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Preface

Large deformation analysis is a central challenge in many fields of geomechanics such
as geohazards, offshore foundations, collision problems, land reclamation or internal
erosion, erosion of riverbeds and coastal areas. In managing problems in these fields,
the classical Finite Element Method (FEM) which is often the method of choice in small
deformation analysis is of limited use due to mesh tangling and inherent problems as-
sociated with modelling separation, breakage and slipping. Other numerical techniques
such as the Element-Free Galerkin method, Smooth Particle Hydrodynamics and the
Discrete Element Method likewise have significant technical and practical problems as-
sociated with their use in large deformation analysis in geomechanics.

On considering the need to proceed with large deformation analyses, I considered it
of relatively low risk to remain within the realm of finite element modelling and use
techniques such as the Arbitrary Lagrangian-Eulerian method or the related Coupled
Eulerian-Lagrangian method. Finally, it was decided to use the Material Point Method
(MPM) which is also a FEM related approach as it had been tested successfully by many
researchers. In fact, it had been successfully applied in the field of dynamics of solids
and fluids, but not to quasi-static problems of geomechanics. The first aim of this study
was thus to extend the MPM to large deformation analysis for quasi-static problems.

The second aim of this study is to apply the new quasi-static MPM to cone penetra-
tion testing (CPT). Quasi-static penetration tests are used to estimate properties such as
the undrained shear strength of clay layers. Present correlations are based on experi-
ments as well as numerical simulations, but so far all simulations were performed on
the basis of an isotropic elastic-plastic constitutive model; either the Tresca model or the
Von Mises one. In recent years, however, it has been recognised that natural clays are
highly anisotropic which results in significant stress-path dependency of the undrained
shear stress. As a consequence, different types of laboratory tests will also yield different
undrained shear strengths and which one of these correlates to the tip resistance as mea-
sured in CPT. In order to answer this question Lars Beuth performed CPT simulations
on the basis of an advanced clay model which accounts for anisotropy.

It was a great pleasure to me to advise Lars Beuth during this challenging study, in
which he directly proved to be excellent in the field of Information Technology when
setting up the computer code. Subsequently, this study required increasing knowledge
of continuum mechanics. For this reason, it was of great importance to have Professor
Zdzisław Więckowski from the University of Łódź in Poland as a second advisor to this
study. In particular as he is one of the founding fathers of the MPM.

Pieter A. Vermeer
Delft, February 2012
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Abstract

This work is concerned with the analysis of quasi-static large deformation problems such
as the jacking of piles where inertia and damping effects can be neglected, as opposed
to dynamic problems such as pile driving. To this end, a novel type of Material Point
Method (MPM) that is specifically adapted to the analysis of quasi-static large deforma-
tion problems is developed.

The quasi-static MPM can be considered as an extension of the classical Updated La-
grangian Finite Element Method (UL-FEM). As with the UL-FEM, a solid body is dis-
cretised by finite elements, but in addition, the solid body is discretised by a cloud of
material points which moves through the mesh in the course of a computation. The
movement of material points represents the arbitrary large deformations of the solid
body. The FE grid is used as with the UL-FEM to compute incremental displacements
and strain increments at the locations of material points. In contrast to the UL-FEM, the
mesh can be reset into its original state or changed arbitrarily if accumulated distortions
of the FE grid cause numerical inaccuracies. Material and state parameters of the solid
body as well as applied loads are stored in material points. In contrast to most existing
implementations of the MPM, the developed quasi-static variant makes use of implicit
rather than explicit time integration, which allows for a considerable reduction of the
computation time in case of quasi-static problems.

The development of the quasi-static MPM and its validation for simple benchmark
problems is the first aim of this study. This includes the modelling of soil-structure in-
teraction within the developed method, a feature that is essential to many geotechnical
analyses. Here, the novel approach of extending interface elements commonly used in
small-strain Finite Element analyses for use with the Material Point Method has been
taken.

The application of the quasi-static MPM to the simulation of cone penetration testing
(CPT) forms the second aim. This widely-used in-situ test consists of pushing a steel
rod with a measuring device attached to its tip into the ground with constant velocity.
Numerical studies of cone penetration testing improve the understanding of involved
mechanical processes and allow to refine existing or establish new correlations between
CPT measurements and soil properties. In the frame of this study, cone penetration
testing in undrained soft clay is considered with the aim of investigating the relation
between the tip resistance and the undrained shear strength of clay. Both, the load-
type dependency of the shear strength of undrained clay as well as the influence of the
anisotropic fabric of natural clay on the undrained shear strength are taken into account
through a new material model, the Anisotropic Undrained Clay model. Results indicate
that the deformation mechanism relevant for cone penetration in undrained normally-
consolidated clay differs significantly from predictions based on the Tresca model which
is often used for such numerical studies, but resulting cone factors appear to be useful.
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Zusammenfassung

Numerische Methoden bilden seit mehr als einem halben Jahrhundert ein unverzicht-
bares Werkzeug bei der Analyse hochkomplexer mechanischer Probleme. Bei dem Ver-
such, akurate Vorhersagen zu dem alltäglichen Vorgang des Eindrückens eines Stahl-
stabes in den Untergrund zu treffen, stößt man jedoch schnell an die Grenzen selbst der
leistungsfähigsten, derzeit verfügbaren Softwarepakete. Die Bestimmung des Wider-
standes des Stabes erfordert Kenntnis des sich in der Umgebung des Stabes bildenden
Spannungsfeldes. Die Schwierigkeiten der Spannungsberechnung liegen in der Model-
lierung der nichtlinearen Spannungs-Dehnungs-Beziehung von Boden sowie der kom-
plexen Verformungsprozesse, die der eindringende Stab im Untergrund auslöst.

Diese Arbeit befaßt sich vornehmlich mit Letzterem, der numerischen Analyse großer
Verformungsprozesse. Es werden ausschließlich quasi-statische Problemstellungen be-
trachtet, Problemstellungen bei denen Trägheits- und Dämpfungseffekte vernachläßigt
werden können, wie etwa bei dem Eindrücken eines Pfahls.

Zu diesem Zweck wurde eine speziell für die Analyse quasi-statischer geotechnischer
Problemstellungen geeignete Variante der Material-Punkt-Methode entwickelt.

Die Material-Punkt-Methode (MPM) kann als Erweiterung der klassischen Updated-
Lagrangian Finite-Elemente-Methode (UL-FEM) betrachtet werden. Sie verwendet wie
die UL-FEM ein FE-Netz zur Diskretisierung eines Festkörpers. Zusätzlich wird bei
der MPM der Festkörper durch eine Punktmenge abgebildet, die sich im Verlauf einer
Berechnung durch das FE-Netz bewegt. Die Verschiebungen der Punkte, Materialpunkte
genannt, bilden die beliebig großen Verformungen des Festkörpers ab. Das FE-Netz
wird wie bei der UL-FEM zur Berechnung inkrementeller Verschiebungen und Dehn-
ungen an den Positionen der Materialpunkte verwendet. Im Unterschied zur UL-FEM
kann das Netz in seinen ursprünglichen unverformten Zustand zurückgesetzt oder neu
generiert werden, sobald die akkumulierten Verzerrungen des FE-Netzes zu numer-
ischen Ungenauigkeiten führen: Sämtliche Materialeigenschaften und Zustandsgrößen
des Festkörpers wie auch Lasten werden in den Materialpunkten gespeichert.

In den Neunziger Jahren entwickelten Schreyer und Sulsky et al. die MPM für die
Simulation dynamischer Verformungsprozesse von Festkörpern [14, 50–52]. Ihre Arbeit
basiert auf der Particle-In-Cell-Methode welche in den Sechziger Jahren von Harlow
für die Analyse von Problemen der Fluidmechanik entwickelt wurde [24]. Seit ihren
Anfängen erfuhr die MPM zahlreiche, mächtige Erweiterungen um Membranstruktu-
ren [68], die Modellierung granularen Materialverhaltens [1, 16, 66, 67] und die Model-
lierung des Kontakts zwischen Festkörpern [2]. In den vergangenen Jahren bewies die
MPM ihre Leistungsfähigkeit durch vielfältige Anwendungen wie beispielsweise der
Entleerung eines Silos [67], dem Ziehen eines Ankers [17] oder der Verformung von Eis-
schollen [53].
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Zusammenfassung

Mit einer Ausnahme [22] handelt es sich bei allen existierenden Implementierungen
der MPM um Varianten, die für dynamische Problemstellungen entwickelt wurden und
ein explizites Zeitintegrationsschema einsetzen. Da explizite Zeitintegration nur sehr
kleine Zeitschritte erlaubt, sind diese Implementierungen jedoch für quasi-statische Pro-
blemstellungen ungeeignet. Die entwickelte quasi-statische Variante der MPM verwen-
det ein implizites Integrationsschema [7, 8]. Hierdurch wird die bei dynamischen Vari-
anten bestehende Begrenzung der Schrittgröße umgangen.

Die numerische Analyse der meisten geotechnischen Problemstellungen erfordert die
Modellierung des Kontaktes zwischen einem Bauteil und dem umgebenden Boden. Dies
wird auch in dieser Arbeit berücksichtigt. Die Nähe der quasi-statischen MPM zur
UL-FEM bietet den Vorteil, durch den Einsatz in moderner FE-Software bewährte Tech-
nologien auf die quasi-statische MPM übertragen zu können. Unter der Voraussetzung
kleiner Verformungen werden in Finite-Elemente-Berechnungen häufig Interface-Ele-
mente zur Modellierung von Boden-Bauwerk-Interaktion eingesetzt. In der hier vor-
gestellten Forschungsarbeit wurden diese speziellen Elemente für den Einsatz mit der
MPM erweitert [63].

Eine Vielzahl weiterer Technologien, die in der FEM zum Einsatz kommen, wurden
für die MPM nutzbar gemacht. Hierzu zählen Techniken zur numerischen Integration
und zur iterativen Lösung des Systems von Gleichgewichtsbedingungen, Materialmo-
delle sowie Ein- und Ausgabefunktionalitäten.

