can be interpreted
mathematically for any surface traction as

σij (x, t)nj = ti (x, t) , (5.16)

where ti (x, t) denotes the surface traction vector and ni is the outward unit normal vec-
tor of the free surface. In the absence of surface tension and setting the standard atmo-
spheric pressure gauge to zero, this condition is reduced to

σij (x, t)nj = 0. (5.17)
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5.2 Fully and nearly incompressible fluid modelling

The solution methods change markedly for compressible and incompressible fluids. Al-
though there might be very little compressibility of the fluid, the mathematical nature
of the considered problem changes. In this section, the description of each category is
described mathematically with possible numerical techniques to treat each. Finally, the
aim is to approximate the fully incompressible fluid to nearly incompressible where the
MPM algorithm can be applied. This approximation is normally associated with numer-
ical difficulties, which is mitigated here.

5.2.1 Fully incompressible fluid flow

Although fully incompressible fluid, ̺ = constant, in reality does not exist, the effect of
compressibility is negligible in liquids and even in gases with low speed. For a fully
incompressible viscous flow, one can rewrite the governing momentum equation 5.9 in-
cluding the constitutive equation 5.4 in the form

̺
dvi
dt

= 2µ
∂ε̇′ij
∂xj

− ∂p

∂xi
+ ̺ gi, (5.18)

with κ ε̇kk being zero, which is combined with the continuity equation 5.8 that provides
the incompressibility constraint; i.e.,

1

̺

d̺

dt
= 0. (5.19)

By adopting a spatial discretisation scheme, Equations 5.18 and 5.19 yield a system of
equations for steady–state of the form [99]

[

K G

G
T

0

] [

ṽ

p̃

]

=

[

g̃

0

]

(5.20)

in which K and G are square matrices. The vectors ṽ, p̃, and g̃, written bold, represent
the velocity, pressure, and body forces at grid nodes. To avoid introducing too many
symbols in Equation 5.20 and in this section, similar notation is used for the continuous
and discrete variables; i.e., the symbol (̃ ) is dropped and the context signals the nature
of the variable.

Care must be taken to avoid singularity in Equation 5.20 and to satisfy the Babuška–
Brezzi (BB) condition [202], some numerical techniques have been developed. For ex-
ample, the velocity and pressure can be interpolated using two different interpolation
functions as will be addressed in this chapter. An alternative procedure is to introduce
some stabilisation technique. Stabilisation circumvents the singularity of Equation 5.20 by
replacing the zero matrix on the diagonal with a non–zero matrix that can be correlated
to physics or other means [99, 202]. One of the most popular schemes to stabilise the
governing equation is based on operator splitting.

Operator splitting involves breaking the momentum equation into two components:
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one characterised by velocity v∗ that corresponds to deviatoric stresses; and the second
by velocity vc that is a velocity corrector and is associated with the pressure field. In
other words the velocity at time tn+1 is represented by

vn+1 = v∗ + vc, (5.21)

where the superscript n denotes a step counter. An iterative procedure can be established
to get the sought solution vn+1 which satisfying the incompressibility constraint. Numer-
ous versions for operator splitting are described in the literature, with the fractional step
method (FSM) [134, 135] being the most popular. FSM introduces some algorithmic com-
pressibility into the transient relaxation as a means for obtaining a steady–state solution
for which the incompressibility constraint, ∇ · v = 0, is satisfied exactly. This technique
allows velocity and pressure to be interpolated with the same order [202]. The FSM pro-
cedure can be formulated in Eulerian description, for a unit density fluid, according to
three basic steps [134].

Step one Remove the pressure term completely from the momentum equation to ob-
tain an intermediate velocity field v∗ corresponding to the deviatoric components

v∗ − vn

∆t
= (−v ·∇v +∇ · τ )n +H.O.T, (5.22)

where the body forces are not considered here and the higher order terms on the right
are obtained from the Taylor series and works as a convection stabilising operator.

Step two Recover the actual velocity vn+1 from the correction step that counts for the
pressure update; i.e.,

vn+1 − v∗

∆t
= −∇pn+ϑ2 +H.O.T, (5.23)

in which the parameter (0 ≤ ϑ2 ≤ 1) is to switch between fully explicit and semi–implicit
scheme. In fact this step is the third step as the updated pressure pn+ϑ2 is unknown yet.
It is obtained from the following step.

Step three Solve the conservation of mass equation by introducing compressibility to
the fluid such that

1

β2

pn+1 − pn

∆t
= −∇ · vn+ϑ1 , (5.24)

where β is the compressible wave speed [135], while the updated velocity vn+ϑ1 is ob-
tained from the combination of the old and the new velocity vector; i.e.,

vn+ϑ1 = (1− ϑ1) v
n + ϑ1

(

v∗ −∆t∇pn+ϑ2 +H.O.T
)

, (5.25)

in which the parameter (0.5 < ϑ1 ≤ 1.0) controls the contribution of the stabilisation term
that is introduced by the pressure gradient ∇p. Repeating the process of the three steps
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iteratively, the velocity field converges to the steady–state solution. For unsteady prob-
lems, a dual time stepping algorithm can be employed where a pseudo time step is
used for convergence within the real time step loop [133, 137]. The key in all numerical
schemes dealing with incompressible fluid is to introduce a non–zero term in the diago-
nal of Equation 5.20. Using a slight compressibility in the fluid and equal interpolation
for velocity and pressure introduces a pressure derivative in the continuity equation 5.19
which makes the simple explicit time stepping methods applicable.

5.2.2 MPM for fluid modelling

The particle–in–cell (PIC) method is an early version of MPM, which was dedicated for
fluid mechanics problems late fifties [73]. The reader is refereed to Chapter 2 for more
details about the MPM applications into problems involving fluid modelling.

Most of the research carried out in MPM, which adopts matrix free algorithms, are
based on explicit time integration that is conditionally stable [39, 166, 169, 189]. A thor-
ough investigation examining a single–degree of freedom tension bar for different inte-
gration schemes concludes that even the schemes that are supposed to be uncondition-
ally stable have restricted time step size [2]. Hence, developing an iterative scheme; e.g.
FSM, for the nearly incompressible fluid in MPM is not efficient if it is combined with the
explicit time step for solids. Nevertheless, the success of modelling two–phase process
dealing with water and soil has demonstrated that good quality predictions of pressure
and flow field of water are possible with explicit schemes that incorporate enhancement
[90, 162]. The next sections develops an MPM algorithm for near incompressible fluid,
which is simply referred to compressible fluid.

5.2.3 Compressible fluid flow

As mentioned earlier, having fully incompressible fluid causes numerical instability. In
addition solving fully incompressible fluid using an explicit scheme is not possible as
the time step size simply becomes zero. Therefore, assigning small compressibility to
the fluid is important. The density change, as a result of elastic deformation, is related
to the pressure change via

∂̺

∂t
=

1

cp2
∂p

∂t
, (5.26)

where cp =
√

Kf/̺ is the acoustic wave speed with Kf being the elastic bulk modulus
of the fluid. For nearly incompressible fluid during isothermal process the pressure–
density correlation might takes the form [105]

p

pref
=

(

̺

̺ref

)κ

− 1, (5.27)
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where the subscript (ref) indicates reference values and κ is a material parameter. More
sophisticated relationships can be established, although these need more parameters to
calibrate [156]. Equation 5.27, can be replaced by a linear formula for relatively small
range of pressure in such a way

p = pref −Kf εv, (5.28)

where εv is the volumetric strain and pref is the reference pressure. Given the Equations
5.26; and 5.28; and Equation 5.9 with proper boundary and initial conditions, the initial
value problem is solvable using explicit scheme.

5.2.4 Discretised form of momentum equation

The fluid domain described by the governing equations is discretised here using suitable
form for the adopted numerical scheme. The continuous equation is first represented in
a strong form and is then transformed into the weak form using the principle of virtual
work. During this procedure the traction boundary condition formulated in Equation
5.16 is introduced; i.e.,

∫

Ω

δvi ̺
dvi
dt

dΩ =

∫

Γt

δvi ti dΓ +

∫

Ω

δvi ̺ gi dΩ −
∫

Ω

δε̇ij σij dΩ, (5.29)

where δvi is a test function. Following Galerkin’s procedure, this weak representation of
the momentum equation is discretised by choosing an approximation to the solution via
finite elements. Finally, the discrete set of equations over all elements is swept over the
entire domain by the assemblage procedure. Referring back to Chapter 3 for details, the
final form of the discrete momentum equation is

Ma = F ext − F int, (5.30)

in which F ext is the vector of external forces composed of the gravity force and the sur-
face traction, F int is the internal force vector due to internal stresses, M is the lumped
mass matrix, and a denotes the acceleration vector, where

M =

np
∑

p=1

|Jp| ̺p N (ξp) wp,

F ext =

np
∑

p=1

|Jp| ̺p NT (ξp) gwp +

nb
∑

b=1

|Jb|NT (ξb) t (xb, t) wb,

F int =

np
∑

p=1

|Jp|BT
p σpwp,

where |Jp|, N , andwp are the determinant of the Jacobian matrix defined in Appendix A,
the interpolation functions, and the integration weight of particle p, respectively. While
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np is the total number of particles, nb is the number of boundary particles where the ex-
ternal force is applied, see Chapter 3 for more details.

Equation 5.30 needs to be integrated in time. The explicit Euler forward integration
scheme is applied to get the velocity field followed by Euler backward for the velocity
integration to update the material points location. The critical time step size ∆tcrt is ob-
tained from the Courant–Friedrichs–Lewy stability condition to be equal to or less than the
minimum time step ∆te of each element e such that

△ te =
le
cp

with cp =

√

Kf

̺
, (5.31)

where le is the characteristic length of element e. For all cases considered in this chapter,
the critical time step is multiplied by a factor with a value of 0.5− 0.9 to avoid instability
in the numerical scheme. A problem associated with this scheme, however, is that the
time step is limited by the elastic wave speed in the fluid, which gives a very small time
step as the bulk modulus increases.

5.2.5 MPM solution procedure

The MPM solution procedure for the nearly incompressible fluid starts with the initiali-
sation of the material points. Where the continuous volume is replaced by discontinuous
quantities constant in a subregion represented by the material points; i.e.,

∫

Ω

̺χ dΩ ≃
∑

p

χpmp, (5.32)

where mp is the mass of the material point p with χp being the mass specific quantity
represented at p. After initialising the lumped mass matrix M , the external F ext and
internal F int force vectors in Equation 5.30, the acceleration can be obtained directly as
the solution of this equation becomes trivial; i.e.,

an = Mn,−1
(

F ext − F int
)n
, (5.33)

which is integrated explicitly in time accordingly to get the updated particle velocity
vn+1
p in the form

vn+1
p = vn

p +
∑

i

∆tNi,p a
n
i , (5.34)

where the summation index i varies from 1 to the number of nodes per element and Ni,p

is the shape function of node i evaluated at the location of the particle p. The updated
nodal velocity vn+1 of the entire field yields

Mnvn+1 =

np
∑

p=1

mp N
T
p vn+1

p , (5.35)
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in which mp is the mass of the material point p and np is the total number of particles.
Subsequently, the pressure change due to the spatial velocity variation can be achieved
from Equation 5.28 with a simplified linear pressure–density relationship such that

pn+1 = pn −Kf ∆ε
n+1
v , (5.36)

where ∆εn+1
v = ∆t ε̇ii is the volumetric strain increment. The constitutive model of the

fluid is then applied to get the updated stress field σn+1.
The incremental displacement and accordingly the position of the fluid particles are

updated from the velocity field, which is obtained from

un+1
p = un

p +
∑

i

∆tNi,p v
n+1
i , (5.37)

where un+1
p contains the total displacements of the fluid particle p at the end of the time

step. Keeping in mind that the particle position is updated according to the incremental
displacement obtained from the last term in Equation 5.37.

5.2.6 Validation example: plane Poiseuille flow

Plane Poiseuille flow is a flow between two parallel stationary infinite plates separated
by a fixed distance h. The initially stationary incompressible viscous fluid is driven by a
force F which in turn induces a parallel flow in the horizontal direction with no vertical
components; i.e., the flow is laminar. Ignoring the gravity effect, the time–dependent
solution [112] along the vertical axis x2 is

v (x2, t) =
̺F

2µ
x2 (x2 − h) +

∞
∑

n=0

4 ̺F h2

µπ3 (2n+ 1)3
sin
(πx2
h

(2n+ 1)
)

exp

(

−(2n+ 1)2 π2µ

̺ h2
t

)

. (5.38)

For the sake of testing the algorithm to capture the real time behaviour, this problem
is modelled with the present MPM formulation with no update of the particle locations.
The 5m length of the plates has been taken long enough relative to the 1m apart plates to
reduce the corner effect. Slight compressibility has been introduced to the unit density
fluid Kf = 20GPa with µ = 1Pa.s, and a pressure gradients F = −8 kPa/m is imposed
as a driving force. The reason for using large value for the bulk modulus is to approach
the fully–incompressible fluid solution in Equation 5.38. Figure 5.2 shows that MPM
results matches the series solution quite well. The mesh related to the problem with the
boundary conditions is shown in Figure 5.3. In the figure, the pressure contour shows
some non–uniformity at the entrance and exist sections which can be attributed to the
effect of corners. However, the pressure distribution along the middle horizontal plane
shows a near linear relationship.

105



Chapter 5 Fluid modelling in MPM

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2

ve
rt

ic
al

po
si

ti
on

[m
]

velocity [m/s]

analytical
numerical

t=0.01 s

0.05

0.1

0.2

∞

Figure 5.2: Comparison of analytical and MPM solution for the Poiseuille flow
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Figure 5.3: Poiseuille flow description and pressure at steady–state: (top) pressure con-
tour from 42 to −2 kPa, and (bottom) linear distribution along midplane
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5.3 Volumetric locking: existence and alleviation

It is well known that low order finite elements tend to exhibit a volumetric locking when
the bulk modulus is high. The classical illustration of this problem is presented in Figure
5.4, which shows a quadrilateral region being discretised by two triangular elements,
holding three nodes constrained. Assuming fully incompressible material, the defor-
mation must be volume preserving; i.e., the linear shape functions of the element only
allow a velocity of the node in the direction parallel to its base. Therefore, the node can
not move at all to satisfy conditions of both elements. As a first remedy, the volumetric
locking can be avoided by using the cross–diagonal discretisation pattern shown in Fig-
ure 5.4. Unfortunately, if the centre node is not exactly at the centre, such a configuration
also suffers from locking and pressure oscillations [18].

In more complicated problems with more elements, the kinematic locking due to the
high bulk modulus spreads through the entire domain leading to the velocities that are
underpredicted, with oscillations in pressure called checkerboarding as demonstrated in
Figure 5.5 for shear flow driven velocity field within a cavity.

In the preceding section, the Poiseuille flow problem showed good agreement with the
analytical solution. The flow in this problem, however, is one–dimensional and does not
suffer from the volumetric locking. An extreme exercise for testing the volumetric lock-
ing is the lid driven cavity problem in which a continuous velocity is applied along the
upper edge resulting eddy flow inside the cell. Picking a high value for the bulk mod-
ulus and trying to get the correct solution using the MPM procedure early described is
not possible. The velocity field is completely locked and the pressure is dominated by
the checkerboarding mode as shown in Figure 5.5. An expected conclusion is that an
enhancement technique is essential when using low order elements.

The problem of volumetric locking in low order elements has been tackled by differ-
ent methods. As the locking problem is associated with the spherical component of the
stress tensor, a mixed element formulation provides a suitable scheme of defining more
than one field variable [202, 203]. Therefore, the pressure or the volumetric strain can
be defined as an independent degree of freedom on the discretisation grid beside ve-

ve1

ve2

e2e4

e1

e3

e1

e2

Figure 5.4: Volumetric locking in low order elements: existing in two triangular elements
(left) and avoiding by the cross–diagonal mesh pattern (right)
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x2

x1

p > 0

p < 0

v1 = 1, v2 = 0
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Figure 5.5: Illustration of checkerboarding mode (left) and application to the lid driven
cavity with a pressure range from −10 to +10 MPa (right)

locities. The fractional step method (FSM) or any other scheme based on splitting the
governing differential equation can be introduced [134, 205]. As an alternative, the nodal
mixed discrestisation (NMD) treats both: nearly incompressible elastic material and the
locking problem associated with plastic deformation [53].