Die Entwicklung der quasi-statischen MPM bildet den ersten Teil dieser Forschungsar-
beit. Im zweiten Teil erfolgt die erste Anwendung der entwickelten Methode auf eine
geotechnische Problemstellung. Die Wahl fiel auf die Simulation von Drucksondier-
ungen (Cone Penetration Testing, abgekürzt CPT). Dieses weitverbreitete Sondierver-
fahren besteht darin, einen Stahlstab mit konstanter Geschwindigkeit in den Untergrund
zu drücken. An dem Stabende angebrachte Kraftaufnehmer messen den Druck auf die
konische Stabspitze sowie auf eine oberhalb der Spitze angebrachte Manschette. Die
so aufgenommenen Daten erlauben eine Abschätzung der Festigkeits- und Steifigkeits-
eigenschaften sondierter Bodenschichten.

Die Simulation von Drucksondierungen ermöglicht es, bestehende Korrelationen zwi-
schen Messwerten und Bodeneigenschaften zu verbessern und neue Korrelationen zu
erstellen. Im Rahmen dieser Forschungsarbeit wurden Drucksondierungen in wasserge-
sättigtem undrainierten Ton untersucht. Das Ziel ist, die Beziehung zwischen Spitzen-
druck und der undrainierten Scherfestigkeit von Ton zu untersuchen. Hierbei wurde im
Unterschied zu bisherigen Studien ein Bodenmodell eingesetzt, das die Anisotropie der
Festigkeiteigenschaften von Tonböden berücksichtigt.

Der Inhalt dieser Arbeit gliedert sich wie folgt:

Als Einleitung in die behandelte Thematik folgen in Kapitel 2 grundlegende Erläuter-
ungen zur numerischen Mechanik.

Die Formulierung der quasi-statischen MPM wird in Kapitel 3 behandelt. Eine Reihe
von Benchmark-Berechnungen werden präsentiert: die Verformungen eines Kragträgers
und einer Böschung sowie die Verschiebung einer Stützwand.
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Zusammenfassung

In Kapitel 4 werden die mit der quasi-statischen MPM verwendeten Interface-Ele-
mente vorgestellt. Die Funktionsweise der Interface-Elemente wird anhand der Simu-
lation des Gleitens eines Blockes über eine ebene Fläche sowie der Verformungen einer
Böschung demonstriert.

Die Modellierung undrainierten Tons wird, soweit relevant für die durchgeführten
Simulationen von Drucksondierungen, in Kapitel 5 beschrieben. Im ersten Teil dieses
Kapitels werden gängige Techniken der Modellierung undrainierten Tons vorgestellt.
Hierbei werden drei Stoffmodelle für isotropen Ton betrachtet: das Mohr-Coulomb-
Modell, das Tresca-Modell sowie das Modified-Cam-Clay-Modell. Anschließend wird
die Modellierung anisotropen Tons behandelt. Der Schwerpunkt liegt auf dem neuen
Anisotropic-Undrained-Clay-Modell (AUC-Modell), welches speziell für die Modellier-
ung der anisotropen Scherfestigkeit undrainierten Tons entwickelt wurde.

Die durchgeführten Simulationen von Drucksondierungen werden in Kapitel 6 prä-
sentiert. Nach einer detaillierten Beschreibung der durchgeführten Berechnungen folgt
die Darstellung der erhaltenen Berechnungsergebnisse. Die zuerst vorgestellten Ergeb-
nisse wurden anhand des Tresca-Modells berechnet. Diese werden mit Ergebnissen
früherer Studien verglichen. Im nächsten Abschnitt werden anhand des Mohr-Coulomb-
Modells erhaltene Ergebnisse präsentiert. Schließlich werden die Ergebnisse einer Be-
rechnung vorgestellt, bei denen das AUC-Modell eingesetzt wurde. Die Ergebnisse die-
ser beiden Berechnungen werden mit Ergebnissen einer mit dem Tresca-Modell durch-
geführten Referenzberechnung verglichen.

Diese Arbeit schließt mit einer Zusammenfassung und einem Ausblick auf mögliche
weitere Arbeiten an der entwickelten quasi-statischen MPM und deren möglichen An-
wendungen in Kapitel 7.
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Chapter 1

Introduction

Since their first application in the middle of the last century, computational methods
have evolved in engineering disciplines into an indispensable tool for analysing me-
chanical problems of ever increasing complexity. Yet, one still reaches the limits of the
most advanced present-day software when trying to make accurate predictions on the
common act of pushing a steel bar into soil. Determining the resistance of the bar re-
quires not only knowledge of material properties, but also of the evolving stress field
surrounding the bar. Predicting these stresses requires to take into account the highly
non-linear stress-strain relationship of soil, as well as the complex deformation processes
imposed by the bar on the surrounding soil. This study is mostly concerned with the lat-
ter, i.e. the proper reproduction of large deformations within soil in numerical analyses
of geomechanical problems. Here, the focus lies on quasi-static problems where inertia
and damping effects can be neglected. Present numerical approaches that are used for
such analyses may be classified into three categories: Lagrangian, Eulerian and Arbi-
trary Lagrangian-Eulerian methods.

With Lagrangian methods, the numerical representation of a solid body, in any form
whatsoever, is tied to the particles of the solid. Thus, the numerical representation fol-
lows the motion of the deforming body as if etched into the material. The widely-used
Updated Lagrangian Finite Element Method falls under this category. Here, a deforming
solid is subdivided by finite elements that are spanned by nodes. Interpolating functions
which map data such as displacements between nodes and points in the interior of fi-
nite elements, as well as integration and differentiation over the volume or surface of a
solid body, are well-defined on the basis of the underlying mesh. The boundary of the
solid body is clearly defined through the mesh boundary which allows for an easy and
accurate application of boundary conditions. However, the finite element grid might
experience distortions which lead to numerical inaccuracies and can even render the
calculation impossible.

Apart from this mesh-based Lagrangian method, various methods have been devel-
oped throughout the last decades that do without a mesh. With meshless Lagrangian
methods a solid is described by a point set rather than a finite element grid. Each point
represents a subregion of the deforming solid. The well-known Smooth Particle Hy-
drodynamics belongs to this category. A survey of meshless methods can be found,
for example, in [5, 36, 37]. Meshless methods circumvent the problem of mesh distor-
tions, but score badly with regard to the accurate application of boundary conditions
and numerical integration. They also possess the disadvantage that the point set might
not properly represent the considered solid body: if the density of the point set reduces

1



Chapter 1 Introduction

due to deformations, non-physical gaps might occur within the discretised solid body,
numerical integration might become inaccurate or fail entirely in certain regions of the
solid.

With Eulerian methods it is not a solid body that is subdivided into finite elements but
the region of space it is moving through. This approach can be visualised by means of
a grid that is etched into a glass pane with the material moving along the pane. Snap-
shots of a deforming solid body are taken at fixed positions in space. The Finite Volume
Method is an example of a mesh-based Eulerian approach.

With Eulerian methods one may assess at a certain time the velocity or temperature
change that a particle experiences when passing by a grid node or the amount of material
that crosses an element boundary. However, it is not possible to determine from such
computations, where a certain particle will be located or what temperature it has at a
certain time. In contrast, Lagrangian methods do allow to trace state variables such
as temperature or stresses throughout a computation for a certain particle of a solid
because discretisation and solid body are tied together. With soil as with any solid,
equilibrium equations are formulated with respect to the material rather than a region
of space. Therefore, Lagrangian methods are more suited for geotechnical problems than
Eulerian methods.

With Arbitrary Lagrangian-Eulerian (ALE) methods, the equilibrium equations are
solved on the basis of a deforming mesh as with the UL-FEM. However, the displace-
ments of nodes do not necessarily coincide with the movements of particles of the solid
body throughout a computation. If mesh distortions become too large, nodes might
be uncoupled from the particles that they follow. Thus, particles of the solid body —
its state or material parameters — move relative to the nodes of the mesh, which cor-
responds to an Eulerian approach. The development of this concept goes back to the
works of Hughes et al. [30], Donea [21] and Liu et al. [38]. Numerous implementations
of this concept exist. Differences between them lie in the way how nodal coordinates are
updated and in the mapping of state and material parameters from initial to new node
locations. Nodes might be reset or the mesh might be regenerated, the interpolation
might be performed on the basis of a global or local interpolation procedure.

In the frame of this study, the approach of the Material Point Method has been fol-
lowed. This method belongs to the group of ALE methods. A distinct feature of the
MPM is that it not only makes use of a finite element mesh as other ALE methods but
also of a cloud of points, called material points, that move through the grid. These ma-
terial points represent as with meshless Lagrangian methods subregions of a solid body
and not individual particles such as sand grains. The movements of material points rep-
resent the deformations of the solid. They carry all properties and state parameters of
the solid as well as external loads. The computational grid is used to determine incre-
mental displacements and strain increments at material points as with the UL-FEM but
it stores no permanent information. As with other ALE methods the mesh can be reset,
moved or changed arbitrarily.

In the 1990s, Schreyer and Sulsky et al. developed the MPM for the simulation of dy-
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namic deformation processes of solid bodies [14, 50–52]. Their work is based on the
Particle-In-Cell Method which was devised in the 1960s by Harlow for the analysis of
problems of fluid dynamics [24]. The applicability of the MPM has been extended con-
siderably in recent years by including membrane structures [68], flow of granular mate-
rial [1, 16, 66, 67] and contact between solid bodies [2]. It proved its potential through a
wide range of applications such as silo discharge [67], anchor pull-out [17] and sea-ice
dynamics [53].

With one exception [22], existing implementations of the MPM are dynamic codes that
employ an explicit time integration scheme. Using these codes for the analysis of quasi-
static problems is computationally inefficient as explicit integration requires very small
time steps. The variant of the MPM that has been developed in the frame of this study
for the analysis of geomechanical problems makes use of an implicit integration scheme
and thus circumvents the limitation on step size of dynamic codes [7].

The closeness of the quasi-static MPM to the UL-FEM allows to reuse well-proven, so-
phisticated technologies applied in present-day FEM codes. Ample use has been made
of this advantage, which reflects in nearly all chapters of this work. They relate to nu-
merical integration as also reported in [8], solving the system of equilibrium equations,
the modelling of soil-structure interaction as published in [63], constitutive modelling as
well as pre- and post-processing.

The arrangement of the contents of this work is as follows: At first, a basic introduc-
tion to computational mechanics is given in Chapter 2. Subsequently, the formulation
of the quasi-static MPM and a series of benchmark problems is presented in Chapter 3.
The formulation of the interface elements used with the quasi-static MPM and their val-
idation is presented in Chapter 4.