5.3.1 Nodal mixed discrestisation (NMD)

The NMD being considered in Section 3.4 for solid materials is applied here for fluids.
As a result, the smoothen volumetric part of the strain tensor alleviates the locking prob-
lem. To begin with the mixed formulation involving the velocity v and volumetric strain
εv as independent field variables, the weak form in Equation 5.29 can be rewritten in the
form

∫

Ω

δv ̺
dv

dt
dΩ =

∫

Γt

δv t dΓ +

∫

Ω

δv ̺ g dΩ −
∫

Ω

δε̇ τ dΩ +

∫

Ω

δε̇ δp dΩ, (5.39)

where δ is the Kronecker delta. In addition, the weak form of Equation 5.28 in terms of
the virtual volumetric strain δεv is written in the rate form as

∫

Ω

δε̇v (ṗ+Kf ε̇v) dΩ = 0, (5.40)

which is simplified for Newtonian fluid with constant bulk modulus Kf . The pressure
rate ṗ is obtained from the nodal volumetric strain rate, which yields
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∫

Ω

δε̇v (ǫ̇v − ε̇v) dΩ = 0, (5.41)

in which ǫ̇v is interpolated value from the nodal discretisation of the volumetric strain
rate ǫ̇v and the interpolation function N

ǫ̇v ≃ N ǫ̇v, (5.42)

whereas ε̇v in Equation 5.41 is computed from nodal velocity as in the finite element pro-
cedure. Back substitution of Equation 5.42 into Equation 5.41 for arbitrary δε̇v gives

∫

Ω

NT (N ǫ̇v − ε̇v) dΩ = 0. (5.43)

Equation 5.43 provides a least squares fit for nodal volumetric strain rate. Therefore, the
smoothening in this approach is considered as an explicit version of the mixed discreti-
sation where the strains are defined as degrees of freedom beside velocity. Following up
on this idea, the strain rate tensor is modified in the following form

¯̇ε = ε̇− 1

3
ε̇vδ +

1

3
¯̇εvδ, (5.44)

where ¯̇εv is obtained for an element with nen nodes as

¯̇εv =
1

nen

nen
∑

i=1

¯̇εv,i with ¯̇εv,i =

∑

e

ε̇v,eΩe

∑

e

Ωe

, (5.45)

where ¯̇εv,i is the volumetric strain rate evaluated at the node i with e being an element
attached to this node. The NMD approach has been applied to strip footing problem
using MPM where the analytical solution is available [2]. The bearing capacity of the soil
showed an improvement after using the volumetric strain enhancement. Furthermore,
the approach has been extended for two phase flow analysis successfully where a sea
dike under wave attack was analysed [90].

The NMD approach for nearly incompressible fluid is tested by the lid driven cavity
problem. The pressure field corresponding to an attempt of solving this problem without
applying any enhancement procedure is shown in Figure 5.5, where the white colour in
this figure indicates values out of the mentioned scale. The problem is modelled in MPM
with regular tetrahedral mesh using one element in depth without updating particle
locations. The validation is kept with low value of Reynolds number (Re = ̺ V lc/µ =
1.0), where lc is the characteristic length of the problem and V is defined according to
Equation 5.14 as the prescribed velocity at the boundary. Finally, the bulk modulus of
the problem is defined to be close to that of water Kf = 2GPa. The results in Figure 5.6
showed a limited improvement in the velocity field. As a conclusion, the enhancement
of the velocity field by the NMD approach alone is not suitable for nearly incompressible
fluid. Therefore, another approach has to be investigated.
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Figure 5.6: Horizontal (left) and vertical (right) velocity components of the driven cavity
using NMD approach

5.3.2 Average nodal pressure (ANP)

The average nodal pressure (ANP) scheme has been proposed to alleviate the volumetric
locking in linear elements [29, 84]. In this approach, the pressure is evaluated at the
nodes by defining nodal volumes based on surrounding triangles or tetrahedrals. The
formulation of the ANP scheme starts with estimating the average volumetric ratio Ji at
the node i as follows

Ji =
Ωi

Ωi,0

with Ωi =
1

nen

∑

e

Ωe, (5.46)

where the subscript 0 refers to the initial configuration and the summation runs over
the number of elements attached to the node i. The lumping procedure of the element
volume is demonstrated in Figure 5.7 for two dimensional triangular elements. As fol-

e4

e5

e3

e2

e1

i

Figure 5.7: Lumping procedure of two dimensional volume
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Figure 5.8: Horizontal (left) and vertical (right) velocity components of the driven cavity
using modified ANP approach

lows, the average nodal pressure pi is computed and mapped back as a final step to the
element; i.e.,

p̄e =
1

nen

nen
∑

i=1

pi with pi = Kf (Ji − 1) , (5.47)

with p̄e being the average element pressure. In this procedure, the spherical part of the
stress tensor is evaluated at the nodes while the deviatoric part is kept on the element
level with no change. For the present formulation, the entire stress tensor is evaluated at
the element followed by explicit averaging of the spherical component at the nodes as

σij = τij − δij p̄, (5.48)

in which, the enhanced pressure p̄ is computed from

p̄ =
1

nen

nen
∑

i=1

p̄i with p̄i =

∑

e

peΩe

∑

e

Ωe

, (5.49)

where the summation with e index runs over the number of elements attached to the
node i. The driven cavity results related to the ANP enhancement procedure is illus-
trated in Figure 5.8. For quantitative comparison with other numerical methods [112],
the horizontal and vertical velocity components are shown in Figure 5.9. In these fig-
ures, the MPM solution is seen to be quite close to the finite difference (FD) solution.
The smoothed particle hydrodynamics (SPH) solution slightly underpredicts the proper
solution, which requires further tuning of the parameters of this method [65, 112].

So far, the driven cavity problem is discretised with regular tetrahedral mesh. Ac-
cording to Equation 5.49, the smoothen pressure p̄ at material points is achieved by vol-
umetric weighting of the average pressure at nodes p̄i. The analysis is repeated with
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centrelines, respectively
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Figure 5.10: Effect of the mesh regularity of the pressure field: regular (left) and irregular
(right) tetrahedral meshes, the pressure range from −50 to +50 kPa

irregular tetrahedral mesh. A comparison of the pressure field for the regular and ir-
regular meshes is presented in Figure 5.10. Excluding the edges effects where linear
variation of velocity is applied along the corner element, the modified ANP approach
does not appear to show much dependence on the regularity of the tetrahedral mesh.

The presented lid driven cavity problem shows that the ANP approach produces
smoother results than the NMD approach been adopted for soil. The reason can be eas-
ily attributed to the total pressure enhancement within the ANP procedure. Whereas,
the NMD scheme smooths only the volumetric strain increment that contributes to the
total pressure where incremental error is accumulated. In the case of soil, where plas-
ticity might be involved, the total pressure scheme can not by applied. It is however
applicable if only elasticity is involved for the pressure field, which is the case for fluid.

In this section, it is proven that the average nodal pressure ANP approach is essential
to have smooth pressure prediction for the lid driven cavity problem with no update
for the particles location. In the case of MPM when particles might change elements in
later cases, however, the ANP approach alone was not enough to stabilise the pressure
field and enhance the pathological locking. Therefore, adopting both ANP and NMD
approaches at the same time reduces the pressure instability as well as mitigates the vol-
umetric locking problem.
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5.4 Free surface problem

The free surface problem is an important topic in coastal applications and many engineer-
ing problems. The expression for free surface is due to the contact of two fluids having
different densities where free surface is developed at the interface. It is important to
detect this surface properly. In most applications where single fluid flow is involved,
a fluid experiences a free surface as exposed to the atmospheric pressure, where the air
pressure corresponds to gauge pressure. The important feature of this type of problem is
that the shape of the surface is unknown, a priori, as it depends on the developed flow.

In numerical modelling, two distinct approaches or the combination of both are used
to tackle the free surface flow problem. The interface tracking, is also called the front track-
ing method, in which the free surface is considered as a movable Lagrangian boundary
where the kinematic and the kinetic boundary conditions are applied [58]. The motion
of the free surface is advanced explicitly, being defined as a sharp interface. Even though
the interface is sharply tracked in such methods they encounter mesh related problems
when a mesh becomes heavily distorted. For instance, the Particle Finite Element method
(PFEM) uses continuous remeshing with new topology in each time step to obtain a new
Lagrangian mesh, where the boundary conditions are applied [86, 139].

For Eulerian approaches where the material flows through fixed mesh, some tech-
niques are applied to distinguish the free surface within the element space. Interface
capturing method or the volume tracking performs the solution on a fixed grid where the
position and the movement of the free surface is captured by the solution algorithm in
one of three different ways: tracking the seeded particles; introducing a level set func-
tion; and finally by tracking the fluid volumes using an indicator function [20]. Among
these three categories, the volume–of–fluid (VoF) method is the most widely used. In this
method, the physical volume fraction is used as an indicator to track the discontinu-
ous volume change across the interface as shown in Figure 5.11. The indicator function
equals to unity at any point occupied by the fluid and zero elsewhere, or interface is de-
tected if the value between zero and one. Moreover, the formulation of the VoF strategy
is formulated in an Arbitrary Lagrangian–Eulerian (ALE) framework where the structure
is modelled in a Lagrangian finite element way, while the fluid domain is treated with
the finite volume method [91].

1.01.0

0.4

1.0 1.0 0.3 0.0

0.40.91.00.9

0.0 0.3

0.3

Figure 5.11: Illustration of the volume–of–fluid method

114



5.4 Free surface problem

In MPM, mass density field can be evaluated at nodes each time increment [185]. In this
approach, the density field is represented at the grid nodes using the following formula

̺i =

∑

e

∑

p

Ni (xp) mp

1
nen

∑

e

Ωe

, (5.50)

where the summations with the indices e and p run over the elements attached to the
node i and particles in element e, respectively, and Ni denotes the shape function of
node i being evaluated at the location xp of the particle p which has the distinct mass
mp. Important to highlight here that the denominator of Equation 5.50 involves only the
non–empty elements, so that the density if approximated properly. In this expression,
the nodal density field is expressed by the lumped mass corresponding to the node di-
vided by the lumped nodal volume as computed in Equation 5.46. Consequently, the
density at any location x inside elements can be interpolated using

¯̺(x) =
∑

i

Ni ̺i, (5.51)

in which ¯̺ is the smoothen density field. Using this procedure, the smoothen density
¯̺ is evaluated for all material points, which is used in the current MPM formulation to
capture the free surface; i.e.,

(¯̺p)
t+∆t ≤ fit ̺

t+∆t
p , (5.52)

where fit is a factor controls the continuity of the free surface being detected in MPM. Sat-
isfying the inequality of Equation 5.52 means that particle p is lying on the free surface,
otherwise, the particle is detected as interior particle. The factor fit is mesh dependent
and needs to be tuned accordingly. Figure 5.12 shows the effect of this factor on the de-
tected interface. Based on experience a value of 0.6 is considered to be reasonable.

Kinematic and kinetic boundary conditions, Equations 5.15 and 5.16, of the free sur-
face condition must be satisfied. In MPM procedure, however, the kinematic movement
of the particles is obtained by solving the momentum equation. Therefore, the kinematic
equation of the free surface flow is solved inherently and the two conditions of the free
surface reduced to the dynamic condition only. In the absence of surface tension and
considering the usual case of gas being in contact with liquid, the inertia effect of the gas
is negligible and the only influence of the gas is the pressure that acts on the interface
[5]. Therefore, the dynamic condition is reduced to the hydrostatic pressure, which set
to zero gauge for the detected particles.

Validation example: collapse of water column The problem of water column collaps-
ing has been addressed in many references. The column is supported at the bottom by
a horizontal surface and along the sides by a removable supports. Depending on the
column shape being circular or rectangular, the supporting walls are removed suddenly
to let the water flow, with the horizontal velocities and the residual column height be-
ing measured with time. In addition to physical modelling [42, 125], the water column
problem inspires many authors as a fundamental validation for numerical modelling of
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Figure 5.12: Effect of the free surface settings of the interface detection

incompressible fluid [127, 155]. Furthermore, special attention must be paid to model
the free surface formulation [85, 100].

In this thesis, the problem of the water column collapsing is modelled in MPM using
tetrahedral mesh discretisation with an initial hydrostatic pressure been assigned to the
particles as illustrated in Figure 5.13, in which the dimensions of the column are given
by the width w0 and the height h0 at the beginning of the simulation. Since the time step
size is controlled by the minimum characteristic element height which becomes small in
the case of irregular mesh, a regular discretisation has been adopted. The viscosity of the
water was assumed constant µ = 8.9× 10−4 Pa.s with a bulk modulus of Kf = 2.13GPa.

As discussed earlier in this chapter, the MPM solution procedure requires an enhance-
ment to mitigate the problem of volumetric locking associated with using low order el-
ement for nearly incompressible fluid. Hence, two algorithms were investigated. The
average nodal pressure (ANP) algorithm was found to show smoother results when
compared to the nodal mixed discretisation (NMD) in the case of driven cavity prob-
lem with no update of particles position. However, in the case of water column collapse
where the particles are allowed to update position, both enhancements are required si-
multaneously. Figure 5.14 compares the MPM results with FEM analysis [42]. For this
problem, some snapshots for the pressure distribution are shown in Figure 5.15.

Referring to Figure 5.14, the particles being detected on the free surface are coloured
lighter as compared with the interior particles. The free surface in this figure does not
show continuity at time 0.1 s for which the factor fit is set to 0.6. Nevertheless, other
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Figure 5.13: MPM discretisation of the water column problem with an initial hydrostatic
pressure (0 to 1.1 kPa)

snapshots show distinct and continuous surface. At time 0.7 s, the MPM model predicts
more splashing than the FEM solution, which in turn tag many particles on the interface
surface. Both MPM and FEM models agree on the trend of the column collapse, where
the wave surge hits the right wall and climbs up to form a thin water column up to the
time 0.4 s where it collapses back to form a retreated wave against the primary water
wave. It is obvious that the second collapse has different pattern due to the squeezing
of its bottom by the primary wave. As a result, the retreated wave interacted with the
primary flow to trap some air in between which is captured by both models as shown
for t = 0.7 s.

Figure 5.15 shows reasonably smooth pressure distribution with different time steps.
At time 0.2 s the distribution reflects mainly the hydrostatic linear distribution when the
residual height of the column becomes 7.3 cm with maximum pressure of 0.8 kPa in the
column. On the other hand, the distribution at time 0.4 s is dominated by the hydro-
dynamic pressure with the flow changing its direction at the right corner. Apart from
this, the forming water column is free of stress and having nearly zero pressure when its
particles are moving upward. At the same time, the original water column to the left is
becoming more flatten with maximum height of 3.4 cm. The column then starts to plug
already at time 0.5 s and the pressure concentration spreading out over wider area. At
time 0.6 s the particles near the right wall start landing together as a cloud whereas the
retreated wave starts moving to the left.

For further validation of the MPM simulation of water column collapse, comparison
is conducted with experimental results where the MPM mesh discretisation is extended
farther in the horizontal direction. Furthermore, the aspect ratio Ar of the height to the
width of the column has been varied holding the column width w0 constant. In this case,
variables are normalized according to the following formulas [125]

X1 =
x1
w0

, X2 =
x2
h0
, and T =

√

g Ar

w0

t, (5.53)
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t = 0.3 s

t = 0.1 s

t = 0.5 s

t = 0.7 s

Figure 5.14: Collapse of the water column with free surface condition: MPM (left) and
FEM [42] (right)
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where X1 and X2 are the normalized horizontal and vertical coordinates of the water
particle respectively, with T being the normalized time. The gravitational acceleration
g is considered as 10m/s2 whereas the aspect ratios Ar = 1, 2 are chosen for constant
column base w0 = 11.4 cm. As illustrated in Figure 5.16 good agreement is obtained
between predictions and experimental results. The MPM solution however shows lit-
tle faster movement of the horizontal surge front as compared with experimental. This
small deviation is attributed to applying roller boundary condition instead of the non–
slip condition along the base. A rough condition can be applied for the numerical model
but the mesh near the boundary would have to be very fine to capture the boundary
layer. Otherwise, the effect of the rough boundary would slow down the stream in un-
physical manner. On the other hand, the residual height of the water column shows less
deviation between the MPM and the experiment for both aspect ratios as demonstrated
in Figure 5.16. Indeed, the MPM has excellent prediction for the column height in both
aspect ratios Ar = 1, and Ar = 2.

t = 0.2 s

t = 0.4 s

t = 0.6 s

Figure 5.15: Pressure distribution of the MPM water column with the range 0 to 0.9 kPa
(left) and FEM free surface [42] (right)
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Figure 5.16: Comparison of the horizontal surge front and the residual water column of
the collapsed water column using MPM with experimental data [125]
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5.5 Fluid–Structure interaction

In many scientific and engineering fields, interaction between fluid and structures ex-
ists. Owing to the nature of coupling, the fluid–structure interaction (FSI) problem has
strong geometrical nonlinearity, making it challenging to obtain an analytical solution,
and even a solution via classical numerical methods. For the FSI problem, two strate-
gies can be used: the monolithic and the partition strategy [52, 79, 91]. In the monolithic
approach, both fluid and structure are solved simultaneously to form single system of
equations for the entire problem such that their mutual influence can be taken into ac-
count directly. Therefore the interfacial condition is implicitly included in the solution
procedure, which makes this scheme more favorable for the stability of the calculation
[52]. On the other hand, partitioned schemes treat the fluid and the structure as two
separate computational fields, with the interface condition being used to explicitly com-
municate information between the two medium, which makes this approach useful to
integrate two available algorithms due to less time for coding [79]. Different classifi-
cation for the FSI approaches based upon the treatment of the mesh. Conforming mesh
methods track the interface condition as a physical boundary that requires updating the
mesh, whereas the non–conforming mesh methods treat the interface via constraints im-
posed on the model equations, keeping the same original mesh [79, 179].

5.5.1 Mathematical description

The FSI problem can be described mathematically by considering the three–dimensional
domain Ω, which is composed of the structural Ωs, and the fluid Ωf subdomains inter-
acting with each other through the interface Γs; e.g., Γs = Ωs ∩ Ωf . For such a system,
the conservation of mass of the solid body described in the Lagrangian formulation can
be written as

d̺s

dt
+ ̺s

∂vsi
∂xi

= 0, (5.54)

in which the superscript s refers to the solid body, with conservation of linear momen-
tum reading

̺s
dvsi
dt

=
∂σs

ij

∂xj
+ ̺ gsi . (5.55)

On the other hand, the mass conservation law for fluid is mostly given in an Eulerian
description as

∂̺f

∂t
+ ̺f

∂vfi
∂xi

+ vfi
∂̺f

∂xi
= 0, (5.56)
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with the conservation of linear momentum equation given by

̺f

[

∂vfi
∂t

+ vfj
∂vfi
∂xj

]

=
∂τ fij
∂xj

− ∂p

∂xi
+ ̺ gfi , (5.57)

where the superscript f denotes the fluid continuum. The solid and fluid in Equations
5.55 and 5.57 follow constitutive equations consistent with their properties. Kinematic
and dynamic boundary conditions are then imposed along the interface Γs, as already
described in Section 5.1, to ensure continuity in displacement/velocity and stresses in
the form

vsi (x, t) = vfi (x, t) and σs
ij (x, t)nj = −σf

ij (x, t)nj, (5.58)

where n is the outward unit normal at the solid boundary. It is important to mention
that the conservation of energy equation is dropped out of this formulation for isother-
mal process.

5.5.2 Arbitrary Lagrangian–Eulerian methods (ALE)

The ALE methods are the most frequently used methods to treat the FSI problem. For
these strategies, both the Lagrangian solid and the Eulerian fluid are discretised such
that they share the interface. However, the Eulerian mesh is not being restricted to con-
forming mesh but rather it can move arbitrarily, thus an extra convection term must be
taken into account [179]. The fluid–solid interface is made to follow the movement of
the Lagrangian solid and consequently Equations 5.56 and 5.57 become [79]

∂̺f

∂t
+ ̺f

∂vfi
∂xi

+
(

vfi − vmi

) ∂̺f

∂xi
= 0, (5.59)

̺f

[

∂vfi
∂t

+
(

vfj − vmj

) ∂vi
∂xj

]

=
∂τ fij
∂xj

− ∂p

∂xi
+ ̺ gfi , (5.60)

where vmj is the velocity of the fluid mesh. The Navier–Stokes equations are solved in the
ALE methods by splitting the differential operator, allowing the Lagrangian phase cal-
culation to be performed first with the mesh moving with the fluid particle. Changes in
velocity, pressure and internal energy due to external and internal forces are computed
in this phase, which represents a linearized Stokes problem. A non–linear advection
phase follows, including transportation of mass, momentum and energy across element
boundaries are obtained. The second phase can be regarded as remapping the displaced
mesh at the Lagrangian phase back to its initial position. More details about this ap-
proach can be found in [7].
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5.5.3 Immersed boundary methods

In contrast to the ALE methods where the fluid–structure interface is accurately cap-
tured, the immersed boundary methods employ non–conforming mesh for the interface
where forces are applied to the fluid to represent the interaction, thereby avoiding the
mesh update. According to the literature [179, 191], the history of this method goes back
to the late seventies when it was used first to study the blood flow through the heart.

In the immersed methods, the Dirichlet condition is enforced by adopting Lagrange
multipliers, which appears as a source term in the governing equation [79]. The addi-
tional terms, which represents the immersed boundary effect, is obtained explicitly from
the structural body. Applying this theorem to Equation 5.57 results in

̺f

[

∂vfi
∂t

+ vfj
∂vi
∂xj

]

=
∂τ fij
∂xj

− ∂p

∂xi
+ ̺ gfi + Λi δ (Γs) , (5.61)

in which the delta function δ is a unit function only where vi ∈ Γs and zero elsewhere.
The Lagrange multiplier Λi is obtained explicitly from [79]

̺s
dvsi
dt

=
∂σs

ij

∂xj
+ ̺ gsi − Λi. (5.62)

The last term in Equation 5.62 represents the fluid–structure interaction force that acts in
Equation 5.61.

5.5.4 Smoothed particle hydrodynamics (SPH)

As introduced in Chapter 2, the continuum is represented in SPH by cloud of Lagrangian
material points where the equation of motion is solved. Interaction between material
points is controlled by the size of the smoothening length. As a first approach in SPH
to deal with the FSI problem, the influence of particles close to the interface can be ex-
tended to include the other particle type on the other side. Therefore, the interpolation
is performed over all particles with no distinction between fluid and solid, which can be
regarded as no–slip contact condition.

In order to relax the glue condition, a contact algorithm can be introduced where the
particles of each material are solved separately [6]. As SPH is unable to enforce kine-
matic boundary condition precisely, similar troubles are expected with the FSI problem.
The interpenetration between fluid and solid is prevented then by correcting the velocity
fields of the two media.

5.5.5 Material Point Method (MPM)

MPM solves automatically the problem of no–slip contact between bodies, and of course
the problem of self–contact of a body. Within one computational cycle, the momentum
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equations are carried out in a Lagrangian manner, contributing forces to the same com-
putational grid points. Dynamic equations are formulated in Lagrangian way. Convec-
tion is treated by mapping velocity field from material points to the mesh nodes. This
combination of Lagrangian and Eulerian processes inherently handles a no–slip contact
between different materials. An application of the FSI problem using MPM was intro-
duced first to model the fluid–membrane interaction of an airbag system [191]. Since
the position of the material points is updated using a single–valued continuous velocity
field, the interpenetration of material is avoided, which allows simulations of no–slip
contact between different bodies without the need for special interface tracking and con-
tact algorithms [169].

The coupling of the fluid and structure in MPM is done via the combination of the
internal forces of each substance on the grid nodes where the divergence of the stress is
evaluated. Therefore, the implicit tracking of the interface via the internal forces is differ-
ent from that of the confined finite element methods that capture the interface explicitly
by dividing the computational domain into two separate domains. Hu et al. [80] define
an explicit procedure to treat the fluid and structure separately. They interpolate the force
and displacement directly to the background grid.

The fact that MPM uses one computational mesh in the background for both medium
gives the same strain rate increment over the interface element. Therefore, one should
expect that the accuracy of MPM for the FSI problem is of the order of element size where
the information is smeared. In different words, if a nearly incompressible fluid is used
in combination with relatively low volumetric stiffness solid, the pressure in the fluid is
expected to be high at the interface at the expense of low stresses in the solid boundary.
Refining the mesh is expected to enhance the solution but does not solve the problem. It
can be found in literature the coupling of structures modelling in MPM with fluid mod-
elled by another numerical scheme utilising the advantageous of both [66, 170].

5.6 Test study: Geotextile tube

The geotextile tube, or geotube, is defined by Pilarczyk [144] as a tube formed in–situ con-
sisting of permeable but soil–tight geotextile. Sand or dredged materials are commonly
pumped as a water–soil filler using a suction dredge delivery line. Geotubes are used for
a range of hydraulic and coastal applications, where the gravity barrier type structures
are required. The sizes range from 1m to 10m in diameter and up to 200m length [101].
As depicted in Figure 5.17, geotextile tubes have been used for many marine applica-
tions; e.g., revetment structures to prevent erosion of the foundation, protection dikes
against floods and storms, containment structures containing a reclamation area over
soft soil, groynes to prevent the movement of the sediments, etc. [64, 92, 144].

Geotubes are usually made of geosynthetic sheets sewn together to form the required
shape. One of the most essential design considerations of these tubes is the seaming
strength as well as the maximum tensile strength of the synthetic. Excluding time–
dependent variables such as creep, abrasion, chemical and biological degradation, the
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Figure 5.17: Applications of Geotubes [64]: (top) sand dune core, (middle) groynes, and
(bottom) offshore breakwater

geotube must be designed such that it can withstand the installation damage. An impor-
tant aspect to study is the stability of geotubes against dynamic loads like wave forces
or current actions by developing a numerical model that can capture realistic physical
conditions. Other aspects like the effect of deformable ground and design of anchoring
system for the tube stabilisation are not considered.

5.6.1 Analytical solution

The problem of pressurised fluid encapsulated inside a geosynthetic tube is formulated
analytically by Leshchinsky et al. [103]. The analysis is simplified for plane–strain prob-
lem with no shear stress inside the filling material or within the geotextile. An equilib-
rium state is assumed for the hydrostatic pressure of the fluid with the tensile force along
the geotextile. As a result, the radius of the geotextile curvature is expressed eventually
in terms of the pumping pressure and the circumference of the tube for a certain fluid
density. The procedure shows agreement with published experimental data for various
dimensions. Accordingly, a computer program GeoCoPS was developed by Leshchin-
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sky et al. [103] that gives the final geometry of the geotube for certain circumference and
tensile force along the geotextile.

In this thesis, the GeoCoPS solution is the reference solution to which the MPM pre-
diction is compared. The aim of this comparison is to validate the interaction of geo-
textile with the nearly incompressible fluid in MPM. In this comparison, the dynamic
MPM algorithm is tested for capturing the steady–state solution to investigate the ef-
fect of the enhancements being implemented. For the sake of comparison, three tubes
were filled with different amounts of fluid γfluid = 12 kN/m3 with the same circumfer-
ence length 9.2m being selected. The filling of fluid inside tube is indicated in terms
of cross–sectional area 6.45, 5.56 and 3.36m2, which give a corresponding final configu-
ration H/W = 0.78, 0.50 and 0.22 where H and W are the final height and width of the
tube respectively. In this analysis, the geotextile is assumed to be inextensible.

5.6.2 MPM model

The different filling ratios of the geotube are modelled in MPM by having different initial
configuration of the tube as illustrated in Figure 5.18, in which the initial oval shape of
the tube is selected in a way that approximately matches the different filling ratios tested
by GeoCoPS for the same 9.2m geotextile length. Four–noded tetrahedral elements are
used to model the plane–strain problem with one element in depth. The fluid is mod-
elled with bulk modulus Kf = 2.13GPa and relatively high viscosity µ = 1.0Pa.s, which
works as an artificial damping to converge faster to the quasi–static solution. The geo-
textile was assigned a very high stiffness and negligible weight to match the analytical
model. Zero stress state was initially assigned to all particles with gravity being the only
external force.

After letting the initial, assumed profile of the geotextile tube rest on the smooth
ground, it keeps bouncing up and down for few cycles after being released until the
viscosity dissipates energy completely. Two criteria had to be satisfied for checking the

4.0

0.5

3.2

1.01.3

3.6m

roller

geotextile

fluid

Figure 5.18: Initial configuration of the MPM model for different geotubes filling
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3.36, 0.22

5.56, 0.50

W/2

area = 6.45m2, H
W

= 0.78

H

MPM

analytical [103]

Figure 5.19: Final configuration of the geotextile tube

quasi–static solution: the overall kinetic energy, and the out–of–balance between exter-
nal and internal forces must meet certain tolerance; e.g. a tolerance of 0.05 is selected for
both criteria in the geotube application. At the quasi–static state, the MPM geotextile for
the final shape of the tube is compared with the analytical solution as shown in Figure
5.19. Considering the approximation of the initial configuration, the MPM profiles are
close except for some small deviation in the case of high and low filling.

Looking at the pressure distribution of the moderate filling in Figure 5.20, the MPM
shows a good reproduction of the linear pressure variation. This is attributed to the ANP
technique. The fact that the locking enhancement does spatial averaging, the layering of
the pressure distribution has some wrinkles. As a summary for the geotube problem,
the MPM fluid model in combination with the geotextile gives good prediction for the
quasi–static solution.

pressure = 4.8 kPa

26.4 kPa

Figure 5.20: Pressure distribution in the tube with 5.56m2 filling: (left) analytical solution
after Leshchinsky et al. [103] and (right) MPM with the range 4.4 to 26.7 kPa
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5.7 Concluding remarks

Solving the fully or nearly incompressible media using an explicit numerical algorithm
is a challenging topic. Apart from the small time step constraint, the algorithm requires
an enhancement procedure to improve the checkerboarding mode associated with us-
ing low order elements. The nodal mixed discretisation (NMD), which is based on
smoothening the spherical part of the strain rate tensor [53], has been shown to work
well for high bulk modulus soil material [2] and for two phase flow modelling [90, 162].
However, the NMD approach gives a limited improvement when it is applied to the lid
driven cavity problem containing a nearly incompressible fluid. As an alternative for
fluid, or elastic material in general, the average nodal pressure (ANP) approach can be
used. Dislike the NMD approach, the ANP shows excellent solution for the fluid flow
inside a cavity driven by shear forces. Applying both: the NMD and the ANP enhance-
ment schemes stabilises the MPM algorithm, making it suitable for modelling viscous
flow of nearly incompressible fluid in combination with solid materials. It should be
realised that the positive effect of the double enhancements techniques requires further
validation for different fluid flow problems.

The MPM fluid modelling approach is combined with an algorithm for detecting the
free surface based on the continuous density field of the material points. The continua-
tion of the free surface is controlled by a factor, which can be tuned according to the mesh
size. The collapse of water column problem is reproduced by MPM, which gives fairly
good match with experiments. It is however noticed that the MPM model has more wa-
ter splashing, which complies with others experience [155]. Therefore, care should be
taken for the solution sensitivity when the problem nature is changing from the laminar
current assumption.

The enhanced MPM algorithm has been tested for a practical application of the geo-
tube, for which the analytical solution for simplified model is available. The aim of the
comparison is to evaluate the MPM fluid modelling as it converges to the steady–state
solution and the interaction with the geotextile elements. In this analysis, the stopping
criteria have been selected as the residual of the kinetic energy and the out–of–balance
norms reach certain tolerance. As the solution proceeds toward steady–state, the size
of the error reduces until certain limit where proceeding with the calculations does not
help the convergence any more. This is attributed to the enhancement algorithms. Itera-
tive and non–iterative solvers using NMD scheme and others for nearly incompressible
elastic solid show that a residual exists, which does not improved with iteration [96].
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Dropping geocontainers

For many coastal structures, geocontainers are becoming more often used in combina-
tion with conventional construction materials. The proper installation of the large sand–
filled containers is challenging. Most studies performed in this young field of engineer-
ing are either hydraulic scaled models or simple theoretical formulas with little field
measurements. The lack of numerical techniques for the area, however, was the motive
to establish an MPM model capable of simulating the dropping of geocontainers.

Modelling the dropping process numerically requires three basic components: soil,
water, and geotextile, all being formulated in the MPM framework of earlier chapters.
Moreover, air bouncy and other technical difficulties are involved in the real problem,
which are not yet available in the current MPM formulation. Nevertheless, the dropping
problem is tackled in this chapter with more focus on important design aspects, which
are addressed in Section 6.1, along with the corresponding limitations and assumptions.