Soil modelling of undrained clay as relevant to the performed simulations of cone pen-
etration testing is presented in Chapter 5. In the first part of this chapter, typical features
of the modelling of undrained clay behaviour are reviewed. Here, constitutive models
for isotropic clay are considered; the Mohr-Coulomb model, the Tresca model and the
Modified Cam Clay model. Subsequently, the modelling of anisotropic clay is treated.
Attention is focussed on the new Anisotropic Undrained Clay (AUC) model which has
been specifically developed for the accurate simulation of the anisotropic shear strength
of undrained natural clay.

The simulations of cone penetration testing are presented in Chapter 6. After a de-
tailed description of the setup of the numerical analyses, results are presented in three
steps. At first, results obtained with the Tresca model are presented and compared to
results of previous studies for validation. Afterwards, results for computations with the
Mohr-Coulomb and the AUC model are presented and compared to a reference compu-
tation performed with the Tresca model to evaluate the performance of the former two
models with large deformation analyses of cone penetration testing in undrained clay.

This work concludes with a summary and an outlook on possible further works on
and with the developed quasi-static MPM in Chapter 7.
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Chapter 2

Introduction to computational mechanics of
solids and structures

Computational mechanics of solids and structures focusses on the approximation of par-
tial differential equations by a set of algebraic equations which involves tensor and ma-
trix operations. In this chapter, the ordinary differential equation of a simple spring-
mass-system is considered, so that tensor and matrix operations are avoided. In this
manner, basic concepts of this study are explained for a relatively wide group of readers.

With the help of the simple spring-mass-system, the following two aspects of numer-
ical analysis that are relevant to the formulation of the quasi-static MPM are presented.
At first, implicit and explicit time integration are described in Section 2.1. Subsequently,
non-linear quasi-static problems are treated in Section 2.2. Section 2.3 provides a brief
introduction to large deformation theory, a matter which is essential to the mechani-
cal problems treated in this study, by means of another simple mechanical system. The
subjects of space-discretisation and numerical integration with respect to space are left
out as scalar problems are considered. For in-depth presentations of the subjects treated
here, the reader is referred to [6], [56], [43] and [41].

For the considered spring-mass-system illustrated in Figure 2.1, the spring elongation
x(t) can be simply computed from an analytical solution for the equation of motion

mẍ = −k x + b (2.1)

with k being the spring stiffness with units [N/m]. The mass m is attached to a weight-
less spring and is loaded by an external force b, for example a gravitational force mg.
The two superposed dots denote the second derivative with respect to time. For most
problems encountered in geomechanics, however, analytical solutions are not available
due to the complexity of the involved geometry, material behaviour, loading and defor-
mation processes. Numerical analyses are used instead.

2.1 Implicit versus explicit time integration

With numerical analyses, discrete values are determined for the unknown function x(t)
at times t, t+∆t, etc. Such discretisation with respect to time can be performed either by
an explicit or implicit integration scheme. In case of explicit time integration, the spring
elongation at time t + ∆t is determined from consideration of the state of the system at
time t. The equation of motion thus takes the form

mẍt = −k xt + bt (2.2)
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k

b

m

x

Figure 2.1: Schematic illustration of a spring-mass-system

where the notation of a superscript t is used to indicate a discrete value at time t rather
than a function of time. At first, the acceleration at time t is computed from Equation 2.2

ẍt = m−1
(

−k xt + bt
)

(2.3)

The elongation of the spring at time t +∆t is then determined from the known velocity
and acceleration at time t by means of the finite difference approximations for velocity
and accleration

ẋt+∆t ≈ ẋt + ∆t ẍt and xt+∆t ≈ xt + ∆t ẋt (2.4)

In the second equation, the velocity ẋt+∆t may also be used instead of ẋt.

In contrast, with implicit time integration, the solution for t +∆t is obtained by con-
sidering the initially unknown state of the system at time t+∆t rather than at time t

m ẍt+∆t = −k xt+∆t + bt+∆t (2.5)

Likewise, the finite difference approximations for velocity and acceleration are consid-
ered at time t+∆t

ẋt+∆t ≈ ẋt + ∆t ẍt+∆t and xt+∆t ≈ xt + ∆t ẋt+∆t (2.6)

With Equations 2.6 the spring elongation at time t+∆t can be expressed as

xt+∆t = xt + ∆t ẋt + ∆t2 ẍt+∆t (2.7)

Introducing Equation 2.7 into Equation 2.5 renders

mẍt+∆t = −k
(

xt + ∆t ẋt + ∆t2 ẍt+∆t
)

+ bt+∆t (2.8)

Rearranging for ẍt+∆t gives

ẍt+∆t =
(

m + ∆t2k
)

−1 [−k
(

xt + ∆t ẋt
)

+ bt+∆t
]

(2.9)
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2.2 Non-linear versus linear quasi-static mechanical problems

which allows to compute the spring elongation xt+∆t through two integration steps by
means of Equations 2.6.

The advantages and disadvantages of the above two time integration schemes become
obvious when considering their application to problems with more than one degree of
freedom. In this case, the terms x and b are vectors and k and m are matrices, in the
following denoted by bold uppercase letters.

Implicit time integration requires inversion of the matrix that is assembled from ma-
trices M and K for each time step, which renders this approach expensive with respect
to both computation time and memory consumption. In contrast, computation of an ex-
plicitly integrated time step can be performed with considerably less effort. The reason
is that it is generally possible to turn matrix M through lumping into a diagonal matrix
without significant loss of accuracy. Thus, inversion of this matrix and the consequent
computation of acceleration, velocity and spring elongation is trivial.

Explicit time integration is conditionally stable, which means that a reasonably accu-
rate solution can be obtained for each time step as long as the size of time steps lies below
a limit value, the so-called critical time step. With mesh-based numerical methods such
as the UL-FEM, the critical time step size depends on the dimensions of the smallest fi-
nite element and the speed of waves travelling through the discretised continuum. The
latter in turn depends on the mass and stiffness of the material. Thus, the finer the finite
element grid and the stiffer the discretised material, the smaller the critical time step.
Implicit time integration is unconditionally stable, there is no limitation on the step size.

With the formulation of the MPM presented in this study, implicit integration is used.
As loading processes are considered that extend over long periods of time, an integration
scheme that limits the size of time steps would obviously be of disadvantage.

2.2 Non-linear versus linear quasi-static mechanical

problems

In case of mechanical problems that involve slow loading and consequently slow de-
formation processes, effects of inertia can be neglected. The right hand side term of
Equation 2.5 can then be set to zero. This renders the quasi-static equilibrium equation
k x = b , where b may be time dependent. For this linear problem, obtaining the spring
elongation of the spring-mass-system for a load b is trivial.

However, many mechanical problems exhibit a non-linear relation between loading
and deformations which renders the solution more difficult. Non-linearity is introduced
to mechanical problems either by a change of geometry, i.e. geometric non-linearity,
or through dependence of material properties of a continuum on state variables such
as stresses and strains, i.e. material non-linearity. A quasi-static problem that exhibits
geometric non-linearity will be considered in the next section.

Material non-linearity can be easily introduced to the aforementioned spring-mass-
system by making the spring stiffness dependent on the spring elongation x. This exam-
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Chapter 2 Introduction to computational mechanics of solids and structures

ple will be used in the following to elaborate on the solution of non-linear quasi-static
problems. Figure 2.2 shows the spring elongation plotted over the applied load for the
three cases of k remaining constant, increasing and decreasing with elongation of the
spring.

With non-linear problems, finding the spring elongation for which the spring force is
in equilibrium with a specific applied load b requires finding the root from the equation
g (x) = x k (x) − b = 0. In general, an iterative method is needed to find the spring
elongation x for which g = 0. Ortega and Rheinboldt [43] describe a very simple method
which they refer to as the parallel-chord method. This method approximates the root of
g starting from an initial guess x0 by replacing g at x0 by a linear function h with slope κ

h (x) = g
(

x0
)

+ κ
(

x − x0
)

(2.10)

Setting h to zero gives
x = x0 − κ−1 g

(

x0
)

(2.11)

The obtained value x forms a closer approximation of the root as illustrated in Figure 2.3
(left). Repeating this approximation of the root by using x as new approximation renders

xj+1 = xj − g (xj)

κj
(2.12)

where the superscript j denotes the iteration number. Iterations are continued until the
value of g, the difference between spring force and applied load, lies below a threshold
value. For the first iteration, xj may be chosen as zero. Using the derivative dg

dx
of g

at x0 as the slope κ for all iterations j corresponds to a simplified, also called modified
Newton-Raphson method [43]. Figure 2.3 (left) illustrates the method, which is used
with the quasi-static MPM presented in the following chapter.

Alternatively, κ can be updated for each iteration j to the tangent of g at xj as shown in
Figure 2.3 (right). This is known as the regular or full Newton-Raphson method. Clearly,
the former approach possesses the disadvantage of slower convergence. However, when
considering a matrix κ instead of a scalar κ, the inversion of this matrix is only performed
once which reduces computation time considerably.

Solving geomechanical problems requires an incremental approach. Here, in terms of
the treated spring-mass-system, equilibrium points (x, b) are determined for successively
applied load increments ∆b. Soil exhibits a path-dependent stress-strain relation: a stress
state not only depends on the magnitude of straining but also on the sequence in which
strain increments occur. Thus, obtaining accurate results requires proper reproduction
of the straining history as possible with an incremental approach.