One of the assumptions in the existing implementation is that the geocontainer is re-
leased from the barge neglecting water. This assumption follows the experimental ex-
perience that the tensile forces along the geotextile are more dominant than the flow
resistance during the releasing phase [144]. Furthermore following practice, wrinkles
are added to the container to reduce the developed tensile forces. Even though imple-
menting such folds is not currently possible, it has shown that adding extra length to
the geotextile is good alternative and provides earlier releasing for the container as ex-
pected. Another factor which might increase the chance of the container damage is the
influence of geotextile–barge friction. It has been found that friction not only affects the
tensile forces, but also the shape of the released container. Details related to the releasing
phase with the control parameters are reported in Section 6.2.

As a container is completely released from the barge, the highest geotextile force is
expected when it hits the bottom, which is simulated in Section 6.3 by dumping the con-
tainer on a soil bed. The installed container is followed by second one where interaction
between the two is taking place. The increases in the geotextile forces due to the sudden
landing of the second container is evaluated and compared to the final residual value.

Dropping a geocontainer in water reduces the dumping velocity because of the drag
forces. In order to predict the container terminal velocity properly, the numerical model
should be able to reproduce the fluid velocity field and the interaction with the sinking
body. Therefore, Section 6.4 is dedicated to validate the velocity field of the nearly in-
compressible fluid model as compared with lab test measurements [32]. Extending the
lab model simulation to field measurements [180], where the geocontainer has more fo-
cus of interests is achieved in Section 6.5.
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6.1 Introduction

An important application for membranes is the modelling of a geotextile sand container
(GSC) for shore protection structure. Owing to its economical and ecological advan-
tages over conventional materials, the use of GSC is becoming increasingly popular for
reinforcement of existing threatened coastal barriers and structures [140]. Studying the
stability, interaction and failure of sand containers has been an attractive topic for numer-
ous researchers [45, 78, 146]. Another application of geotextiles is for the construction of
geocontainer units, which consist of prefabricated geotextile placed in a split barge and
filled with sand or slurry up to several hundred cubic meters. Thereafter the container is
closed by sewing and subsequently dumped from the scow bed in the desired position
as shown in Figure 6.1. Geocontainer units are used for underwater structures such as
breakwaters, and disposal of contaminated sludges. See, for example, Pilarczyk [144] for
more applications.

Owing to the complexity of the problem, the understanding of what happens to a con-
tainer during the releasing process and interaction with other geocontainers is still poor.
Theoretical models based on equilibrium have helped to identify the sensitivity of the
forces that develop as a function of physical variables [27, 48, 143]. Furthermore, large
scale physical models have provided data that can be used to estimate the deformation
and developed pressure inside the geocontainer; although it has been difficult to repro-
duce measured values owing to the variation of the control parameters from one test
to another [26, 152, 180]. For better understanding of placing geocontainers accurately,
lab tests were conducted on a scaled simplified geocontainer. These tests have provided
good estimation for the dropping velocity and stability of multi containers [25, 49].

With regard to numerical modelling, there have been attempts to develop models
based on distinct element method to simulate the releasing and dropping process [141,
142]. Nevertheless, there is a need for further investigation. This chapter applies a con-
tinuum model to study each step of the process separately and to establish the variations
of stresses associated with the large deformations that take place in the large soil bags.

seabedgeotextile container

split-bottom barge

container fill

Figure 6.1: Procedure of filling and placing geocontainer [101]
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6.1.1 Geotextile materials

A geotextile is a flexible, porous fabric made from synthetic fibers of polymeric material;
e.g. polyester, or polypropylene. Depending on the manufacturing process and material
used, a geotextile is classified as woven where the polymer is oriented in perpendicular
directions, or as nonwoven, in which discrete fibers are randomly oriented. For sand size
filling materials only layer strength is required, while an additional inner liner is impor-
tant to hold the fine particles in the case of dredged materials [38].

The geocontainer shape is usually formed on site using geotextile sheets, in which the
seam strength is the limiting design factor. For example, the fabric strength of woven
geotextiles is about 175 to 193 kN/m, whereas the seam strength is approximately 50 to
60% of these values depending on the seam quality [38]. To prevent failure, the gecon-
tainer is normally filled with 60 to 70% of the theoretical fill volume [59, 144].

6.1.2 Design considerations

One of the major concerns associated with dropping geocontainers is the strength of the
fabric and the seam. The geotextile should resist the forces during filling, releasing and
impacting on the seabed. In practice, four phases can be categorised within the dump-
ing process as illustrated in Figure 6.2 [144]. The filling phase is not considered in this
classification, where the container is laid out in the barge and filled with the filling ma-
terial, due to the relatively low forces of this phase. The first phase starts with opening
the barge and releasing the container outside, which is normally associated with the big
shape change of the container. As a result, tensile forces develop in the lower part of
the geocontainer, whereas friction forces develop with the barge wall acting opposite to
the container movement. At this stage, the developed forces are not yet maximum as
compared with later stages, however, these forces might increase due to the clinching
of the container sheet passing the bin or additional jamming forces. Several parameters
control the tension in a textile during this phase; e.g., ratio of internal barge width to the
opening width, speed of opening, surface condition of the barge, etc. [101].

releasing dumping reshaping stabilisation
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Figure 6.2: Geotextile forces during the dumping process after Pilarczyk [144]
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In order to facilitate the geocontainer passing through the bin and to obtain a more flat-
ten final shape, a surplus of geotextile is usually added. The extra length and the voids
in the filling material tend to form air pockets in the container. These pockets, which act
as balloons during sinking, reduce the falling velocity and increase the forces along the
geotextile. Therefore, some air vents are added to the upper part of the geocontainer that
facilitate the air to escape outside. After releasing the geocontainer completely from the
bin, the dumping phase through the water begins. The geocontainer starts gaining veloc-
ity and can reach the terminal value if the water is deep enough. During this stage, the
geocontainer does not necessarily undergo a big change in shape. The geotextile tension
must be in balance with the soil weight, water drag, and buoyancy force from trapped
air, even through analytical studies show that the last is rather small [144].

As the container approaches the bottom, it decelerates quickly due to a water cushion
that develops before eventually hitting the seabed. Hence, the kinetic energy obtained
during the journey is dissipated through the subsoil and the reshaping of the container.
Owing to the impact, the soil inside the container moves sideways inducing a decrease in
the geocontainer height. Therefore, the geotextile undergoes high tension as illustrated
in Figure 6.2. The short time process prevents water or air to escape out of the container,
which increases the pressure inside [180]. As a result of rapid shape changes the geo-
textile forces are expected to be maximum during releasing and the dropping process
where the characteristics of the filling material play a role beside the permeability of the
textile itself and the condition of the seabed.

The final stage in the construction procedure is the stabilisation stage where the geo-
container ends up with semi–oval or more rectangular shape depending on the amount
of the filling material. During the construction process, the geocontainer might be sub-
jected to the installation load of the next container, see Figure 6.1, or another load type
after installation; e.g., waves, ship collision etc. The risk of bursting geocontainers in
deep water, inaccurate placement due to waves and current, or even slope failure of a
heap of geocontainers are important issues for the feasibility of using geocontainers [50].
Bursting geocontainers can be correlated to high forces in the geotextile when compared
with its ultimate strength. Maximum forces could be during the releasing from the bin
or the impacting on the ground, which is largely controlled by the amount of filling ma-
terial and barge design.

The dumping velocity is a key factor in the impacting phase. Using a simple model
based on drag force of a rigid body [1], produces a good estimate for the terminal ve-
locity of a model test [25] or even for field measurements [27]. However, the failure in
the geocontainer might be more localised due to the extreme reshaping at impact. Fur-
thermore, interaction between geocontainers is an important aspect for the design of an
individual container or structure of multicontainers. All that has been mentioned here
regarding the design parameters, emphasises the need for a model capable of modelling
the entire process of the large deformation problem associated with material movement
in the presence of thin–walled structure and water. Owing to the difficulty of the con-
sidered problem of releasing and dropping geocontainer in water, the current numerical
treatment has some limitations and assumptions that are addressed in the next section.
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6.1.3 Assumptions and limitations of the numerical model

As mentioned earlier there are some limitations in the current MPM implementation due
to the simplification of the complex physical problem.

Impermeable geotextile The geotextile itself can be permeable or impermeable by
adding an inner liner. Infiltration of water has an impact on the deformation of the
filling material and the dropping velocity. In the case of dry soil, the water can penetrate
through the container if the air escapes. Owing to the quick process of dumping, little
water infiltrates inside. Therefore, the assumption of dry soil when it reaches the bottom
is valid [144]. Furthermore, in some cases and due to the clogging of fine particles, the
permeable geotextile can be resembled as an impermeable [143]. A similar behaviour
of impermeability is expected when contaminated dredged material is dumped and im-
permeable geotextile is used.

Rough geotextile–soil contact The common value of the geotextile–soil friction co-
efficient is about 0.2, which correspond to a friction angle of 11◦ [144], which is much
less than the internal friction angle for sand. At this stage of model development, it
is assumed that a rough contact exists. A rough contact relationship implies that failure
takes place first inside the soil rather than at the geotextile–soil interface. In other words,
a thin layer of soil is assumed to stick to the geotextile. From a modelling point of view,
the thickness of this layer is within the order of the computational element thickness.
Element refinement should thus reduce the effect of the rough contact assumption.

No surplus in the geotextile The surplus, or the extra length, of geotextile is essen-
tial to reduce the developed tensile forces and to obtain a more flatten final shape. The
surplus added usually at the top of the geocontainer is not effective during the releasing
phase. Some wrinkles are added also in the lower part of the container [180], between
the soil and the barge. These have an impact on the required opening of the barge. In the
MPM model, the geotextile is assumed to fully wrap the soil with no surplus. Neverthe-
less, this assumption is relaxed by extending the geotextile outside the barge as will be
described later without violating the rough geotextile–soil assumption.

No bouncy effect of the trapped air Excluding the bouncy effect of the trapped air
means no additional uplift force during sinking, i.e. the MPM geocontainer would sink
faster. Fortunately, this force has minor influence as mentioned earlier.

Consistent soil filling Mechanical and hydraulic filling procedures are used for sand
or dredged filling materials. Experience shows [27, 180] that the uneven releasing of a
containers is probable. Bezuijen et al. [26] recorded a tilting angle of up to 45◦ in the lon-
gitudinal direction due to irregular releasing. In practice, it is advised to fill the container
with more filling material at both ends than in the middle to have more even releasing.
For the numerical model, the filling is assumed to be consistent in the longitudinal and
the transverse directions. Furthermore, the length of the geocontainer is assumed to be
large enough to ensure no deformation in the longitudinal direction is taking place; e.g.
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Chapter 6 Dropping geocontainers

the length to the width ratio about 5 : 1 [180]. Therefore, the plane–strain theory for
two–dimensional problem is applicable.

Isotropic and elastic geotextile The manufacturers of geotextile normally provide the
tensile strength with the corresponding strains up to the break point. For example, the
polypropylene woven geotextile GEOLON 120 implemented in the test of van Oord
[180] has the properties listed in Table 6.1 [173]. Quick check of these values confirms
nearly linear stress–strain relationship, which is considered here in the MPM model.
Furthermore, the properties of the geotextile is assumed homogeneous in all directions
and independent of orientation; i.e. isotropic, which is consistent with the plane–strain
assumption being adopted here. As most calculated geotextile forces in this chapter are
within the maximum limit of Table 6.1, only elastic behaviour is considered.

Elastic–perfectly plastic soil The fill can be different depending on the type of ap-
plication; e.g. sand, clayey–sand, slurry, etc. which can be completely or partially dry
for the granular material. Combining each of these soil types with the variable loading
condition, especially after the container being released from the split barge, makes the
problem challenging for any constitutive model. By assuming loose state for soil initially
in the barge, the importance of stresses dependency on the density variation and the
stress level is unclear when it is subjected to the external hydrodynamic load. Advanced
constitutive models that take into account density variation; e.g. hypoplastic model,
are applicable for dynamic problems; for example the pile driving problem [2, 74]. Fur-
thermore, including a more sophisticated constitutive model such as hypoplasticity, are
known to suffer from numerical stability problems. Therefore the elastic–perfectly plas-
tic Mohr–Coulomb model is applied herein for all applications in order to avoid numer-
ical difficulties with advanced constitutive models.

Decomposing the geocontainer problem Considering the explicit implementation of
the nearly incompressible fluid, where the time step becomes extremely small, for a prob-
lem like dropping geocontainers requires high–end computational resources with multi
processing units. It is well known that MPM has high computational power needs as
compared with the classical numerical methods. All solved problems in this research
are performed on personal computer with quad core processors. Therefore, the entire
process of installing geocontainers is decomposed into smaller problems where the sig-
nificant aspects are treated with more focus on the design consideration mentioned be-

Table 6.1: Mechanical properties of polypropylene woven geotextile, GEOLON 120 [173]

elongation [%] tensile strength [kN/m]
2 30
5 84
9 120
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fore. In other words, the releasing phase of the geocontainer from the split barge is per-
formed dry without considering the water effect. Similarly the simulation of building
geocontainers construction is carried out via studying the interaction of two containers
only. On the other hand, the dropping phase of a single container is obtained by placing
it directly in the water. More details about the feasibility of each assumption follow.

6.2 Releasing of geocontainers from barge

The first important loading of the geotextile is when the barge opens and the geotextile is
stretched across the opening. Four stages are distinguished for the opening of the barge
and releasing the geocontainer [48]. The first stage begins by stretching and uplifting the
lower part of the geocontainer. As the container descends without much deformation in
the second stage, more deformation is taking place in the third stage while it is passing
through the opening. Finally, the whole container passes through the opening although
the open is kept constant. Numerous methods are presented in literature focusing on
these stages, but mainly on the last one to predict the geotextile forces at the releasing
moment. Most of these methods however are based on dividing the container into rigid
blocks where the interaction forces are obtained from the mobilised friction at failure
combined with equilibrium state.

Depending on the particular parameter being measured in the dropping process, ex-
perimental model tests are performed differently. For instance dropping geocontainer in
air, see Figure 6.3, can be used when the tensile forces and the soil deformation are more
important than the flow resistance [144]. Furthermore, the barge profile has an influence
on the smooth unloading of the container. A sudden opening of the bin reduces the
forces that develop. The focus in the MPM model will be on the tensile forces along the
geotextile with the corresponding soil stresses inside for certain barge configurations. In
addition, the effect of internal soil friction angle and external angle of the barge friction
on the evolution of the tensile forces will be investigated.

Figure 6.3: Dropping geocontainers in air by NICOLON [144]
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6.2.1 Problem description

The dimensions of the barge, as described by de Groot et al. [48], with the MPM dis-
cretisations is illustrated in Figure 6.4. Owing to symmetry, only a half of the problem is
modelled. The lower tip of the container is modelled as the soil is completely wrapped
with no slack in the geotextile. A scenario is also examined where extra slack placed in
practice nearby the barge tip is taken into account in the MPM model by extending the
geotextile 0.5m outside the barge as shown in the details of Figure 6.4.

The plane–strain problem is represented in a three–dimensional code using 4–noded
tetrahedral elements. Failure conditions in the soil are modelled by the Mohr–Coulomb
approximation with an elastic modulus of 820 kPa, Poisson’s ratio of 0.333, cohesion of
1 kPa, friction angle of 30◦ and unit weight of 16 kN/m3. The low value of the elastic
modulus is estimated for the case of loose sand poured into the barge such that it is
proportional to the square root of the mean stress. For this purpose, the reference value
is approximated as 6MPa, whereas the reference mean stress is proposed to be 100 kPa.
The representative mean stress point is taken in the middle of the barge. Linear elastic
geotextile is considered with (Young’s modulus × thickness) = 400 kN/m, with Poisson’s
ratio being zero. Frictional contact is assumed between the barge and the geotextile with
a friction coefficient (µ) of 0.3. For the present calculations, the effect of water is not con-
sidered and the soil inside the geocontainer is assumed dry.

Initially, the gravitational stresses are approximated using (K0 = 0.5) and are assigned
directly to the soil particles. A prescribed angular velocity 0.5 degree/s for the opening
rate around the centre of rotation has been assigned to the barge material points.
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Figure 6.4: Initial MPM configuration of releasing geocontainer from a split barge
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6.2 Releasing of geocontainers from barge

6.2.2 MPM results

Considering that the opening phase is achieved slowly, the process is nearly quasi–static,
therefore, the force equilibrium shown in Figure 6.5 is applicable. In this figure, the force
(FS) representing the load that squeezes the soil results from the horizontal stress in soil
integrated along the plane symmetry. Moreover, the normal reaction force to the barge
(Fn) produces the frictional force (µFn). All these forces plus gravity and the geotextile
tensile force (FGT ) should keep the geocontainer in place when the barge stops opening.

The development of the soil and geotextile forces with the opening angle (θ) is shown
in Figure 6.6. The small drop at the beginning of the soil force is most likely related to the
assumption of the initial equilibrium with K0 procedure, which quickly varies linearly.
On the other hand, the geotextile force starts from a zero value, tending to also follow
a straight line trend. The sharp drop in the soil force and the corresponding increase in
the geotextile tension are indications that the soil becomes more free to dilate outside the
barge. After this point, the two forces (FS) and (FGT ) eventually approach each other,
which tells that the barge does not apply any significant force on the geocontainer [71].

As the barge opening increases, tensile forces in the geotextile (FGT ) increase as they
keep the soil together. Eventually, these forces pull the soil away from the barge, which
in turn decreases the frictional forces between the geotextile and the barge. As a re-
sult, the geocontainer loses contact gradually with increasing angle of opening. Holding
quasi–static equilibrium, the difference between the soil and geotextile force increases
with loading, which is due to the loss of contact during the releasing. Since the frictional
force (µFn) and the force normal to the barge (Fn) decrease, the term (FS − FGT ) must
increase to insure an equilibrium state. The linear variation between the two forces can
be proven for the quasi–static equilibrium case [143].

Comparing the forces for the geotextile with and without slack shows a small differ-
ence, which indicates that the one without slack experiences higher forces. The impor-

frictional force
(µFn)

angle of opening

(θ)

opening width

sand

weight

soil force
(FS)

geotextile force
(FGT )

normal force
(Fn)

Figure 6.5: Equilibrium forces on the geocontainer
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tant gain of adding the extra slack is clearly demonstrated by having a releasing with 2◦

less than the non–slack case as shown in Figure 6.6.
Roughly speaking, from the opening angle θ = 13◦ upward, the variation becomes

nonlinear and is most probably dominated by dynamics. The soil layering and the ver-
tical stress are demonstrated in Figure 6.7 for opening angle 13◦. During the opening
process and due to the location of the hinge, part of the soil is lifted up by the barge. At
the same time, the centre part of the geocontainer moves downward as it loses the bot-

I

principal stresses

II II

Figure 6.7: Deformation (left) and vertical stress from 0 to −60 kPa (right) for the geo-
container with slack at θ = 13◦
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tom support. When adding the geotextile slack, the deformation in the soil layering be-
comes more pronounced and recognisable. The stress field inside the soil is redistributed
during loading, showing the effect of arching as illustrated in the details of Figure 6.7.
Because of arching there is a load transfer from the middle block I to the side blocks II,
thereby increasing the vertical stresses at the geotextile–barge interface. In Figure 6.7, the
narrow area near the geotextile–barge interface has low stresses. The stress oscillation
near the prescribed boundary is expected in MPM due to the mapping procedure from
the boundary particles to the computational nodes, see Chapter 3.

As shown in this example, the extra geotextile length at the bottom of the geocontainer
facilitates earlier releasing of about 2◦ as compared with no slack. The effect of chang-
ing the extra length on the opening angle and the developed forces is not discussed in
the course of this thesis, however, the containers considered in the following cases have
slack underneath.

6.2.3 Effect of geotextile–barge wall friction

To provide smooth releasing of the container from the steel barge, the friction coefficient
should be reduced. Geotextile–steel coefficient might have a value 0.4 − 0.6, which can
be reduced to 0.2 by lining the barge with a geotextile layer [144]. Different type of liner
can reduce this value further more; e.g. high density polyethylene (HDPE) [59].

Although practical values of the friction coefficient are bounded within certain limits,
testing the extreme cases of fully rough or smooth surface yields the limiting values for
the geotextile forces. By repeating the same problem of releasing the geocontainer and
changing the coefficient of friction 0.0, 0.3 and 1.0 gives different developed forces along
the geotextile as shown in Figure 6.8, which correspond to an opening angle (θ) of 8◦. In
all curves, the maximum corresponding value of the tensile force is located at the edge
of the barge. Even though this segment of the barge bottom is slightly curved in the nu-
merical model, forces concentrate where the free hanging part is held. In this figure the
(black dot) represents the location of the barge edge, at which the left part is free hanging
geotextile while the right is still in contact with the barge.

As expected in the rough wall case, the geotextile is pinned in the barge due to the
high friction while the hanging part is subjected to high tensile forces due to the contin-
uous opening of the barge. On the other hand, the smooth case has better distribution
of the tensile forces along the geotextile length, as the entire container is sliding down.
In order to hold the soil weight, therefore, the geotextile experiences more tension in the
smooth case as compared to µ = 0.3 where the geotextile does not releasing that much.

For each of the three cases, the required barge opening to complete the releasing is dif-
ferent and the tensile force varies accordingly. The maximum opening angles are 11, 15,
and 24◦, which correspond to friction coefficients of 0.0, 0.3, and 1.0, respectively. The
location of the maximum geotextile forces within the opening is always at the barge
edge and nearly limited with the values shown Figure 6.8. At the last moment of releas-
ing, different geocontainer configuration is expected for each case, even though all cases
have about the same length outside the barge. The two cases with low friction coeffi-
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Figure 6.8: Tensile forces along the geotextile for different barge wall friction at θ = 8◦

cients have more slender container shapes when the container is fully released. On the
other hand, the container with rough wall has more regular width compared to released
length. The process is not quasi–static anymore and inertia effect is expected to have
influence before the end of releasing, which has an impact on the developed forces.

6.2.4 Influence of variation of filling materials

The fill materials can vary from frictional material to a more liquid behaviour material;
e.g. sand or slurry, respectively. As expected when the filling material has higher shear
strength, more opening angle is required to release the bag. However, the tensile forces
reduce due to arching effect, see Figure 6.7. It is important to recognise that the varia-
tion of the fill does not have influence on the tensile forces at the releasing phase only,
but also on the impacting when the container hits the subsoil where the kinetic energy
should be dissipated.

In this research, the effect of the internal friction angle (φ) is investigated by consid-
ering three different values 25, 30, and 35◦. The displacement and the geotextile forces
shown in Figure 6.9 are traced at the lowest point of the container. The little downward
jump in the displacement of the three soils is expected due to falling of the traced point
into the slack underneath. However, the jump value did not catch the length of the
added slack 0.5m completely, which can be justified by two reasons. Firstly, the added
slack is pulled away with the barge opening, therefore, the relaxed geotextile will be
lifted up accordingly. Secondly, the relation between the geotextile and the soil inside
is assumed rough in the MPM model even though an initial gap is assumed. Hence, a
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ferent soil type

falling soil particle will slow down as soon as it shares the same element of the geotex-
tile. Nevertheless, the displacement curves can be linearised up to an opening angle of
θ = 11◦ which indicates a dominant quasi–static process. The steep non–linear trend
afterward is most likely due to the influence of dynamics.

Although the geotextile forces in Figure 6.9 show different values for different soil fric-
tion angle, the difference can be attributed to the earlier releasing of the soil with lower
soil friction angle. This can be proven by taking a horizontal section at certain geotextile
force value. Along this section, the difference in the opening angle is similar to the dif-
ference at the end of the releasing.

The last part of investigating the releasing of the geocontainer from the split barge
considers the effect of water buoyancy by replacing the dry soil density (γdry) with a
reduced density (γdry − γwater). This assumption implies that the container is completely
under the water and the process is done slowly; therefore, the effect of drag is negligible.
As illustrated in Figure 6.10, the linear reduction in the soil and the geotextile forces is
associated with a higher opening angle. Provided that the soil density is reduced with
the ratio 16 : 6, the soil force reduces with similar ratio while the tensile force is scaled
with smaller value. The reason for this difference is better understood by checking the
equilibrium in Figure 6.5, in which the frictional force is yielded in the case of higher
density. Therefore, sliding of the container is taking place with 5◦ earlier than the re-
duced density case. Reduced and dry densities provide the limits for tensile forces in
the presence of water or not. In practice, the design of the split barge decides which
value is more practical.

141



Chapter 6 Dropping geocontainers

0

100

200

300

400

500

0 5 10 15 20

fo
rc

es
[k

N
/

m
]

opening angle θ [degree]

soil force (FS)

geotextile force (FGT )

dry unit weight (γd)
reduced (γd − γw)

Figure 6.10: Effect of the soil unit weight on the developed forces

6.3 Dumping of geocontainers

One of the most important aspects of installing filled geotextile containers is the dump-
ing phase where the exerted tensile forces reach maximum values. For sand–filled con-
tainers, non–elastic deformation is expected to take place when compared with fluid
behaviour materials. Adel [1] developed a simple analytical model based on converting
the kinetic energy to friction in order to estimate the final configuration of the container.

The deformable subsoil helps dissipate the impact energy via the internal shear re-
sistance of the contained material. Since a soft ground soil decelerates the container
gradually deeper penetration is expected as compared with a stiff ground. More de-
formation for the ground soil reduces the load on the geotextile. Another complexity
during the dumping phase is coming from the inconsistency of the subsoil layer, which
can be added as an extra strain in the geotextile in order to overcome a soil bump in the
ground [144].

Container units can be stacked on top of each other to have a structure of multi–
containers. An experimental attempt was made to investigate the stability of dropping
a container on stack of already dumped containers [23]. Apart from the installation ef-
fects of single or multiple containers, the stability of geocontainer structure needs better
understanding of the local failure mechanism of containers under hydrodynamic load
[140, 146].
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6.3.1 Dumping of single container

The objective of the following example is to model the salient features associated with
installing geocontainers. The problem illustrated in Figure 6.4 is similar to that discussed
by de Groot et al. [48]. The sand–filled container, having a percentage of fill of approx-
imately 58%, is dropped in place. The percentage of fill refers to the actual fill volume
divided by the maximum possible fill volume that allows a container to comfortably
pass through the barge bottom [48]. In our case, the container is falling through air and
not water, which implies that the effective unit weight and the velocity of the container
before impact are higher than would be encountered in practice. Thus the stress pre-
dictions are expected to be higher than those developed when a container falls through
water. Nevertheless, the example demonstrates the ability of the MPM to capture the
physics associated with allowing a container to drop into place, as well as interact with
a second container.

A two–dimensional problem is analysed using a three–dimensional model. The ini-
tial location of the container is 8m above the ground that consists of 1.5m layer of soil.
Much of the domain consists of empty elements. An element is not considered in the
computation until it contains at least one particle. The placement process is simulated
by allowing the lowest point of the barge to swing open about the hinge at a separation
rate of 6.4m/s.

The geotextile is modelled as a linear–elastic material having an axial stiffness of
400 kN/m and negligible mass. An elastic–perfectly plastic Mohr–Coulomb model is
adopted for the soil. Assuming the soil inside the container is very loose, its elastic mod-
ulus is estimated to have a value 820 kPa whereas that of the ground is assumed to be
6000 kPa. The unit weight of the soil inside the container and that of the ground is taken
as 18 and 20 kN/m3, respectively, with both soils having a friction angle 30◦, zero dila-
tancy, 0.333 Poisson’s ratio and a cohesion of 1 kPa. A dynamic friction coefficient of 0.3
is adopted when modelling the resistance that develops between the geotextile of the
container and the bottom of the barge. A similar value of friction coefficient is used for
geotextile–geotextile and geotextile–ground soil contact.

The first snapshot in Figure 6.11 shows the barge at maximum opening and the geo-
container is sliding out of the barge while its top part is squeezed toward the centreline.
In the same figure, the deformed geocontainer shape after hitting the ground is illus-
trated, which clearly shows by tracking the layering that the soil in the upper half is
redistributing with the lower half compressing. In an actual application, where a con-
tainer falls through water, this effect is expected to be less pronounced due to the effect of
the water. After dropping the first geocontainer, see Figure 6.12, the geocontainer seated
on the ground such that it pushes the ground down and out under the container and up
along the edges.

When the equilibrium state is approached where the kinetic energy is almost fully dis-
sipated, the container resting on the ground should have a rectangular or a semi–oval
shape depending on the amount of soil in the container. Pilarczyk [144] presents the up-
per and the lower limits for the maximum height of the geocontainer, which depends on
the amount of fill. Substituting the characteristics of the problem gives lower and upper
limits of 3.7 and 7.7m, respectively. Referring to Figure 6.12, the final geocontainer thick-
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ground soil

29◦

maximum opening

Figure 6.11: Snapshots for the first geocontainer during installation process

ness is 3.9m, which corresponds to the rectangular shape. Figure 6.13 shows the vertical
stresses within the first geocontainer after being placed on the ground. The gravitational
stresses are seen to be symmetric through the centreline and almost linearly distributed
with depth except for some oscillation near the contact with the ground. These oscilla-
tions can be reduced by having finer mesh along the interface.

6.3.2 Interaction of geocontainers

To construct an underwater structure, many containers are required. For example, the
submerged containment dike on the river Elbe in Twielenfleth/Germany consists of
more than 600 geocontainers, with each containing 300m3 of soil [64]. As a first step
of modelling such a structure, a second geocontainer is introduced in this study with 2m
offset to the right as illustrated in Figure 6.12. At the end of the second bag installation, it
is seen to have rotated on the first container and eventually rest partially on the ground
as depicted in Figure 6.13. A large part of the second container is laying on the first one
increasing its vertical stresses considerably. The fact that the ground layer is deformable
has an impact on the uniformity of the stress distribution along the bottom of the first
container. Again the small stress oscillation along the interface between the two geocon-
tainers is related to the contact algorithm.

A last point to investigate in this study is the force variation developed along the geo-
textile upper surface A−B in Figure 6.13. The distribution of the tensile force per length
of geocontainer (tensile stress in the geotextile times thickness) along the upper part of
the first container is shown in Figure 6.14 after first stage of installation. The forces are
in the range of 80− 90 kN/m and almost equally distributed along the section. It goes up
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Figure 6.12: Offset of the second geocontainer in barge after dropping the first one

to 105 kN/m near to the centreline after the second installation stage. The figure shows
that the forces at the far ends of the container are released especially where the second
container is resting to the right as the soil inside is squeezed down. The maximum curve
refers to the force variation in the membrane of the first geocontainer as it is being loaded
by the second container at the time it reaches the most critical condition, which is about
7 s before the final state. We see that there is an approximate 30 percent increase of the
peak force relative to the peak force that develops after the second container has come
to rest. In other words, the critical stress condition for design does not correspond to the
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18.0m

A

7.
0

Figure 6.13: Vertical stress; blue colour is zero stress and red is −170 kN/m2: (top) after
first geocontainer is released and (bottom) after the second is released

145



Chapter 6 Dropping geocontainers

50

75

100

125

150

-6 -4 -2 0 2 4 6

ge
ot

ex
ti

le
fo

rc
e

[k
N

/
m

]

horizontal position [m]

first stage
second stage
maximum

Figure 6.14: Geotextile forces along section A-B

final equilibrium state, but rather to time during impact before equilibrium is attained.
The simulation of dropping a geocontainer in place demonstrates that the MPM model

is capable of predicting the shape and thickness of the container that consistent with the
criteria proposed by Pilarczyk [144]. The model also predicts vertical stresses that are
consistent with what one would expect. It is also shown that the formulation can handle
the interaction of two containers.

6.4 Validation with a model test

Owing to the complexity of dropping the sand–filled container in water, lab tests were
performed as reported in literature to provide more insight about the basic concepts of
the process. An example of these tests is the one carried out at the Brutus facility of
GeoDelft/Deltares [23, 32]. The series of tests simulated the mechanism of dropping
scaled containers, in which the effect of soil and geotextile properties on the dropping
velocity and the positioning were studied. Furthermore, the interaction of multi contain-
ers was investigated in these experiments, as well as the stability of a container stack.

Scaling a model down in lab implies using different scaling factors for the measured
quantities. For instance, performing a test n times smaller than the prototype in gravita-
tional acceleration produces a geotextile force, which must be scaled with n2. Therefore
selecting such a soft geotextile material for the model test becomes tricky, unless differ-
ent scaling rule is employed. Moreover, the selection of the fill must obey the scaling,
otherwise, different permeability of soil might interfere the dropping process.

The available measurements are based on experiments performed in gravitational ac-
celeration, which makes the control of the physical quantities challenging. Moreover,
no precise information about the mechanical properties of the soil or the geotextile are

146



6.4 Validation with a model test

provided. Hence, the focus of the MPM model is to validate the water model without
paying attention to the container.