The Newton-Raphson procedure then starts at a previously computed equilibrium
point (x, b) rather than at x0 = 0 as illustrated in Figure 2.3 (right).
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2.2 Non-linear versus linear quasi-static mechanical problems

x [m]

constant k

decreasing k

increasing kb [N]

Figure 2.2: Load-displacement curves for a spring-mass-system with dependence of
stiffness k on spring elongation

x [m]

b [N]

Dx
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{

dx1

{

b
x [m]

g, h [N]

x
0

x
1

decreasing k

k
0

Figure 2.3: (left) Simplified Newton-Raphson method; (right) regular Newton-Raphson
method for a load increment
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N

N
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Figure 2.4: System of two bars exhibiting a non-linear relationship between forces and
applied load due to a change of geometry

2.3 Geometric non-linearity

In the following, the quasi-static system depicted in Figure 2.4 is considered. A vertical
load of 2F is applied at the top joint of two bars. E denotes the Young’s modulus of
the bars and A their cross sectional area. It is assumed that the two inclined bars will
experience changes in length ∆l but no bending due to the applied load. Compression
of the bars thus only results in axial stresses σ. The forces in the bars N can be computed
from simple equilibrium considerations

N = − F

sinφ
with sinφ =

h0 − u

l
(2.13)

where l written without subscript denotes the length of the bars for a certain vertical
displacement u of the top joint. The forces in the bars relate to the relative change of
length of the bars by

N = EA
∆l

l0
(2.14)

Combining Equations 2.13 and 2.14 renders the following cubic relationship between the
vertical displacement of the top joint u and the applied force F

F = −EA (h0 − u)
l − l0
l l0

with l2 = b2 + (h0 − u)2 (2.15)

It should be noted that in the presented solution higher-order terms of the non-linear
relation between forces N and the change of length of the bars are neglected for simpli-
fication. However, the overall mechanical behaviour of the truss-system is reproduced
with sufficient accuracy by the simplified solution for the illustration of geometric non-
linearity.
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Figure 2.5: Load-displacement curve for the top joint of the truss-system

Figure 2.5 shows the load-displacement curve for the top joint of the truss-system
for E = 100 kN/m2, A = 1 m2, h0 = 1 m, l0 =

√
2 m and b = 1 m. Clearly, a

linear increase of the external load does not lead to a linear change of displacement u. In
the range 0 ≤ u ≤ 2h0 the tangent stiffness dF

du
to the load-displacement curve varies

between 31 and -21 N/m.
Dots mark so-called limit points at which the tangent stiffness is zero. Between the

limit points, the tangent stiffness is negative, which corresponds to softening. Beyond
the second limit point, hardening sets in. Under load-control, the system exhibits a snap-
through instability. After applying a load that corresponds to the first limit point, the
truss-system will snap through dynamically along the dashed line to an equilibrium
state for the same load at u ≈ 2.2 m. Under displacement-control, the top joint obvi-
ously follows the entire load-displacement curve. Here, for u < h0, the bars are under
compression, beyond u = h0, the bars experience tension and, accordingly, the force F
changes orientation.

One can easily see that the tangent stiffness is a function of u. In the range of small dis-
placements of the joint of up to ≈ 10 cm, this dependency is negligible and the response
of the system to loading can be described with reasonable accuracy by a linear relation.
However, in case of large deformations, modelling the response of the system to loading
requires consideration of the change of geometry.

A limit value for deformations, beyond which the change of geometry must be con-
sidered when analysing a mechanical problem cannot be uniquely defined. Generally
speaking, effects of large deformations must be considered at strains beyond approxi-
mately 5 percent.
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Chapter 3

Formulation of the quasi-static Material Point
Method

The Material Point Method can be considered as a variant of the Finite Element Method.
As with the latter method, the final system of equations of the MPM is derived by the
discretisation of the virtual work equation with respect to time and space as presented
in the first 3 sections of this chapter. These sections apply identically to both the FEM
and MPM. The additional discretisation by means of material points that is specific to
the MPM is described in Section 3.5. In the succeeding Section 3.6 the numerical inte-
gration is treated. The iterative procedure used to solve the non-linear system of equi-
librium equations for a load increment is presented in Section 3.7. Section 3.8 provides
an overview of the MPM calculation process.

This chapter concludes with the presentation of benchmark problems. In the first
benchmark, the MPM solution is compared with FEM results for a large deformations
problem involving only relatively small strains. Thereafter, results for large strain geo-
mechanical problems of a slope stability and retaining wall are presented.

3.1 Virtual work formulation of the quasi-static problem

The following notation will be used. Let σij and τij denote the Cauchy and Kirchhoff
stress tensors, respectively, and let vi denote the velocity vector, while dij and ω̇ij repre-
sent the rate-of-deformation and spin tensors, defined as

dij =
1

2
(vi,j + vj,i) ω̇ij =

1

2
(vi,j − vj,i) (3.1)

respectively, where the superposed dot implies a material time derivative and the com-
ma in (·),i denotes a partial derivative with respect to coordinate xi.

Assuming that the reference and current configurations coincide instantaneously, the
incremental form of the principle of virtual work for dead loading can be written as [42]

∫

V

(

∇

τ ij δdij − σij δ(dik dkj − 1

2
vk,i vk,j)

)

dV =

∫

V

ḃi δvi dV +

∫

St

ṫi δvi dS (3.2)

which is valid for an arbitrary vector, δvi, satisfying homogeneous kinematic boundary
conditions vanishing on the part of the boundary surface where displacements are pre-

scribed. Vectors ḃi and ṫi correspond to body forces and tractions, respectively. V is the
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Chapter 3 Formulation of the quasi-static Material Point Method

volume of the body, the part of the boundary with prescribed tractions is denoted as St.

The co-rotational rate of the Kirchhoff stress tensor,
∇

τ ij , is related to the Cauchy stress
tensor by [26]

∇

τ ij =
∇

σij + σij dkk (3.3)

where the Jaumann rate of the Cauchy stress tensor is defined as

∇

σij = σ̇ij − ω̇ik σkj + σik ω̇kj (3.4)

The constitutive relation is written in hypoelastic form as

∇

τ ij = Dijkl dkl (3.5)

where Dijkl denotes the constitutive tensor.

3.2 Time discretisation

The quasi-static problem being considered is solved in an incremental way, i.e. the so-
lution is found for a number of finite time steps. Considering an arbitrary step, stress,
strain and displacement increments are denoted as

∆
∇

τ ij =
∇

τ ij∆t+ h.o.t. ∆εij = dij∆t+ h.o.t. ∆ui = vi∆t+ h.o.t. (3.6)

where the symbol ∆ is used to indicate finite differences, ui denotes the displacement
vector and h.o.t. stands for higher-order terms, which originate from geometric non-
linearity within a time step. Virtual displacements are denoted as δui and δεij are virtual
strains. The virtual work equation 3.2 can now be written as

∫

V

(

∆
∇

τ ij δεij − σij δ(∆εik ∆εkj − 1

2
∆uk,i ∆uk,j)

)

dV + h.o.t. =

∫

V

∆bi δui dV +

∫

St

∆ti δui dS (3.7)

Here, V refers to the configuration at the beginning of the time step ∆t. Similarly, the
stresses σij denote stresses at the end of the previous time step. Additional higher-order
terms originate from material non-linearity by writing

∆
∇

τ ij = Dijkl∆εkl + h.o.t. (3.8)

This equation can now be inserted into Equation 3.7 to obtain
∫

V

(Dijkl ∆εkl δεij + σij ∆uk,i δuk,j − 2σik ∆εkj δεij) dV + h.o.t. =

∫

V

∆bi δui dV +

∫

St

∆ti δui dS (3.9)
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3.3 Space discretisation

In quasi-static analyses of elastoplastic solids it is efficient not to neglect the higher-order
terms and to apply relatively large time steps with equilibrium iterations, as also done
in this study. In fact, elastoplastic stress-strain relationships will be integrated implicitly,
giving significant non-linearity within a time step.

3.3 Space discretisation

With both the FEM and MPM, a computational mesh is used for arriving at the system
of equilibrium equations. Referring to this computational mesh, the interpolation func-
tions, N , the degrees of freedom, ∆a, and the displacement increment vector, ∆u, are
related by the equation

∆u(x1, x2, x3) = N (ξ, η, ζ)∆a (3.10)

where

∆u =
[

∆u1 ∆u2 ∆u3
]T

∆a =
[

∆a11 ∆a12 ∆a13 ∆a21 . . . ∆an3
]T

(3.11)
and the coordinates ξ, η and ζ refer to the local coordinate system of the used finite
elements. With regard to the definition of the components ∆aij of ∆a, the first index
denotes the number of the node and the second one the number of the coordinate, with
n being the number of (active) nodes in the mesh. Likewise, the global coordinates x of
a point inside an element can be computed from nodal coordinates X by means of

x = N X (3.12)

Matrix N takes the form




N1 0 0 N2 0 0 ... Nn 0 0
0 N1 0 0 N2 0 ... 0 Nn 0
0 0 N1 0 0 N2 ... 0 0 Nn





The components Ni are specified in Appendix A for the isoparametric elements used
in this study along with the respective geometry and local coordinate system. In this
study, 15-noded prismatic, 10-noded tetrahedral elements with quadratic interpolation
of displacements as well as 4-noded tetrahedral elements with linear interpolation of
displacements have been used (see Figure 3.1).

As common in the finite element literature, stress and strain increments are written
using matrix notation

σ =
[

σ11 σ22 σ33 σ23 σ13 σ12
]T

∆ε =
[

∆ε11 ∆ε22 ∆ε33 2∆ε23 2∆ε13 2∆ε12
]T

(3.13)

Thus the strain increment vector and its variation can be expressed as

∆ε = B∆a δε = B δa (3.14)
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Figure 3.1: Used elements; (left) 15-noded prismatic element; (center) 10-noded tetrahe-
dral element; (right) 4-noded tetrahedral element

where B is the strain-displacement matrix defined as
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Substituting Equations 3.10 to 3.14 into Equation 3.9 gives the equation

δaT (K +K
g)∆a + h.o.t. = δaT∆F (3.15)

As this equation holds for any kinematically admissible displacement variation, it can
be written as

(K +K
g)∆a + h.o.t. = ∆F (3.16)

Here,

∆F =

∫

V

N
T ∆b dV +

∫

St

N
T ∆t dS (3.17)

and

K =

∫

V

B
T
DB dV K

g =

∫

V

(BT
n σ̃ Bn − 2BT ˜̃σB) dV (3.18)

Vectors ∆b and ∆t correspond to body forces and tractions, respectively. Matrix D

which appears in the expression for K represents the components of tangential mate-
rial stiffness moduli while K

g is a geometric stiffness matrix. The latter is important as
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3.4 Mitigation of volumetric locking

soon as the stresses are of the same order as the material stiffness moduli. Matrix Bn has
the following form

Bn =





B̃n 0̃ 0̃

0̃ B̃n 0̃

0̃ 0̃ B̃n



 with B̃n =







∂N1

∂ξ
0 0 ∂N2

∂ξ
0 0 . . . ∂Nne

∂ξ
∂N1

∂η
0 0 ∂N2

∂η
0 0 . . . ∂Nne

∂η
∂N1

∂ζ
0 0 ∂N2

∂ζ
0 0 . . . ∂Nne

∂ζ







and 0̃ =
[

0 0 0
]T

while matrix σ̃ appearing in the first term of the integrand of
matrix K

g is

σ̃ =





σ̄ 0̄ 0̄

0̄ σ̄ 0̄

0̄ 0̄ σ̄



 with σ̄ =





σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33



 and 0̄ =





0 0 0
0 0 0
0 0 0





Matrix ˜̃σ used in the second term of the integrand of Kg is defined as

˜̃σ =

















σ11 0 0 0 σ13 σ12
0 σ22 0 σ23 0 σ12
0 0 σ33 σ23 σ13 0
0 σ23 σ23 σ22 + σ33 σ12 σ13
σ13 0 σ13 σ12 σ11 + σ33 σ23
σ12 σ12 0 σ13 σ23 σ11 + σ22

















3.4 Mitigation of volumetric locking

Incompressible material behaviour forms an ingredient of many geomechanical prob-
lems. It occurs in undrained saturated soil. Furthermore, it is assumed in case of
fully plastic flow. Modelling such material behaviour implies that material experiences
no change in volume which requires special attention when discretising a problem by
means of constant-strain elements such as the used 4-noded tetrahedral elements.