6.4.1 Deltares model test

The modelling was performed at a facility of 2m length and 1m width, provided with
two parallel glass windows for visual monitoring. The level of water in the testing box
was 0.8m height as depicted in Figure 6.15. A textile sheet was used for the bag, which
was filled with sand material. The size of the container is scaled down by a factor of 20
as compared with the prototype. The length of the container did not follow the scaling
factor strictly. The final specifications of the sand bag is listed in Table 6.2.

Figure 6.15: Deltares model test for geocontainer [24]

Initially, the container was placed horizontally above the water level using a beam
instead of a split barge [25]. The falling and impacting of the containers were monitored
using digital camera as well as a sensor placed inside the bag. Few tests among the
measurement set a reasonable dropping velocity profile. Nevertheless, the selected case
matches the analytical model [1] and a numerical model [23] quite well.

Table 6.2: Parameters of dropping container model into water [23, 25]

parameter unit value
sand density kg/m3 1900
mass kg 25
geotextile area m2 0.25
container length m 0.65
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6.4.2 MPM simulation

The lab test is simulated in MPM including water and the interaction between the three
components: soil, water and geotextile. As mentioned earlier, the focus in the MPM sim-
ulation is on the water modelling. Thus, the mechanical properties of the soil and the
geotextile are assumed to match those presented in Table 6.2 without spending much
effort to optimize them. The viscosity of the water is assumed to be constant µ =
8.9× 10−4 Pa.s with a bulk modulus of Kf = 2.13GPa.

The configuration of the bag textile is tailored such that it matches the shape of the
prototype. Knowing that the prototype is polygon shape, see Figure 6.4, the container
is placed on top of the water level with the corresponding dimensions shown in Figure
6.16. Since the time step size of the explicit scheme depends on the minimum character-
istic element length and to avoid small length caused by poor discretisation of the tetra-
hedral mesh, a regular mesh is adopted. Both, the container and water are discretised
using tetrahedral mesh where 10 particles are placed initially in each element. Since reg-
ular mesh used for the entire domain, some elements of the container are partially filled
with particles at the beginning of the computation, see Appendix B. According to the
coupled FE–MP approach, the textile bag is discretised using triangular mesh that en-
sure a mesh ratio MR = 10. Hydrostatic pressure distribution is assigned for the water
particles, whereas K0 = 0.5 is assumed for the sand bag.

The process of the soil container sinking into the water is shown in Figure 6.17. The
sudden drop of the container produces a water wave at the edge of the container trav-
eling toward the tank boundaries. Simultaneously, the container deforms into more an
elliptical shape while it sinks deeper in the water. At time 0.5 s, the two water parts come
together to cover the container completely. It can be noticed that the flow symmetry until
the container starts tilting to the right whereas a water circulation is forming in the wake
at time 0.6 s. A noticeable reshaping in the lower water layer can be seen at time 0.8 s,
which indicates deceleration of the bag due to water cushion underneath. The intensity
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Figure 6.16: Initial MPM configuration to model Deltares test
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and size of the circulation behind increase as the bag moves downward. At time 1.1 s the
container lands first to the right and then bounces up off the floor at time 1.2 s. At this
time, the accelerated water around the bag turns its direction outside and lifts the lower
layer of the water. The computation stops here as the turbulent flow becomes dominant.

In the case of moving fluid flow across fixed solid object, or moving solid through sta-
tionary fluid like our case, a circular movement of the fluid is expected in the wake of
the solid. In order to evaluate the size of the circulation, the vorticity of any point in the
domain can be written as

Figure 6.17: Snapshots for the container sinking into the water with 0.2 s time interval
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ω = ∇× v, (6.1)

where ω is the vorticity of the velocity field v. For the considered plane–strain assump-
tion with one tetrahedral element in depth, the vorticity vector ω reduces to

ω3 =
∂v2
∂x1

− ∂v1
∂x2

, (6.2)

which represents the vorticity scalar in the x3 direction. Applying Equation 6.2 to the lin-
ear velocity interpolation of the low–order tetrahedral element adopted in MPM, gives
constant value across the element. Therefore, the accuracy of the current MPM algorithm
is first–order and care should be taken if high rotation is taking place in the flow. The vor-
ticity distribution of the entire flow problem is shown in Figure 6.18. The region around
the bag has nearly symmetry vorticity distribution, whereas outside this region the flow
is almost irrotational. A close look at the velocity vectors around the container shows an
acceleration of the nearly incompressible fluid due to the penetration of the solid body,
while the domain far away from this region is hardly moving. The area next to container
boundary shows irregular velocity distribution which is caused by the fluid–structure
interaction in MPM. However, the size of the irregular velocity field is bounded with the
size of one computational element.

Figure 6.18: Vorticity (top) varies from −90 to +90 s−1, and close–up to the velocity pro-
file (bottom) around the container at 0.7 s
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The initial hydrostatic pressure distribution in the water does not change much for
the first 0.3 s of the dropping process except for slight compression under the container
as illustrated in Figure 6.19. In this snapshot, the imposed free surface condition can be
seen clearly along the two steep water columns. As the flow around the bag becomes
more turbulent at time 0.6 s, the layered pattern of the pressure does not exist anymore.
Nevertheless, the first and the last third of the computational grid still reflects the hydro-
static state. Furthermore, the water column above the container is building up pressure
from the free surface state. Proceeding further downward, the pressure difference across
the container is increasing to reduce the dropping velocity at time 0.8 s while the initial
pressure distribution of the first and last third are almost intact. Important to mention
here is that the rigid boundaries must be far away from the disturbed region, otherwise,
an efficient silent boundary must be placed. As a conclusion from the current model test,
placing the rigid boundary at a distance about the same as the dropping height gives rea-
sonable pressure distribution with little boundary reflection.

Figure 6.19: Pressure distribution in the water tank; blue colour is zero pressure and red
is 9 kPa at different time: (top) 0.3 s, (middle) 0.6 s, and (bottom) 0.8 s
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6.4.3 Effect of initial configuration

In the previous MPM simulation, the initial configuration of the soil container is assumed
as a polygon shape similar to the original prototype geocontainer. There are few details
regarding the initial shape of the container of the lab experiments carried out at Deltares.
To see the effect of the initial shape on the dropping velocity, an elliptical hypothesized
shape is assumed. The cross sectional area of the bag and the geotextile length is kept
the same as for the polygon shape. The shape is illustrated in Figure 6.20.

Performing the MPM simulation for the new elliptical shape gives about the same
flow field as the polygon shape, except the initial penetration of the container is found
to be slightly slower than that of the polygon shape. The velocity of a point at the centre
of the bag for both configurations is compared with the experimental measurement in
Figure 6.21. In this figure, the MPM container accelerate with constant rate for the first
0.1 s, whereas the polygon shape has steeper inclination. The sharp head of the polygon
allows it to penetrate faster, however, the results for both MPM containers are close to
each other after 0.4 s.

In spite of oscillation shown in the experimental curve, the entrance effect can be de-
tected as an acceleration up to 0.4 s. After 0.6 s of begin the dropping, the lab model bag
accelerates up to a value of 0.8m/s at 0.8 s. Adel [1] formulates an analytical equation
based on drag force against single point expects 1.0m/s at the same time. This formula

260

105mm

Figure 6.20: Initial configuration of the elliptical shape container and snapshots with 0.4 s
time interval
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Figure 6.21: Comparison of the measured vertical velocity [25] with the MPM results

anticipates a constant terminal velocity slightly larger than 1.0m/s. Regardless the en-
trance length, which is shown to depend much on the initial shape, both MPM shapes
predict the experimental velocity quite well.

6.5 Dumping of geocontainers in water

Dumping geocontainers in water has many applications varying from constructing dams
to disposing materials. Constructing the core of a dam is an attractive use of geocontain-
ers as a replacement of rock and rubble. For such an application, the water depth is
usually within the range of 20m [26, 59, 180], whereas disposing contaminated dredged
materials is usually performed in deep water. Due to the water depth, which might
reach 6000m in the last application, a vortex shedding is expected to cause big change
in the container shape [177]. Different numerical models can be adopted according to
the problem type, however, the deep dumping problem requires precise solving of the
Navier–Stokes equation with a suitable turbulent model that is out of this research scope.

Performing large–scale measurement for dumping geocontainer is a demanding task
requiring control of many parameters depending on the objective of the experiments.
Installing geocontainer without tearing the geotextile is the most critical issue during
the placement. When the container leaves the barge safely, it gains velocity during its
travel through the water column. During this stage, no high tensile force is expected in
the geotextile according to Figure 6.2, while the highest values are most probable during
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the impact of the container on the subsoil. In this section, the dumping phase will be
investigated by simulating the field measurement obtained by van Oord [180]. The aim
of the numerical model is to estimate the maximum tensile forces with the deformation
of the sand–filled material.

6.5.1 Field measurements of sand–filled container

The prototype test performed in 1994 by van Oord [180] is considered as a field measure-
ments reference in this section. The test was carried out in the sand pit at Kekerdom in
the Netherlands. Four geocontainers were dumped in different water depths. The aim
of the test was to develop an appropriate method for dumping geocontainers without
failure and to investigate their behaviour during dumping. As a conclusion of the test,
two containers were failed during installation. The first failed very early due to quick
release of the highly filled container, while the other failed later when it hit the ground
due to the incorrect sand filling in the longitudinal direction. The unequal filling in the
lateral direction causes rotation of the container, which in turn predicted higher vertical
displacement than the real one. On the other hand, the measurements of the dumping
velocity and the pressure inside the geocontainer are considered successful.

One of the two surviving geocontainers was filled with sand up to 130m3, compared
to the theoretical volume of 368m3. It had a length of 24.5m. Although the water depth
was 13m, the fall height was approximated as 9.8m assuming that the split barge was
impeded inside the water. Polypropylene woven geotextile GEOLON 120 was used hav-
ing a specific mass of 630 g/m2, and Young’s modulus 1000 kN/m2, with 120 kN/m tensile
strength. Two longitudinal seams, having a strength of 70% of the nominal value, were
located on top of the container. Two places along the container length were selected to
measure velocity and pressure. The front and rear sensors were placed about 3m from
the edges. The final inspection of the geocontainer after being placed were investigated
by specific divers.

6.5.2 The MPM numerical model

Owing to limitations in the current implementation of the MPM model, the releasing
phase is omitted from the simulation. The emphasis is on the dumping phase. To ini-
tialise the numerical model, the container is assumed as an elliptical shape outside the
barge. The dimensions of the ellipse oriented vertically are selected such that the length
of the geotextile and the amount of the soil inside are the same as in the field test. The
soil container is impeded initially inside water to resemble the height of the actual height
in the experiment. The soil characteristics of the container and the subsoil layer are mod-
elled using Mohr–Coulomb failure criteria as listed in Table 6.3. The water is given the
same properties as for the lab test in Section 6.4.

The three dimensional problem is approximated as a plane–strain problem. A reg-
ular tetrahedral discretisation is adopted with finer mesh at the centre where the high
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6.5 Dumping of geocontainers in water

Table 6.3: Soils characteristics for dumping geocontainer in water

property unit container subsoil
unit weight kN/m3 16 20
elasticity modulus MPa 2.8 10
cohesion kPa 0 0
Poisson’s ratio − 0.333 0.333
friction angle degree 30 30
dilatancy angle degree 0 0
drainage type − drained undrained

deformation is expected. The configuration of the problem and the boundary conditions
are shown in Figure 6.22. Similar to the lab test validation, initial hydrostatic pressure
distribution is assumed for the water and K0 condition for the soil considering the effect
of the water column for the subsoil layer. The control point for checking vertical velocity
and pressure is selected at the centre of the container.

6.5.3 Comparison of the two models

Owing to the uneven release of the prototype model in the experiment, an out–of–phase
in the velocity of about 2 s was recorded between the front and rear point as shown in
Figure 6.23. Since the front part of the container was released first from the barge, it is
pulled up due to the sticking of the rear end. In both curves, the first peak represents
the releasing from the split barge stage while the second is when the container reaches
the maximum velocity. The final inspection shows that the container rotated to the right
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Figure 6.22: Initialisation of the MPM model for the sand–filled container
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ending up upside down. The vertical displacement of the container was determined by
numerical integration of the given velocity, which gives an overestimation of the actual
depth. The discrepancy between the calculated displacement and the real water depth
was attributed to the geocontainer rotation where the measurement wires are pulled
around the container leading to a larger measured depth [144]. Adel [1] compared his
analytical model with these measurements and predicted a value of 4.5m/s for the termi-
nal velocity without air. However, the last value reduces to the measured value 3.3m/s
when 17% of air is assumed [144].

For the sake of comparison with the MPM container, the rear point is selected as a ref-
erence. Hence, the starting point of the MPM velocity is shifted to match the rear point
of the prototype model. The trend of the numerical velocity matches the experimental
in a quite reasonable manner for the accelerating part, while the MPM expects larger
deceleration. In spite of eliminating air bouncy in the MPM modelling, the terminal ve-
locity is nicely estimated. The MPM velocity reaches the terminal velocity in about 3 s.
Shortly afterward it starts to feel the ground. The MPM displacement curve, see Figure
6.23, reflects the initial graduate accelerating and the steep decelerating at the end of the
dumping phase. The smooth landing of the real container is likely due to the penetra-
tion of water through the permeable geotextile, which causes the container to drift to the
side combined with flipping it upside down. Even though no information is available
regarding the final horizontal location, Bezuijen et al. [27] provided the trend for similar
tests with a value of 2m aside.

The water pressure was measured inside the sand–filled container of the field exper-
iment. As the MPM container is performed dry, the mean stress is calculated instead
of the water pressure with a bar indicating the variation between the horizontal and
vertical stress components as illustrated in Figure 6.23 with 0.96 as a coefficient of deter-
minationR2 for the MPM curve. The lower peak of the front end was being related to the
material escaping to the rear end, which was still falling [180]. The MPM trend shows a
little bump during the first 0.5 s that is most likely because of the initial conditions, how-
ever, it catches quickly a straight behaviour that corresponds to the hydrostatic pressure.
The difference between the vertical and horizontal stresses increases when the container
approaches the bottom as the vertical component increases rapidly. The final residual
value of the MPM mean stress reflects mainly the height of the water column 12m while
the experiment predicts about 8m water column.

During dumping, the geocontainer shape change drastically as demonstrated in Fig-
ure 6.24. Soil layering, which are initially horizontal as shown in Figure 6.22, helps the
interpretation of the physical phenomena. At time 2 s, the boundaries of the container
are pulled up due to the drag being applied by the water flow while the bulb is moving
downward. During the falling, not much tensile force is exerted on the geotextile and
it is nearly homogeneous around the bag. A maximum value of 10 kN/m is recorded at
the middle of the geotextile that indicates the symmetry of the external hydrodynamic
forces. At time 4 s, the geocontainer already touches the subsoil layer and starts to tilt
to the right. The core part of the soil is pushed downward inducing 70 kN/m maximum
tensile force in the lower left part of the container as shown in Figure 6.24. Checking
the tensile force distribution, the upper half of the bag does not experience high forces.
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Tmax = 70 kN/mTmax = 10 kN/m Tmax = 32 kN/m

Figure 6.24: Reshape of the sand–filled container with the geotextile tensile force at 2 s
(left), 4 s (middle), and 6 s (right)

Owing to the clock–wise tilting, the geocontainer slides on the ground to the left direc-
tion producing tensile force along the membrane in contact with the seabed. Proceeding
further with the simulation shows that the sand–filled container laid down to the side
while it becomes more rectangular shape. At the same time of 6 s, the tensile forces
become more homogeneous around the soil bag except for some irregularity along the
subsoil layer.

It is important to indicate here that the assumption of rough geotextile–soil contact is
expected to have a role on the final geocontainer configuration. For instance, a simula-
tion using distinct element method showed that the soil is separated from the geotextile
when the container reaches the ground [141]. On the other hand, the current implemen-
tation forces the membrane to follow the soil with no gap. Therefore, the membrane
might pull the soil in opposite direction to its movement, see the soil layering in the up-
per half at time 4 s. Nonetheless, the aim of this study is to estimate the maximum tensile
force during the dumping phase, which is shown to take place at the lower half where
the material is compressed.

In the present analysis and for the requirement of the fluid modelling, the major part of
the considered problem is the fluid material. Hence, the geocontainer itself is discretised
relatively coarse. Combining this with the fact that MPM always smears the interface
over one computational cell, a thick layer of non–uniform stresses is expected around
the geocontainer. Refining the mesh as a quick remedy for this problem would become
computationally expensive, especially if we remember that the fluid bulk modulus is the
bottleneck of the time step size. Thinking about silent boundary for the water should re-
duce the problem size, however, care should be taken when fluid particles cross such a
boundary.
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Conclusions and recommendations

In the present work, novel geomechanical applications of hydraulic and coastal engi-
neering are highlighted; e.g. problems related to shore protection and breakwaters. For
such applications, it is common to build construction units combining soil and geosyn-
thetics materials in site. Large material deformation is expected to take place in the pres-
ence of water and hence studying installation effects of these massive units is challenging
topic for engineers. Therefore, the physical modelling is the most common admired de-
sign procedures in this area. As indicated in Chapter 2, the noticeable lack in numerical
simulations was the motive to present a numerical tool able to fill this research gap.

Searching numerical scheme capable of modelling large deformation, few options are
available. Among large deformation methods, the material point method is the best
suited for history–dependent materials with a flexible framework to include other ma-
terials interaction in a single potential structure. Adopting a procedure fits in a finite
element configuration, MPM gets a lot of synergy from the well developed finite ele-
ment method to simulate complex multiphysics applications.

7.1 Conclusions on the numerical modelling

An overview about outcomes and findings from this research including development,
validations, and geomechanical applications are highlighted in this section. In general,
these conclusions are summarising the whole work as a one consistent unit. Therefore,
the reader is referred to more detailed concluding remarks mentioned within the context
of the concerned chapters.

7.1.1 Material point method

Starting from the underlying differential equations, original MPM algorithm [169] has
been outlined and applied. Although MPM represents the continuum by material points,
solution is performed on the the computational mesh. Thus, imposing boundary con-
ditions in MPM is not aligned with the material representation. In order to refine the
application of traction boundary conditions is MPM, surface discretisation is proposed.
Therefore, the three–dimensional domain is discretised using four–noded tetrahedral el-
ements in a regular manner, while its surface is discretised using three–noded triangular
element. The proposed set of particles for traction boundary is placed at the vertices of
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the surface mesh. Hence, the traction condition is assigned directly at the surface with
no approximation to the superficial layer of material points like in [2].

In order to track surface orientation in MPM, algorithms for calculating the local sys-
tem has been introduced in literature [191, 198]. These algorithms were developed for
regular rectangular mesh, they have difficulties when applied to irregular tetrahedral
discretisation. Thus, the surface discretisation concept described earlier is extended here
to find local orientation of the surface. By tracking the triangular elements, the deformed
surface can be shaped and therefore contact algorithm can be applied accurately. An ex-
ample of this procedure is presented in the releasing geocontainer problem in Chapter 6
where interpenetration between objects is prevented as an indication of the calculation
of accurate normals in spite of the severe deformation; see Figures 6.7 and 6.11.

Since the non–zero kinematic boundary condition is not yet developed in general form
in MPM literature, a set of material points is introduced in this study to carry informa-
tion of the prescribed kinematic boundary. During each computational step, velocity
is mapped from the prescribed particles to the computational grid using weighted map-
ping so that the procedure is consistent with the MPM algorithm. The prescribed bound-
ary particles are applied to simulate the rigid barge for releasing geocontainers where
frictional contact is assumed between the barge and the geotextile.

Volumetric locking due to the use of low–order elements is mitigated using nodal
mixed discretisation, which is based on smoothening the spherical part of the strain rate
tensor. Furthermore, the dynamic relaxation process is employed by applying artifi-
cial damping that damps out the wave–propagation problem in efficient way to get the
quasi–static solution. Finally, the frictional contact algorithm [14] is implemented and
modified to accommodate prescribed boundary condition where the combined solution
of all entities is replaced with the trivial solution of the prescribed boundary particles.

7.1.2 Thin–walled structures

Thin–walled elements are incorporated in MPM as defined by York [191] where the
membrane effect is dominant. The algorithm shows some drawbacks when it is exam-
ined for single–degree of freedom spring–mass system such as sensitivity to the surface
discretisation and spurious stress distribution. Therefore, a novel method called cou-
pled FEM–MPM is suggested by treating the thin elements similarly to the finite element
method where spatial integration is achieved over the element span instead of the mate-
rial points. Apart from membrane, traditional MPM is used for any other solid or fluid
materials. Coupling between the FE membrane and MPM substances is obtained via
internal forces where all materials contribute to the same computational mesh. The pro-
posed method is proved to be less mesh sensitive and produce smooth stress distribution
as compared to York’s method. Furthermore, the latter approach tends to underpredict
lateral deformation, while the coupled scheme is able to match the close form solution.

The main target of the present work is to model geosynthetics materials combined
with soil for geomechanical applications. Geosynthetics materials are often made of
polymeric products having light weight as compared with soil. Owing to the explicit na-
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ture of the dynamic MPM algorithm, mass must be assigned to the particles so that they
get acceleration. Therefore, studying stability each of the two membrane approaches for
minimum amount of mass is essential. For the spring–mass system, the coupled FE–
MP approach shows superior with the ability of reproducing the exact solution for very
small value of the membrane mass over York’s method.

The geometry non–linearity associated with large deformation is incorporated in the
current membrane formulations, which has been proven for a prestressed membrane
being stretched laterally with 80% extension relative to its original length. In order to
cope with the textile feature of the geosynthetic materials, in which only tensile stresses
are allowed, a criterion called compression cut–off is integrated and validated for the
membrane elements.

7.1.3 Incompressible fluid

In a brief mathematical formulation of a fully incompressible fluid flow, the structure of
equations expects numerical instability unless some compressibility is imposed. Assign-
ing algorithmic compressibility to an incompressible fluid helps the numerical scheme to
converge towards the correct solution in iterative nature. The artificial fluid compress-
ibility should vanish when convergence is satisfied. In nature, most fluids have some
physical compressibility therefore explicit scheme is becoming applicable.

Keeping a unified time integration scheme, explicit integration is applied for fluid as
well. Due to the high bulk modulus, volumetric locking destroys the solution quality
and is soon becoming fully dominated by spurious modes. As a first remedy, nodal
mixed discretisation is applied for a cavity filled with nearly incompressible fluid where
the flow is driven by shear forces. Dissimilar to solid materials, the enhancement ap-
proach gives inadequate improvement in the velocity and pressure fields of the fluid.
On the other hand, the average nodal pressure scheme [29] based on smoothening the
total spherical component of the stress tensor gives much smoother velocity field with
small variation in the pressure distribution.

Seeing the lid driven cavity problem as the most severe case of testing enhancement
procedures, the material points are kept fixed with no update of locations. However, it
has been experienced from the collapse of water column where extreme deformation is
taking place that both smoothening procedures are required at the same time. The initial
rectangular water column collapses due to removing the side support wall. Due to the
separation and reattachment the fluid might experience, imposing zero traction condi-
tion at the free surface is important to satisfy the free surface condition, which is not a
trivial issue in MPM. For this purpose, a continuous density field approach is developed
so that the material points are acknowledged to be in free stress state or not. The contin-
uation of the free surface needs to be tuned with a mesh dependent parameter, which is
found to be bounded with certain values. The experiments of water column collapse is
reproduced by MPM fairly well. Finally, the interaction of geotextile–water is validated
with the application of geotextile tube where simplified analytical solution is available.

161



Chapter 7 Conclusions and recommendations

7.1.4 Geomechanical applications

Along this research, some applications are considered to validate the numerical scheme
where reference solutions are available. Remembering the three basic elements of soil,
water and geotextile, the validation cases are more oriented toward geomechanical sim-
ulations involving one or more of these elements. For example, the ability of the orig-
inal MPM as a continuum–based method to simulate the dynamics of granular materi-
als using simple elasto–plastic constitutive relation is investigated with the collapse of
sand column. The present MPM model expects higher run–out of the collapsed column,
which complies with other literature conclusions [95, 124]. However, the performance
of the MPM is not only close to experiments, but excellently matches the generalised
interpolation material point method (GIMP). GIMP is considered as a modified version
of the classical MPM as introduced in Chapter 2.

The stability analysis of an embankment reinforced with geotextile is presented as a
validation for the proposed membrane approach in combination with soil. To overcome
numerical instability associated with the undrained condition of Poisson’s ratio being
0.49, the strain enhancement technique is introduced to the soil. The construction proce-
dure of the embankment is reproduced in MPM by increasing the sand material density,
which corresponds to the induced external load. Referring to the finite element software
(Plaxis 2D) with high–order element type, the tetrahedral elements in MPM are able to
give comparative stress distribution. Similarly, the MPM membrane forces are quite sim-
ilar to the reference results. Although the inherent no–slip contact condition in MPM is
assumed here between the soil and the geotextile, frictional contact can be modelled as
well. For further research about this application, the consolidation effect can be included
if real time dynamic behaviour is of concern to investigate.

Large geotextile tube filled with dredged material is an important application being
widely used for shoreline protection. The so called geotube is modelled in MPM com-
bining geotextile and liquid behaviour material. Beside validating geotextile–fluid inter-
action in this application, the ability of the MPM fluid algorithm and the smoothening
techniques to capture the steady–state solution is studied. Different filling ratios are re-
sembled in MPM by assuming different initial configurations of the tube. Exploiting
the advantage of the proposed membrane formulation, the geotextile assigned almost
negligible mass as compared to the filling material. The final configuration as well as
the fluid pressure are compared to a computer software (GeoCoPS), which is based on
equilibrium state analysis. The obtained results confirmed the need for enhancement
algorithms to get stable and fairly correct prediction.

7.1.5 Dropping geocontainers

In coastal engineering, geocontainers are becoming more frequently used instead of con-
ventional materials. The numerical modelling of the dropping process is simulated in
this research involving soil, water and geotextile. Due to complexity of the problem, the
dropping process is broke down into four phases. Excluding filling phase, the container
releasing out of the barge is followed by dumping into the water and finally interacts
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with the sea bed. The key issue in designing geocontainers is to ensure no rupture
through all phases, or the tensile forces through the geotextile to be within the design
strength limits.

Following experimental with dropping geocontainer in air [144] when the water uplift
has minor effects, the MPM releasing phase is carried out with no water while the tensile
forces and the container configuration are traced. Providing wrinkles or folds along the
geotextile in practice is simplified with adding slack in the MPM model. The numeri-
cal alternative seems to provide releasing with smaller barge opening, which is similar
to the experimental observations. Furthermore about releasing phase, the influence of
geotextile–barge friction coefficient has been investigated. It is shown that friction does
not affect the tensile forces only but rather the shape of the released container.

In order to study the interaction effect of more geocontainers, an installed container on
a soil bed is followed by second one where interaction between the two is taking place.
A shift with 2m is assumed for the initial location of the second bag, which is most com-
mon in field to have eccentric releasing. Owing to the sudden landing of the second
container, the geotextile forces increased in the first with about 30% of the final resid-
ual value. Slowly after hitting each other, the second slides down resting on the ground
while the stress distribution through the large bags reflects the process physically.

A step ahead dumping geocontainer in full model test where physical quantities are
difficult to measure, a scaled lab test is simulated with the numerical model. The lab test
conducted at GeoDelft/Deltares is reconsidered in MPM with more focus on the water
velocity and pressure fields. Due to uncertainty of the initial configuration of the small
soil bag in lab, two different shapes in MPM are assumed with the same volume size.
Sooner after sinking into the water thank, both shapes match the measured vertical ve-
locity quite well. In spite of the severe deformation in the wake of the soil bag, vorticity
and pressure distributions look plausible.

After validating the velocity field with the lab test model so that the prediction of the
terminal velocity is reproducible, the last research point in this thesis is to model full
scale container being dumped into water. Here, more focus has been paid to the evo-
lution of geotextile forces and the container configuration. Keeping in mind that the
current numerical model simplifies the application to a uniform two–dimensional prob-
lem, whereas nonuniformity in the experimental model leads to release one end earlier
than the other. Nevertheless, the terminal velocity of the container is well predicted.
Maximum calculated geotextile force is about 70 kN/m during the entire process, which
is within the design limits of maximum tensile strength of the geotextile material. Al-
though no measured value to compare with theses forces is available, field observation
says that the geocontainer lands on the sea bed safely.

7.1.6 Other research issues

There are some additional research issues, which have been carried out in this research.
Due to time limitation, development of these issues do not achieved the state of the art
yet. Nevertheless, the preliminary outcome looks promising and they need further in-
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vestigation. For example, OpenMP parallelisation has been applied to the MPM code,
which is suitable for shared memory machines. Parallelisation has been applied on loop
level only, which has been found to be heavily dependent on the sequence of data access
inside the loop. Owing to the existence of two loop types in MPM, grid nodes and par-
ticles, care should be taken to avoid data race in the nodal loop with no need to do so for
the other. The data racing is expected to occur when multiple threads update the same
shared variable at the same time. For this purpose, the critical section or the reduction
clause can be used. As a part of the improvement in the current MPM version, only ac-
tive nodes that belong to element containing particles are considered in the calculation
loop. Furthermore, the book–keeping procedure of the membrane and other substances
are constructed separately, which has found to speed up the access of data quite a lot.

An example about the efficiency of the current OpenMP parallelisation is given here
for the case of dumping geocontainers in water presented in Section 6.5. In this example,
the domain is discretised to 21306 tetrahedral elements using 199534 particle including
water, soil and geotextile material. The computer is equipped with Quad–Core Intel pro-
cessor 3.2GHz and 4.0GB memory. Real computational time with no parallelisation was
about 55 hour. The speedup factor was 2.6, defined as the ratio of the parallel computa-
tional time to the sequential.

Using the hypoplastic constitutive model with MPM is another research issue, which
has been implemented in this research. An attempt to adopt explicit time integration
with the sub–stepping procedure [2] for the material model has been successfully ap-
plied for small deformation problems with monotonic loading. However, earlier ex-
perience with this model in MPM obliged implicit integration to get the silo discharge
problem working properly [188]. For more details about the current implementation in-
cluding the small strain stiffness, the reader is referred to [2].

7.2 Recommendations for further research

In this thesis, the Gauss integration method [2, 21] is used as a smoothening technique
based on least square to reduce the effect of grid–crossing error. However, the energy
conservation in this method is questionable and no detailed investigation about this is-
sue is carried out so far. Other methods [12, 151, 194] are recommended to implement,
which are well tested for energy conservation. For granular materials where no exces-
sive tensile exists, methods like CPDI [151] adds complexity to the implementation be-
side loosing one of the MPM important feature of being mesh independent.

The current coupled membrane formulation can be extended to consider flexural stiff-
ness so that it can be applied to model beam elements. For applications such as rein-
forced embankment, in which the geotextile is embedded between two soil layers, the
current contact algorithm [14] has some limitation if attempt to apply on both sides of
the thin structure. This can be explained better by assuming the scenario of having the
three entities (geotextile and two soil layers) in one computational element. Whether
each of the two interfaces is sliding or sticking, four options for the final state are possi-
ble, whereas the current algorithm checks for two solutions only. In a related work, one
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Figure 7.1: Concepts of a coupling procedure between MPM and CFD solver

might think about expanding the cohesive contact formulation [2] for large deformation.
In spite of the achieved improvement with explicit formulation for high bulk mod-

ulus fluids, iterative implicit scheme like the fractional step method can be used as it
has long tradition with modelling fluid flow problems. The idea of coupling numerical
methods in one computational framework has shown its efficiency in this study for the
coupled FEM–MPM approach, as many other literature; e.g., [66, 108, 196]. For example,
dropping geocontainers can be modelled by coupling MPM with other CFD solver if the
flow field is the key focal point or in the case of deep dumping where geocontainer drift
from initial location is important. Therefore, we present here the concepts of coupling
the MPM algorithm with other CFD solvers in Figure 7.1.

More about improving the geocontainer problem, interaction of water–soil should be
included in the case of permeable geotextile. For this specific application where den-
sity variation in the soil is expected to play a role, more advanced constitutive models
that counts for density and pressure variations are important to include. Finally, The
parachute effect of the air can be examined on the dropping process by introducing air
materials points and solve the associated governing equations.

No doubt the geocontainer problem is in the range of turbulent flow with high val-
ues of Reynolds number. Although the effect of turbulence is bounded in the wake of
the flow and expected to have little effect of the geocontainer deformation, however, it
plays a significant role in the final location of the container. Hence, a turbulence model
must be included in deep dumping applications or for accurate geocontainer positioning
problems.