In the following, the example shown in Figure 3.2 (left) is considered. Here, only one
node of a tetrahedral element is free to move in directions 1, 2 and 3 by a displacement
increment ∆u

4. The element might be located inside a larger mesh, but in the following
explanations only one element is considered. Writing out Equation 3.14 renders

∆ε =





0 ∆ε12 0
∆ε21 ∆ε22 ∆ε13
0 ∆ε31 0



 (3.19)

where ∆ε22 is only a function of the vertical displacement ∆u42 of node 4. Assuming
incompressible deformation, the additional constraint

∆ε11 + ∆ε22 + ∆ε33 = 0 (3.20)

requires ∆u42 = 0. Thus, the displacement of node 4 is limited to a horizontal plane.
Now, a slightly tilted element as shown in Figure 3.2 (right) is considered so that two
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Figure 3.2: Volumetric locking; (left) tetrahedral element with all but three degrees of
freedom fixed; (right) alternative discretisation with two nodes free to move

nodes 1 and 4 are free to move. Writing out the strain tensor components shows that the
volumetric strain is now a function of ∆u42 as well as ∆u11, ∆u12, ∆u13, which forms a
less restrictive constraint on the element deformation.

Thus, depending on the used discretisation, incompressible material behaviour trans-
lates into a more or less severe restriction on the deformation of an element. In the
extreme case of an element with only one node free to move, the severe restriction on
element deformations shows in results of numerical analyses as a non-physical stiffness.
Figure 3.13 (left) in Section 3.9.2 illustrates the occurrence of such so-called volumetric
locking for the problem of an elastic-plastic slope.

Volumetric locking can be reduced by means of a Nodal Mixed Discretization tech-
nique as proposed by Detournay and Dzik [20]. This technique has been successfully
introduced by Stolle, Jassim and Vermeer [49] to a 3D dynamic MPM code with explicit
time integration using the same 4-noded tetrahedral elements. With the Nodal Mixed
Discretization technique the number of degrees of freedom per element is increased by
incorporating information of surrounding elements into the determination of element
volumetric strain rates ė defined as

ė = ε̇11 + ε̇22 + ε̇33 (3.21)

The algorithm forms an intermediate step between the element-wise determination of
strain rates from the kinematic relation and the computation of stresses. The deviatoric
strain components ε̇D remain unchanged while the volumetric strain component is mod-
ified through an averaging procedure.

Let
△

ė denote nodal volumetric strain rates obtained by weighted averaging of the vol-
umetric strain rates ėl of all elements connected to a node

△

ė=

∑

ėlVl
∑

Vl
(3.22)
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Figure 3.3: Nodal Mixed Discretization technique for the example of a 3-noded triangu-
lar element

where Vl denotes the volume of element l. Figure 3.3 illustrates the averaging procedure
for the hatched triangular element, one of its nodes, respectively. Averaged volumetric
strain rates ¯̇e are then computed for each element by averaging the nodal volumetric

strain rates
△

ė of all nodes connected to an element

¯̇e =

∑

△

ėk
n

(3.23)

where n denotes the number of nodes per element (4 in case of the low-order tetrahedral
elements). From the averaged element volumetric strain rates the updated strain rates
ε̇′ij are computed by means of

ε̇′ij = ε̇ij −
1

3
δij (ė− ¯̇e)

= ε̇Dij +
1

3
δij ¯̇e (3.24)

where δij is the Kronecker delta. The averaging is performed separately for different
material domains. On the basis of the modified strain rates, stresses are computed from
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Chapter 3 Formulation of the quasi-static Material Point Method

Figure 3.4: Finite element grid and solid body with material points

the constitutive stress-strain relation as with the standard FEM. In contrast to [20] no av-
eraging procedure is applied on stress rates, because an averaging of stresses is already
performed in the MPM calculation procedure as detailed in Section 3.6.

The performance of the described technique is illustrated in Section 3.9.2 with the
benchmark of an elastic-plastic slope.

3.5 Material point discretisation

The essential difference between the standard FEM and the MPM is that, in the latter one,
stresses and other state variables are not calculated and traced for Gaussian integration
points, but for so-called material points flowing through the mesh. This means that the
MPM does not only involve a finite element discretisation of space, but also a set of
material points representing small subregions of the deformable body. The mass and
volume of subregions are memorised for these points, but changes in the shape of the
subregions are not traced.

Initialisation of the material point discretisation Figure 3.4 shows the undeformed
state of a body that is divided into uniformly distributed subregions inside a regular
computational mesh of squares. The finite element mesh covers the solid in its initial
configuration as well as the region into which the solid is expected to move. In this
example, the computational grid is completely independent of the initial state of the
body, so that the analysis begins with fully filled as well as partially filled elements. In
general, however, one will use meshes that largely match the initial undeformed state
to avoid partially filled elements for the initial state of the discretisation. In this case,
initial volumes Vp are assigned to subregions, material points respectively, such that the
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3.5 Material point discretisation

Figure 3.5: Movement of material points through the computational grid for a time step;
(left) initial configuration; (center) incrementally deformed mesh; (right) reset
mesh

summed volume of subregions inside an element equals the volume of the element

Vp = Ve/ne (3.25)

where ne stands for the number of material points within the element considered and
Ve is the element volume. Furthermore, material properties and state variables such as
initial stresses are assigned to the material points.

An arbitrary distribution of material points may be used. In this study, 18 material
points are initially assigned to the considered 15-noded prismatic elements, 10 material
points to 10-noded tetrahedral volume elements and either 4 or 10 material points to
4-noded tetrahedral elements. In Appendix A the initial location of material points is
shown.

Linkage with the finite element discretisation During the deformation process, ele-
ments initially filled with material points will eventually become void of material points
and vice versa. Throughout the calculation process, elements void of material points
are marked as deactivated, elements containing material points are marked as activated.
The same distinction is applied to grid nodes, where nodes not attached to any activated
element are marked as deactivated.

For each time step, the equations of equilibrium are assembled and solved for nodal
displacement increments as usual within the numerical analysis of nonlinear problems
(see Section 3.7). Here, only the changing set of activated elements and nodes is con-
sidered. The solution of the governing equations is Lagrangian in the sense that the
computational mesh is deforming. As illustrated in Figure 3.5, material points thereby
move relative to the global coordinate system. At the end of a time step elements are
distorted. In case of significant distortions the computational mesh has to be adjusted.
With the MPM it is usual to reset the distorted mesh back to its initial configuration as
shown in Figure 3.5, but it is also possible to apply mesh refinement or other changes to
the mesh. Material points, however, maintain the positions that they took up within the
deformed mesh. Thus, the assignment of material points to finite elements is updated
after the adjustment of the mesh.
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The finite element and material point discretisation are linked by the mapping of data
between the two discretisations on the basis of polynomial interpolation functions de-
fined for the finite element grid. For example, the incremental movement of material
points through the mesh is computed from nodal displacement increments by means of
Equation 3.10.

Application of boundary conditions As with the standard FEM, prescribed displace-
ments are assigned to nodes of the mesh. In anticipation of the movement of material
through the discretised space, they are also applied to (boundary) nodes that might be-
come activated in the course of the calculation.

With the MPM, it is common to apply prescribed forces not on boundary nodes but on
material points [22]. With the presented implementation, tractions are assigned to mate-
rial points in two steps. At first, prescribed tractions t are assigned to element surfaces St

of the finite element mesh in its initial configuration. This can be done without difficulty,
because, as stated above, the finite element mesh matches the initial undeformed state
of the discretised body. When inserting material points into the mesh, these tractions are
translated for each volume element into forces F

t attached to those material points that
lie next to the loaded surface. This is done by means of

F
t = t

St

nt

(3.26)

Here, nt is the number of material points next to the loaded element surface. This even
distribution of traction over material points is justified for the presented implementa-
tion because material points are evenly spread across the volume elements in the initial
configuration. Furthermore, at present, only constant surface tractions are considered.

The disadvantage of applying tractions to material points arises when computing the
vector of external forces (Equation 3.17). Material point forces F

t
i are mapped to nodes

on the surface as well as nodes slightly inside the solid body by

F =

nfe
∑

e=1

ne
∑

i=1

N
T
i F

t
i (3.27)

where F is a vector of nodal external forces, nfe denotes the number of finite elements
that contain load-carrying material points and ne is the number of load-carrying material
points inside each element. So, boundary tractions are finally distributed over a bound-
ary zone rather than over a surface. In case of non-structured meshes the thickness of
this zone is variable. In order to avoid resulting inaccuracies, it is also possible to stick to
the FEM way of applying traction at nodes. However, to maintain nodes on the bound-
ary with the MPM, the computational mesh would have to be adjusted after each time
step.

Updated locations of material points are computed from interpolation functions of
the underlying deformed mesh. While material points might approach element sides
whose normal displacements are fixed, crossing these fixed surfaces is thereby explicitly
prohibited.
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3.5 Material point discretisation

Adaptation of the material point discretisation With a fixed number of material points,
empty finite elements and thus deactivated nodes might occur temporarily within the
interior of a body during the calculation process. Such deactivated elements introduce
non-physical discontinuities. This might happen in case of an extremely large stretch-
ing of the body by which the density of its material point discretisation decreases. One
might also think of strongly irregular meshes, in which small elements enclosed by large
elements might become void of material points.