In order to improve the computation efficiency, message passing interface (MPI) paral-
lelisation should be included in combination with OpenMP so that distributed memory
machines are supported. Thus, the computational domain is decomposed into numer-
ous subdomains where information are exchanged between patches.
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Appendix A

4-noded tetrahedral element

For 4-noded tetrahedral element, the interpolation functions N are defined as

N (ξ) =
[

N1 (ξ) N2 (ξ) N3 (ξ) N4 (ξ)
]

(A.1)

with

Ni (ξ) =







Ni (ξ) 0 0

0 Ni (ξ) 0

0 0 Ni (ξ)






. (A.2)

in which Ni are defined by

N1 (ξ) = 1− ξ1 − ξ2 − ξ3,

N2 (ξ) = ξ1,

N3 (ξ) = ξ2,

N4 (ξ) = ξ3, (A.3)

where the representation of the tetrahedral element in global coordinates x1, x2, x3 and
the local coordinates ξ1, ξ2, ξ3 in illustrated in Figure A.1.
For isoparametric interpolation, both displacement and geometry are approximated in
the element domain using the same interpolation function defined in Equation A.1; i.e.,

x (ξ, t) ≈
4
∑

i=1

Ni (ξ) x̃i (t) , (A.4)

and,

u (ξ, t) ≈
4
∑

i=1

Ni (ξ) ũi (t) , (A.5)

where x and u denote the location and deformation inside the element, while the sym-
bol (̃.) indicate the nodal values of these variables.
To find the spatial derivative of any kinematic value across the element, the derivative
of the shape function should be found via

∂Ni (ξ)

∂ξj
=
∂Ni (ξ)

∂x1

∂x1
∂ξj

+
∂Ni (ξ)

∂x2

∂x2
∂ξj

+
∂Ni (ξ)

∂x3

∂x3
∂ξj

, (A.6)
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Figure A.1: Global and parent domains of a four-noded tetrahedral element

which can be written as

∂Ni (ξ)

∂ξj
= Jjk

∂Ni (ξ)

∂xk
, (A.7)

where J is the Jacobian matrix defined by

J =

















∂x1
∂ξ1

∂x2
∂ξ1

∂x3
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

∂x3
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ3

∂x3
∂ξ3

















. (A.8)

Therefore, direct mapping is used when variables are mapped from global to local co-
ordinates system, whereas the inverse mapping if variables are represented in global
coordinates, such that

∂Ni

∂x
= J−1 ∂Ni

∂ξ
, (A.9)

where J−1 is the inverse of the Jacobian matrix.
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Appendix B

Initial position of particles

B.1 Solid and fluid materials

For the MPM initialisation, the number of particles inside each tetrahedral element is
assigned. In other words, the Lagrangian body is discretised using non-structured tetra-
hedral mesh, while the empty elements have no material. Therefore, the element either
is fully-filled with material points or empty with no option of having partially-filled ele-
ment. However, defining partially-filled elements at the beginning of the calculation has
been required and used at some places along this thesis as will be shown later.

B.1.1 Fully-filled elements

For the fully-filled elements, three options (1, 4, 10) are available for the initial number of
particles per element. The initial position of the particles inside the tetrahedral element
is located in the parent space [2, 21] as shown in Figure B.1 and Table B.1, whereas the
variable appearing in the table are defined as

a =
5−

√
5

20
, b =

5 + 3
√
5

20
, c =

3a+ b

4
and d =

a+ b

2
. (B.1)

ξ3

ξ1

ξ2

1

1

1

integration volume = 1
6

1

n

w̄p =
1
6n

Figure B.1: Initial particles distribution in parent space
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Table B.1: Initial position of particles in parent tetrahedral element

particle
ten particles four particles one particle

ξ1 ξ2 ξ3 w̄p ξ1 ξ2 ξ3 w̄p ξ1 ξ2 ξ3 w̄p

1 a a a 0.017 a a a 0.042 c c c 0.167
2 a a b 0.017 a a b 0.042
3 b a a 0.017 b a a 0.042
4 a b a 0.017 a b a 0.042
5 a a d 0.017
6 d a a 0.017
7 a d a 0.017
8 d a d 0.017
9 a d d 0.017
10 d d a 0.017

The integration domain of the tetrahedral element in the parent coordinated is divided
linearly among the particles inside. Therefore, the integration domain w̄p of the material
point p is as given in Table B.1. In order to obtain the integration weight of the material
points in global coordinate, the following transformation should be applied

wp = w̄p |J (ξ) |, (B.2)

with |J | being the determinant of the Jacobian matrix. Let us take an example of dis-
cretising the domain shown in Figure B.2 with regular tetrahedral elements. As a first
step, the domain is discretised similar to the FE discretisation considering that empty

x2

x1

x3

solid/fluid filled elements

empty elements

Figure B.2: MPM discretisation: (left) continuum (middle) FE discretisation, and (right)
initialisation of particles
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B.1 Solid and fluid materials

Figure B.3: Effect of initial particles position: (left) using Equation B.1 and (right) modi-
fied values

elements must be added at the modelling stage where the material is expected to move.
Next after getting the particle position in the parent space, the following transformation
is applied to get the particle position in global coordinate

xp =
nn
∑

i=1

Ni (ξp)xi, (B.3)

where xp is the global position of the particle p, nn is the total number of nodes, and
Ni (ξp) is the shape function of node i being evaluated at the local position ξp.
For some cases where regular mesh discretisation is applied, using the values in Equa-
tion B.1 concentrates the particles distribution at the center of the tetrahedral element.
Adopting different value might gives more regular distribution for the initial particle lo-
cations; e.g., adopting the values of a = 0.1 and b = 0.65 in Table B.1 produces the distri-
bution demonstrated in Figures B.3, which looks more regular. In general, the particles
distribution density should be somehow correlated to the mesh size in order to avoid
empty elements and consequently inactive nodes inside the continuum body. Further-
more, the particles distribution shown in Figure B.3 might exaggerate the grid-crossing
error if the deformation aligned the layering scheme of the particles. In other words,
increasing the number of particles crossing the element at the same time increases the
instability coming from the grid-crossing error.

B.1.2 Partially-filled elements

As mentioned earlier, the present MPM initialisation procedure exploits the irregular
tetrahedral mesh to identify objects in the preprocessing stage. While in this case the
element is either fully-filled or empty of particles, there is a chance to have poor ele-
ment quality with low dihedral angles. As a result, the computational time is becoming
extremely small as it is controlled by the minimum height of the element, especially in
the case of nearly-incompressible fluid. To improve the mesh quality and consequently
the minimum characteristic length, regular mesh discretisation can be used or a regular-
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object

domain boundaries

Figure B.4: Initial MPM discretisation with partially-filled elements: (left) object initiali-
sation and (right) shift particles

isation technique can be applied; see e.g. [56, 60]. As regularisation techniques might
be expensive in terms of computational time, we adopt a regular mesh where there is a
need to speed up the computation.

Since having regular mesh discretisation might not necessarily comply with our pre-
processor, which has only the option of fully-filled elements, defining partially-filled
elements is required. For instance, an elliptical object need to be initialised in a rectan-
gular domain being discretised with regular tetrahedral mesh. Therefore, the object is
created and discretised with particles outside the computational domain. Next, the par-
ticles are moved inside the regular area like a rigid body as shown in Figure B.4. The
domain boundaries are applied on the computational mesh excluding the mesh outside.

B.2 Surface discretisation

In the case of the membrane, two type of discretisation should be considered: the surface
discretisation to define the membrane particles and tetrahedral mesh where the compu-
tation is achieved. In this thesis, the triangular element with three nodes is used for the
membrane discretisation. The membrane particles are places at the (nodes) locations of
the surface mesh. The connectivity of the membrane particles are preserved during the
computation.

The surface discretisation is not used for the membrane discretisation only, but also
around the solid objects to track the surface properly. Tracking the deformed surface
with a mesh is useful to detect the unit normal at each point, which is needed when
the contact algorithm is applied. Defining surface normal is also important to apply the
surface traction in solids or the free-surface condition in fluids. However, the tangen-
tial components are assumed to be zero in this research for the case of water. Therefore,

188



B.2 Surface discretisation

3-noded triangular element

solid/fluid particle

boundary particle

Figure B.5: MPM surface discretisation: (left) surface triangular mesh and (right) overlap
of surface and volume discretisations

there is no need for explicit detection of the unit normal. When a surface is discretised,
information of the normal vector and the corresponding surface area are stored on the
boundary particles. Furthermore, these particles can be assigned very little mass to enter
the momentum equation or they have to follow the deformation of the solid particles.

Usually, the surface mesh is selected relatively finer than tetrahedral mesh with a mesh
ratio MR higher than 1 to ensure continuous surface with no gaps when information
mapped back to the computational mesh. The elliptical object presented previously is
considered here in Figure B.5 with surface discretisation. Each boundary particle is as-
signed a corresponding surface area by lumping the continuous surface as

Γb =

Ntri
∑

i=1

Ai
tri

3
, (B.4)

where Γb is the corresponding surface area of particle b, Ntri is the number of neighbor
triangles to b andAi

tri is the area of the triangle i. For this specific case of a plane problem
is assumed, the front and the back faces are excluded. The mesh ratio in this figure has a
value of 4 with both: the triangular and the tetrahedral meshes are being regular. Within
the computation process, it is important to update the corresponding surface area over
each individual particle. As proven in this research, updating the surface area of the
boundary particle has an influence at least in the case of membrane modelling.
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Appendix C

Particles searching algorithm

Irregular mesh discretisation has been applied in many applications [22, 89, 184]. Us-
ing different mesh refinement in the same model is important to get higher accuracy in
zones where high gradient is taking place. Although there are some attempts to imple-
ment local refinement with regular grid by tracing the deformation intensity and then
dividing the computational domain into multiple nested levels of refinement [172], how-
ever, refining the material points needs extra time for communication [118]. Therefore,
a searching algorithm is required to relocate particles in elements instead of the trivial
searching in the case of regular mesh [126, 155].

A systematic searching method can be constructed in a way similar to that in Figure
C.1. Although the discretisation must cover the entire area where particles are expected
to move, only active degrees of freedom are considered in the computation cycle. There-
fore, the size of the mesh should not affect the computation efficiency that much. After
updating the coordinate of the material point and checking that the point belong to the
current mesh, the first location to search inside for the particle is the existing element
where the particle belongs to. As long as explicit time integration scheme is adopted, it
is most probable that the particle does not cross many elements during one time step.

In order to track the particle path, let us consider a particle P moving outside a trian-
gle ABC as demonstrated in Figure C.2. To check from which of the three triangle sides
the particle has left, we need to define a reference point inside the triangle; for example
the center of the triangle O. Considering the sub-triangle OCB, the only possibility for
P to be outside is to fall inside one of the three gray zones. Defining vectors connecting

points together using the format
−→
BA, which means the vector indicating toward B start-

ing from A. The condition to check whether P is inside the triangle or not is obtained by
applying the following inequality for all the three sides

(−−→
BC · −→PC

)

×
(−−→
BC · −→OC

)

> 0, (C.1)

which is nothing more than a condition for the two points P and O to be on the same
side of the line BC or not. If Equation C.1 is true at least for one side, the tracking will
proceed in this direction, otherwise, the particle is still inside the element. Getting the
side number allows us to move toward the neighbor element, which is attached to this
side. Similar procedure is repeated in a recursive way till the final destination of the
particle is located. In the case of tetrahedral element, four faces are checked with four
sub-tetrahedrons. As next, the book-keeping is updated for the final number of particles
inside each element and the connectivity between the particle and the associated cell.
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Figure C.1: Searching algorithm for particles in an irregular mesh discretisation
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Figure C.2: Illustration of tracking a point moving outside a triangle
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Appendix D

Vector notation

Transformation for the displacement vector from the global u = [u1 u2 u3]
T to local û

frames of reference is given by

û = Tu (D.1)

where the rotation matrix T reads

T =





cos (ê1, e1) cos (ê1, e2) cos (ê1, e3)
cos (ê2, e1) cos (ê2, e2) cos (ê2, e3)
cos (ê3, e1) cos (ê3, e2) cos (ê3, e3)



 (D.2)

with e = [e1 e2 e3]
T and ê = [ê1 ê2 ê3]

T are the bases vectors in terms of global and
corotated frame of references, respectively.
The strain tensor can be written in vector form such that ε = [ε11 ε22 ε33 2ε12 2ε23
2ε13]

T , which can be transformed according to ε̂ = Tεε, where Tε is defined as [204]

Tε =

















t11t11 t12t12 t13t13 t11t12 t12t13 t13t11
t21t21 t22t22 t23t23 t21t22 t22t23 t23t21
t31t31 t32t32 t33t33 t31t32 t32t33 t33t31
2t11t21 2t12t22 2t13t23 (t11t22 + t12t21) (t12t23 + t13t22) (t13t21 + t11t23)
2t21t31 2t22t32 2t23t33 (t21t32 + t22t31) (t22t33 + t23t32) (t23t31 + t21t33)
2t31t11 2t32t12 2t33t13 (t31t12 + t32t11) (t32t13 + t33t12) (t33t11 + t31t13)

















(D.3)

while the stress vector σ = [σ11 σ22 σ33 σ12 σ23 σ13]
T is transformed σ̂ = Tσσ us-

ing slightly different transformation matrix; i.e.,

Tσ =

















t11t11 t12t12 t13t13 2t11t12 2t12t13 2t13t11
t21t21 t22t22 t23t23 2t21t22 2t22t23 2t23t21
t31t31 t32t32 t33t33 2t31t32 2t32t33 2t33t31
t11t21 t12t22 t13t23 (t11t22 + t12t21) (t12t23 + t13t22) (t13t21 + t11t23)
t21t31 t22t32 t23t33 (t21t32 + t22t31) (t22t33 + t23t32) (t23t31 + t21t33)
t31t11 t32t12 t33t13 (t31t12 + t32t11) (t32t13 + t33t12) (t33t11 + t31t13)

















(D.4)

in both transformation matrices, tij is obtained from Equation D.2.
For isotropic elastic materials, the constitutive equation σ = Dε can be written in vector
notation as follows:
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σ11
σ22
σ33
σ12
σ23
σ13

















= Ē

















1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 (1− 2ν) /2 0 0
0 0 0 0 (1− 2ν) /2 0
0 0 0 0 0 (1− 2ν) /2

































ε11
ε22
ε33
2ε12
2ε23
2ε13

















(D.5)

with Ē = E/ (1 + ν) (1− 2ν), where E and ν are Young’s modulus of elasticity and Pois-
son’s ratio, respectively.

For the membrane element, matrix D̂ can be written for the plane-stress condition in the
form

D̂ =
Em

1− ν2





1 ν 0
ν 1 0
0 0 1−ν

2



 (D.6)

with Em being the elastic stiffness of the membrane and ν is Poisson’s ratio. Implicit use

of D̂ is the assumption that the non-tangential strain components can be neglected.
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Appendix E

3-noded element in 3D space

The interpolation matrix H of a 3-noded triangular element in three-dimensional space
is a (3× 12) matrix given by

H (x) =
[

H1 (x) H2 (x) H3 (x)
]

, (E.1)

with

Hi (x) =





Hi (x) 0 0
0 Hi (x) 0
0 0 Hi (x)



 , (E.2)

which are given for the specific three-noded element of Figure E.1 by

H1 (ξ) = 1− ξ1 − ξ2,

H2 (ξ) = ξ1,

H3 (ξ) = ξ2, (E.3)

where ξ are the natural or the parent coordinates.
For the isoparametric approximation, we need the spatial first derivative of displace-
ments and therefore the derivative of the shape functions, which are computed using
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Figure E.1: Global (left) and parent (right) domains of a three-noded triangular element
in three-dimensional space
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the chain rule

∂Hi (ξ)

∂ξj
=
∂Hi (ξ)

∂x1

∂x1
∂ξj

+
∂Hi (ξ)

∂x2

∂x2
∂ξj

+
∂Hi (ξ)

∂x3

∂x3
∂ξj

, (E.4)

with i, j ∈ (1, 2, 3). Equation E.4, can be represented in compact form as

∂Hi (ξ)

∂ξj
= Jik

∂Hj (ξ)

∂xk
, (E.5)

where J is the Jacobian matrix defined by

J =

















∂x1
∂ξ1

∂x2
∂ξ1

∂x3
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

∂x3
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ3

∂x3
∂ξ3

















, (E.6)

which describe the transformation between x and ξ. As the aim is to find the derivatives
with respect to the global coordinates, the following transformation is applied

∂Hi

∂x
= J−1 ∂Hi

∂ξ
, (E.7)

with J−1 being the inverse of the Jacobian matrix.
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