In order to guarantee a proper discretisation of a body, material points are inserted
within the body into elements that would otherwise become void of material points.
In case of low-order elements 1 material point is inserted into each empty element at
the location of the Gaussian integration point, in case of high-order elements 4 material
points are inserted in an identical fashion. State variables such as stresses are assigned
to these points from a sphere of surrounding material points by means of the method
of least squares. Furthermore, incremental displacements of the previous time step are
computed for these inserted material points. This is done by back-calculating the co-
ordinates of inserted material points at the beginning of the previous time step from
the nodal displacement increments obtained at the end of the time step. These inserted
material points get no volume and consequently no weight so that the distribution of
weight inside the solid body is not altered. If the distribution of material points inside
elements becomes too dense at a later stage of the calculation process, these inserted
material points can simply be removed.

Apart from these weight-less material points, material points that do carry a weight
are inserted into the mesh during computations in which the entire mesh is displaced.
Such an approach is taken when a structure such as a pile or anchor is moved through
soil. Figure 3.6 illustrates this adjustment of the mesh and the insertion of material points
with the example of a rigid pile pushed vertically into soil by a distributed load at the
top. At the end of a time step, the finite element mesh is deformed incrementally. Instead
of resetting the mesh to its initial configuration, the elements discretising the rigid pile
are updated as in the conventional updated Lagrangian FEM. Thereby, the boundary of
the pile coincides with element boundaries at all stages of the analysis. Thus, material
points of pile elements do not experience a movement relative to their respective ele-
ment boundaries. The distributed load is always applied on the pile boundary. Now, the
remaining mesh is adjusted so that the undeformed geometry of elements is recovered.
All coordinates of mesh nodes are updated so that the mesh moves step by step as a
fixed entity with the displacement of the rigid pile. As shown on the right hand side of
Figure 3.6, finite elements at the bottom of the mesh would eventually become empty.
However, with this problem, the grid moves over a material point discretisation repre-
senting soil that extends beyond the boundaries of the mesh as indicated by the greyed
surface below the mesh. During the computation, material points are thus continuously
entering the mesh along its lower boundary.

The extended soil body, material point discretisation respectively, is initialised in two
steps as shown in Figure 3.7. In a first step, the entire material point discretisation is ini-
tialised on the basis of a finite element grid as presented in this chapter (left side image).
The finite element discretisation is then discarded while the initialised material points
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Chapter 3 Formulation of the quasi-static Material Point Method

Figure 3.6: Insertion of material points into the discretised space; (left) initial mesh;
(right) moved mesh

are kept (center image). In the second step, the (smaller) finite element discretisation of
the considered problem is initialised (right side image). Material points inside this new
discretisation are initialised as usual. Material points outside the grid are taken from the
previously generated extended material point cloud and marked as deactivated. After
the mesh has experienced an incremental displacement, it is checked which deactivated
material points crossed the boundary surfaces of the finite element mesh and which ac-
tivated material points might have left the grid. For those material points that entered
the mesh, the elements they moved into are determined.

Through this approach, state variables are properly initialised for inserted material
points. Thus, a mapping of stresses from surrounding material points as done with
weight-less material points does not apply. Obviously, the region discretised by finite
elements must be sufficiently large so that the initial state of material that lies outside
the mesh would not be altered throughout the calculation. More importantly, the ma-
terial point discretisation forms a continuous medium with respect to the volume and
mass of material points inserted into the mesh. A small inaccuracy might evolve along
the boundary of the mesh because the volume covered by material points might lie to
some extend outside the mesh, so that the gravitational load of the solid body would be
slightly overestimated.

Throughout the calculation process, no distinction is made between inserted material
points and the initial material point discretisation, with one exception related to numer-
ical integration that is described in the following section.
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3.6 Numerical integration

Figure 3.7: Generation of extended material point discretisation

3.6 Numerical integration

In finite element analyses, Gaussian integration points are generally used for the numer-
ical integration of Equations 3.18 and 3.17 but this is not usual for the MPM. In most ex-
isting MPM implementations [14, 50–52, 66, 67] numerical integration is not performed
by using Gaussian integration points, but by an element-wise summation over the ma-
terial points. Considering for example evaluation of the material stiffness matrix, the
material point based integration yields

∫

V

B
T
DB dV ≈

nfe
∑

e=1

np
∑

p=1

B
T
DB Vp (3.28)

where nfe denotes the number of finite elements containing material points and np the
number of material points inside each element.

In the example shown in Figure 3.4 the finite element mesh is completely independent
of the state of the body, so that the mesh contains fully filled as well as partially filled el-
ements. The advantage of material point based integration is that it applies to elements
that are either fully or partially filled with material. However, stress oscillations were
observed with material point based integration during benchmark calculations as illus-
trated in Figure 3.8 for the example of an oedometer that is subjected to traction. The
geometry and boundary conditions of the problem are sketched on the left hand side of
the figure. In the charts, vertical stresses computed at material points are plotted across
the height of the oedometer in its final deformed state. The dashed frame indicates the
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Figure 3.8: Vertical stresses at material points plotted over the height of an oedometer
for material point based integration and Gaussian integration; (left) geometry
of the considered problem; (center) discretisation with low-order tetrahedral
elements; (right) discretisation with high-order tetrahedral elements

initial height of the oedometer. The image in the center shows stresses for a discretisa-
tion with low-order tetrahedral elements at a traction load of 25 kPa, the one on the right
hand side shows stresses for a discretisation with high-order prismatic elements at a load
of 50 kPa. Because traction is applied on the top layer of material points, stresses near
the oedometer surface are not accurate and are therefore not shown in the charts. The
computation using material point based integration shows severe oscillations of stresses,
though the average taken over the oedometer height corresponds reasonably well to the
exact value. In order to eliminate these oscillations, Gaussian integration is applied to
all elements that are fully filled with material, whereas material point based integration
is only adopted for partially filled elements. The stresses obtained with this extension
of the Material Point Method are also shown in Figure 3.8. They correspond well to the
exact solution. The deviation of material point stresses from the exact solution in case
of the discretisation with low-order elements must be attributed to the material point
based load application.

As stated before, elements in the interior of a body are assumed to be fully filled.
Conversely, partially filled elements are assumed to occur only along the boundary of a
body. From Figure 3.6 it becomes evident that a mesh boundary is not considered as a
boundary of the body as though the body extends beyond the mesh.

For elements along the boundary of a body, partially filled elements satisfy the condi-
tion

ne
∑

p=1

Vp < β Ve (3.29)
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3.6 Numerical integration

The constant β was chosen to be 0.9, as sensitivity calculations showed very little influ-
ence on computational results for variations of β around this particular value.

Similar to the material stiffness matrix, K, the geometric stiffness matrix, Kg, in Equa-
tion 3.18 is computed by Gaussian integration of fully filled elements and material point
based integration of partially filled elements. However, in the case of body forces, ma-
terial point based integration is used in all elements instead of distinguishing between
partially and fully filled elements. In doing so, it is made sure that the total body weight
is exactly retrieved.

Inserted material points that carry no weight are not considered for the integration of
partially filled elements. This evolves automatically from the material point discretisa-
tion because such material points are only placed in the interior of a body, whereas the
occurrence of partially filled elements is limited to the boundary of a solid. Weight-less
material points in the vicinity of the boundary of a body are removed.

Because Gaussian integration of fully filled elements needs the integrand values, e.g.
stresses, for Gaussian integration points, data has to be mapped from the material points
to the Gaussian integration points at the beginning of every time step. Conversely, state
variables computed at Gaussian integration points have to be mapped to material points
at the end of a time step for fully filled elements. In the following, the mapping of
state variables from Gaussian integration points to material points is presented. In the
succeeding paragraph, the mapping of state variables from material points to Gaussian
integration points is explained. For illustration of the used algorithms, the mapping of
stresses will be considered as representative for any state variable that is required for a
used constitutive model.

Mapping of state variables from Gaussian integration points to material points In
case of 4-noded tetrahedral elements with constant stress distribution, stresses are map-
ped from Gaussian integration points to material points by simple averaging. Consider-
ing quadratic interpolation of displacements within 10-noded tetrahedral elements, the
strain interpolation is linear and it is thus consistent to choose a linear stress interpola-
tion for the high-order elements as used in this study.

Stresses at any point within a finite element in terms of Gauss point stresses can be
determined from

σij(ξ, η, ζ) = Hk Skij (3.30)

whereHk are interpolation functions, Skij are known stresses at Gauss points k, the range
of k is the number of Gauss points denoted as nGP . Likewise, stresses at a point inside
an element can be described by the following polynomial

σij(ξ, η, ζ) = pl alij (3.31)

where pl are polynomial basis functions and alij are constant coefficients. In case of 10-
noded tetrahedral elements pl ∈ {1, ξ, η, ζ}. For the high-order prismatic elements, the
stress interpolation is not linear and has to be extended by two extra terms — details are
left to the reader. The coefficients alij can be determined from a system of nGP equations
that is assembled from Equation 3.31 for known stresses Skij at Gauss point locations

Skij = Pkl alij (3.32)
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where Pkl is assembled from pl for the known Gauss point coordinates. Because the
number of Gauss points within the elements used in this study is equal to the number
of coefficients alij , Equation 3.32 has a unique solution. Combining Equations 3.30, 3.31
and 3.32 renders the sought-after shape functions

Hk = pl (P
−1)kl (3.33)

The shape functions for 15-noded prismatic elements and 10-noded tetrahedral elements
are listed in Appendix A.

Mapping of state variables from material points to Gaussian integration points For
low-order constant-stress elements, the mapping of stresses from material points to Gaus-
sian integration points is trivial, as the element stress is simply an average of material
point stresses within the element considered. This will be a weighted average in the
most general case that the subregions of material points are of different volumes, VP .
In this study, also in case of non-structured meshes, no weighting has been applied, as
initial tests with varying weights showed a negative effect on the numerical stability of
performed calculations. This (weighted) averaging is in fact a least square fitting, as also
applicable to high-order elements. Considering a linear stress interpolation for the high-
order elements used in this study an arbitrary component of stress is assumed to vary
within a particular element according to the function

σij(x) = α0 + α1x1 + α2x2 + α3x3 (3.34)

where the constants αi are found by a least-square of all material point stresses Sp ij

within the element. Hence, coefficients αi are calculated by minimising the quadratic
function

J =
ne
∑

p=1

(Sp ij − (α0 + α1xp1 + α2xp2 + α3xp3) )
2 Vp (3.35)

The coefficients αi can now be computed from the four linear equations

∂J

∂αi

= 0 (3.36)

at least if the equations are linearly independent. This will not be the case when an
element contains less than four material points or in the very special case that all these
material points happen to be aligned. In such cases, it is possible to take more material
points from a wider volume than the element considered.

Having evaluated the coefficients αi for the fully-filled high-order element considered,
the stresses in the Gaussian integration points can be straightforwardly computed from
the function σij(x). For the 15-noded prismatic elements, the stress interpolation is not
linear and has to be extended by two extra terms.
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3.7 Iterative procedure within a load step

3.7 Iterative procedure within a load step

For elastic-plastic constitutive models as considered in this study, finite increments of
stress may be written in the form of Equation 3.8 or alternatively as

∆
∇

τ = D
e (∆ε − ∆ε

p) = D
e ∆ε − h(σ,∆ε) (3.37)

where D
e is the elastic material stiffness and h a correction function for the plastic

strains, ∆ε
p, that depend on a yield function and a plastic potential function. Using

the above expression, Equation 3.16 may be put into the form

(Ke + K
g) ∆a = ∆F + ∆Fp (3.38)

with

∆Fp =

∫

V ∗

B
T
h dV (3.39)

where K
e is the global elastic stiffness matrix and all material non-linearity is contained

in the function h. Geometric non-linearity is captured by defining V ∗ and S∗

t as the
deformed body at the end of the load step and writing

∆F = Fex − Fint (3.40)

where

Fex =

∫

V ∗

N
T (b + ∆b) dV +

∫

S∗
t

N
T (t + ∆t) dS Fint =

∫

V ∗

B
T (σ + ∆σ) dV

(3.41)
The global iteration process as used in this study can be written as

(Ke + K
g) ∆a

k+1 = Fex − F
k
int + ∆F

k
p (3.42)

where k refers to the iteration number. Hence, F k
int and ∆F

k
p are computed from ∆ε

k, be-
ing evaluated for the deformed state at the end of the kth iteration. During the iteration
process within a load step, the computational mesh is continuously updated, but the
matrices K

e and K
g are kept constant, i.e. are only updated for the very first iteration.

This iterative procedure is continued until the relative equilibrium error of

error = ||Fex − F
k
int || / ||Fex || (3.43)

has reached a value below a particular tolerated error. In this study the tolerated error
has been generally set to a value of 0.01 unless otherwise stated.

The use of a constant matrix requires only a single (time-consuming) decomposition
and is thus considered to be computationally attractive. On the other hand, it would
seem to be inefficient to use the elasticity matrix, Ke, rather than the elastoplastic stiff-
ness matrix, K. Indeed, a (modified) Newton-Raphson iterative procedure with a con-
stant elastoplastic tangent stiffness matrix is very efficient for regular elastoplastic mod-
els. In this study, however, the Mohr-Coulomb elastic-plastic model is used, which in-
volves an irregular yield surface so that there is no unique elastoplastic stiffness matrix.
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In such a case the elastoplastic stiffness matrix might be estimated from the previous
load step, but it would seem that this is only converging in combination with relatively
small load steps. Moreover, the elastoplastic stiffness matrix is generally non-symmetric,
at least for non-associated plasticity models. For this reason, the standard iterative pro-
cedure with the elastic stiffness matrix, as applied in Plaxis codes [11], has been adopted.

The efficiency of the iteration process depends on the size of the load steps. The use
of very small steps requires many matrix decompositions in combination with only a
few iterations per step, whereas the use of very large steps will imply the opposite, i.e.
less matrix decompositions and more iterations per step. Considering results from some
benchmark problems, Van Langen and Vermeer [58] suggested to use step sizes that re-
quire 4 to 10 iterations with a quasi-static FEM. On the basis of a desired minimum and
maximum number of iterations, they also proposed an automatic step size correction
procedure. If the number of iterations exceeds an upper limit, the step size is scaled
down by half. The load step is then recomputed with the scaled load vector. In case the
number of iterations lies below a lower threshold, the step size is doubled. This proce-
dure has been successfully applied to the quasi-static MPM as well. However, a recom-
mendation for a maximum and minimum number of iterations requires assessment of a
broader set of benchmark problems.

Although the mesh experiences only incremental deformations, these might nonethe-
less become extensive in case of large load steps. Therefore, in order to keep distortions
of the finite element mesh small, an additional criteria for scaling down the size of load
steps is introduced. If the change of the determinant of the Jacobian ∆J at any Gaussian
integration point of the activated finite elements

∆J = 1 − min(Jdeformed, Jundeformed)

max(Jdeformed, Jundeformed)
(3.44)

exceeds a given threshold value, then the load step is scaled down. Here, Jdeformed and
Jundeformed denote the determinant of the Jacobian of the deformed element, the unde-
formed element respectively. For computations of this study a threshold value of 0.3 has
been used. The Jacobian J is defined as

J =







∂x1

∂ξ
∂x2

∂ξ
∂x3

∂ξ
∂x1

∂η
∂x2

∂η
∂x3

∂η
∂x1

∂ζ
∂x2

∂ζ
∂x3

∂ζ






(3.45)

where the terms x1, x2 and x3 are computed from Equation 3.12.
The iteration process can be accelerated by estimating the first iterate, ∆a

1, from the
previous load step. Instead of solving the governing equations of the first iteration,
nodal displacement increments are estimated from the displacement field of the previ-
ous load step that is stored with material points. For each activated node, incremental
displacements are interpolated by weighted averaging from displacement increments of
material points in the vicinity of the node. Weighting is done by distance. For compu-
tations presented in Chapter 6 such load step extrapolation showed a reduction of the
number of iterations by a factor of 0.88.
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3.8 Overview of the calculation process

In the initialisation phase of an MPM analysis, the finite element mesh and material point
discretisation are generated and boundary conditions are applied to the finite element
mesh as explained in Section 3.5.

Load stepping: After initialisation, the calculation process of stepwise load increase
is started. For each load step, the equations of equilibrium are assembled and solved as
described in Section 3.7. For fully filled elements, Gaussian integration is applied and
stresses are computed at integration points. For partially filled elements, material point
integration is applied and stresses are directly computed at these points identical to the
computation at integration points (see Section 3.6).

After reaching the required accuracy of the iterative solution, a calculation phase
termed Convective Phase is performed [50]. For fully filled elements, stresses are map-
ped from Gaussian integration points to material points element-wise as presented in
Section 3.6. In case of significant distortions of finite elements the computational mesh
is reset to its initial position or otherwise adjusted while material points maintain the
positions they took up in the deformed mesh. Consequently, the assignment of ma-
terial points to finite elements is updated. For the Gaussian integration of fully filled
elements, material point stresses are mapped to the Gauss points of these elements (see
Section 3.6). Eventually, material points are inserted into elements, redundant material
points are removed. Subsequently, the next load increment is applied on the updated
material point configuration.

Those steps of the calculation process that are related to the resetting or adjustment
of the mesh introduce non-physical out-of-balance forces at activated nodes. Here, both
the external as well as the internal load vector defined in Equation 3.41 are subject to
changes. As also found by Hu and Randolph [27], these out-of-balance forces degrade
the numerical stability, at least if they exceed the tolerated error used for the iterative
procedure. In order to eliminate this adverse effect, a so-called zero load step is inserted
in between two load steps as proposed by Sheng [47]. With zero load steps, no addi-
tional load increment is applied. The nodal out-of-balance forces are reduced as with
a standard FEM load step. Material points do no move through the mesh, i.e. nodal
displacements are reset to zero. Stresses obtained from a zero load step have no physical
meaning and are overwritten by results obtained in the succeeding load step.

3.9 Validation

The first benchmark for validation of the quasi-static MPM is the bending of a cantilever
beam. It involves large displacements rather than large strains so that the UL-FEM is
well suited for solving this problem. It is thus used to compare results obtained with
the MPM against a proven numerical solution. Thereafter, results for two geomechan-
ical problems involving extremely large deformations of soil are shown, a slope under
gravity loading and a retaining wall moved along the ground. The latter two examples
illustrate the advantage of the presented numerical method compared to the UL-FEM.
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Figure 3.9: Non-structured mesh for a cantilever beam with material points, initially ac-
tivated elements

3.9.1 Linear-elastic cantilever beam: comparison to FEM

A linearly elastic cantilever beam subjected to gravity loading is analysed. It is assumed
that the load is applied quasi-statically. The beam has a length of 1 m, a height of 0.3 m
and a width of 0.1 m. The weight of the material is increased up to a value of 4 kN/m3.
A linear-elastic material with Young’s modulus of 100 kPa and Poisson’s ratio of 0 is
assigned to the beam.

Tetrahedral elements with quadratic interpolation functions are employed in the cal-
culations. Figure 3.9 shows the active elements (those where material points are located)
inside the discretised space at the onset of loading. Initially 10 material points are placed
inside each activated element. The boundary nodes are fixed in the z-direction in order
to obtain the plane strain solution.

Figure 3.10 shows the computed material point positions both for a body weight of
2 kN/m3 and for the final weight of 4 kN/m3. In Figure 3.10 (left), the partially filled
elements along the boundary of the beam are indicated by coloring the contained ma-
terial points in red. In Figure 3.10 (right), horizontal stresses are indicated. As a large-
displacement but small-strain problem is considered, the UL-FEM calculation provides
accurate results, which can thus be used for validation of the MPM. The minimum and
maximum value of horizontal stress of -47.0 and 32.7 kPa are in good agreement with
results of an UL-FEM analysis. The load-displacement curves for the vertical and hori-
zontal displacement averaged over the tip of the cantilever beam for both the MPM and
UL-FEM calculation are presented in Figure 3.11. This figure shows results for 20 load
steps. For a tolerated error of 0.03 and manual presetting of the step size the average
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Figure 3.10: Deflection of the cantilever beam: (left) location of material points relative
to the computational mesh for a body weight of 2 kN/m3; (right) shading of
horizontal stresses at an applied body weight of 4 kN/m3
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tical and (right) horizontal tip displacement averaged over the height of the
cantilever beam
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Chapter 3 Formulation of the quasi-static Material Point Method

number of iterations per step was about 12.

As can be seen from Figure 3.11, good agreement is obtained between the UL-FEM
and MPM results. The slight deviation of the MPM curves from the UL-FEM results
may very well be attributed to the less accurate integration procedure used for partially
filled elements along the boundary of the material point discretisation.

3.9.2 Elastic-plastic slope problem

For an elastoplastic slope under gravity loading, as depicted in Figure 3.12, the UL-FEM
meets its limitations as large distortions of elements occur inside the developing shear
bands and at the foot of the slope during the calculation process.

The slope has been discretised using 15-noded prismatic elements with initially 18 ma-
terial points inside, 10-noded tetrahedral elements with initially 10 material points and
4-noded tetrahedral elements with initially 10 material points. It possesses an inclination
of 60◦ and a height of 1 m. The Tresca yield criterion is used [60], with Young’s modulus
of 100 kPa, Poisson’s ratio of 0.33 and cohesion of 1 kPa. As for the case of the beam,
the plane strain problem was analysed as a 3D slice with a thickness of 0.1 m. Nodal
displacements are fixed at the bottom of the mesh and horizontal nodal displacements
are fixed at the left side of the mesh. The weight of the material is increased up to γ = 10
kN/m3.

Figure 3.12: Geometry and discretisation of the slope: (top left) structured mesh of pris-
matic elements; (top right) non-structured mesh of 10-noded tetrahedral el-
ements; (bottom) non-structured mesh of 4-noded tetrahedral elements
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Figure 3.14: Deformation of the slope represented by material point positions at soil
weight γ = 0, 7, 8.5 and 10 kN/m3

The tetrahedral element analyses were carried out with manual presetting of the step
size which rendered on average 14 iterations per step, whereas a much higher number
was needed for the prismatic element analysis.

Figure 3.13 (left) shows the unit soil weight as a function of the displacement of the
crest of the slope both for prismatic and tetrahedral elements. Up to a soil weight of
approximately γ = 5.25 kN/m3, elastic deformations dominate the deformation process.
With regard to the MPM calculations, the slightly softer response of the tetrahedral el-
ements compared to the prismatic elements is attributed to the mesh refinement at the
bottom of the slope (see Figure 3.12). The load-displacement curve for a computation
with 4-noded tetrahedral elements without application of the Nodal Mixed Discretiza-
tion technique (see Section 3.3) is also plotted. This curve shows a considerably stiffer
response due to volumetric locking compared to the result for the computation with 4-
noded elements that makes use of this technique. The latter corresponds well to results
obtained with high-order elements that are less prone to locking effects. Furthermore,
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Chapter 3 Formulation of the quasi-static Material Point Method

Figure 3.15: Incremental shear strains for the slope in the final deformed state

the load-displacement curve from an UL-FEM calculation using tetrahedral elements is
provided. The UL-FEM computation did not converge towards a solution when reach-
ing a soil weight of γ = 6 kN/m3. Figure 3.13 (right) depicts the deformed mesh for the
UL-FEM computation at this applied soil weight. As can be seen, strong distortions of
elements occur in the region of the mesh highlighted by the rectangular box such that the
determinant of the Jacobian of these elements becomes negative. The deformed shape
of one of these elements is shown enlarged. The results of the FE analysis as shown in
Figure 3.13 (right) happen to give the impression that the material is also supported be-
yond the toe point, but this is not the case; only the six bottom nodes of the (enlarged)
element are supported.

Figure 3.14 shows the computed deformation of the slope represented by material
points at different loading stages for a MPM computation using 10-noded tetrahedral
elements. One observes that material points move into elements that become newly
activated in front of the initial slope. Thereby, the MPM correctly reproduces the sup-
port given to the slope by material deposited in front of its toe even without remeshing
and/or a contact algorithm.

Figure 3.15 shows the incremental shear strains inside the slope of the final load incre-
ment. A localisation of deformations occurs along the bottom of the slope. Two shear
bands that diagonally extend through the body of the slope develop from this zone.

A possible load-step dependency of results has been investigated for this problem by
performing computations with 200, 600 and 1000 load steps. However, a comparison of
the obtained results did not reveal any load-step dependency.

3.9.3 Retaining wall problem

A retaining wall problem consisting of a stiff block being pushed against soil is inves-
tigated in the last example. The soil is modelled by an elastic-plastic Mohr-Coulomb
constitutive law and the stiff block by a linear-elastic material. Figure 3.16 shows the
geometry and discretisation of the problem. Like in the previous examples, it is a plane
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Figure 3.16: Geometry and discretisation of the retaining wall problem by prismatic
elements

strain problem with a width of 0.1 m perpendicular to the plane of deformation. The
total domain has the dimensions 5.3 × 1.2 m. Full fixity is applied along the lower edge,
and a free-slip condition is applied on the left and right sides. The domain is discretised
with 15-noded prismatic elements, each element containing 18 material points initially.
The stiff block, lightly shaded in Figure 3.16, has the dimensions 0.6 × 0.4 m and a ma-
terial weight of 20 kN/m3, a Young’s modulus of 100 MPa and a Poisson ratio of 0. The
remaining active elements are soil elements with a material weight of 20 kN/m3, elastic
modulus of 10 MPa and Poisson’s ratio of 0.3, cohesion of 10 kPa, internal friction angle
of 30◦ and dilatancy angle of 0◦.

The calculation is performed in two phases: firstly, gravity loading is applied, sec-
ondly, prescribed displacements of 600 mm are applied in equally sized increments on
the stiff block. Here, use is made of the fact that with the MPM, the finite element mesh
can be arbitrarily modified after each time step. Thus, the elements discretising the stiff
block are updated as in the conventional updated Lagrangian FEM such that the bound-
ary of the block coincides with element boundaries at all stages of the analysis. The finite
element mesh is updated as described in Section 3.5.

Figure 3.17 shows the computational results of the considered earth pressure problem.
A completely rough wall is considered with full adhesion, so that the soil just in front is
sticking to the wall, but a wedge further in front is pressed out. One observes that some
of the soil is falling on top of the stiff block. Shear bands in front of the stiff block occur
as well as significant shear deformations at the bottom of the wall. A third shear band
develops near the end of the simulation.

Figure 3.18 displays the computed load-displacement curve. The force consists of the
horizontal earth pressure in front of the wall and the horizontal shear force below the
stiff block (for a wall length of 0.1 m). Large displacements cause soil heave in front of
the block and consequently an increase in earth pressure. For small deformations the
force amounts to 5.6 kN which complies well with the analytical solution from classical
earth pressure theory and the sliding force below the block.
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Chapter 3 Formulation of the quasi-static Material Point Method

Figure 3.17: Deformation and incremental shear strains after a wall movement of 0, 300
and 600 mm
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Chapter 4

Soil-structure interaction

Modelling contact between structures and surrounding soil is of importance in many
geotechnical problems, since such contact significantly contributes to the mechanical be-
haviour of the structure. For example, piles being driven or jacked into soil generally
carry their loads to a large extend through skin friction.

In conventional small-deformation finite element analyses of geotechnical problems,
such soil-structure interaction is generally modelled by interface elements. This ap-
proach proved to be both robust and efficient [57]. Interface elements model contact
by relating relative displacements between pairs of surface nodes of two bodies (dual
nodes) through constitutive equations to contact stresses. For large deformations, how-
ever, this approach cannot be used in a straightforward manner, as the dual nodes of
interface elements have to remain in direct contact. Indeed, interface elements cannot be
used with an UL-FEM analysis, as relative displacements between dual nodes and sub-
sequent remeshing destroy the required contact between dual nodes. For illustration,
Figure 4.1 shows principal stresses for a rigid, elastic block subjected to gravity loading
that displaces horizontally over a flat surface. Interface elements are placed beneath the
block. Considerable relative displacements occur between the dual nodes of the inter-
face elements: the top plane sticks to the block, while the bottom layer remains at its
initial location. Consequently, the stresses induced by the block into the soil remain at
the initial position of the block, whereas they should move with the sliding block. For
this reason, (master-slave) contact algorithms tend to be applied in Total and Updated
Lagrangian FE formulations [47]. With the MPM, however, large deformations do not
require (full) remeshing so that the usage of interface elements forms an attractive ex-
tension of this method for solving soil-structure interaction problems, as will be shown
in this chapter.

At first a brief introduction to the formulation of interface elements is given that iden-
tically applies to both the FEM and MPM. For a more extensive treatment of interface
elements, the reader is referred to [57]. In Section 4.2 the adaptation of interface ele-
ments to the MPM is outlined. In Section 4.3 benchmark problems of a block sliding
over a purely adhesive as well as a purely frictional surface and of a slope under gravity
loading that is placed on an adhesive surface are presented.

4.1 Formulation of interface elements

In the present study, 3D interface elements compatible to both 4-noded and 10-noded
tetrahedral volume elements were considered. However, computations with high-order
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Chapter 4 Soil-structure interaction

Figure 4.1: Principal stresses for a block-pushing test using interface elements in an UL-
FEM analysis

interface elements proved considerably less stable than those with low-order interface
elements. Therefore, only the use of low-order interface elements was further pursued
and thus consequently also the use of corresponding low-order volume elements.

Interface elements consist of two ’faces’. In the most general case each face shares
nodes with adjacent tetrahedral elements as illustrated in Figure 4.2 (left). Interface ele-
ments might also be placed along the boundary of a finite element mesh so that bound-
ary conditions are applied on the nodes of the outer face. However, this case does not
require any special treatment. Interface elements do not possess a finite thickness within
the mesh and in the present implementation they do not keep track of the width of a
possible gap between surfaces.

Slip is modelled through a relative displacement w between the two faces being re-
lated to the stress vector t

w = [wn ws wt]
T

t = [τn τs τt]
T (4.1)

where w consists of a component wn in normal direction and two tangential components
ws, wt. The vector t contains the normal stress component τn and the two shear stress
components τs and τt. Tensile stresses are defined to be positive. Interpolation of the
relative displacement field inside interface elements from nodal displacements is per-
formed by means of shape functions N . Appendix A.4 provides a detailed description
of the considered 6-noded interface elements including the shape functions.

In contrast to the volume elements which make use of Gaussian integration, Newton-
Cotes integration is used with interface elements. Therefore, the locations of pairs of dual
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Chapter 4 Soil-structure interaction

nodes and integration points coincide. In case of a curved slip surface, the normal and
tangential directions are not identical at all pairs of dual nodes of an interface element,
integration points respectively. Therefore, local coordinate systems are assigned to each
pair of dual nodes as illustrated in Figure 4.2 (right). The computation of the normals at
pairs of dual nodes is described in Appendix A.4.

With ẇ
p denoting the irreversible slip rate between two faces, the elastic-plastic con-

stitutive relation in rate form reads

ṫ = D (ẇ − ẇ
p) (4.2)

where D is a diagonal matrix of elastic spring constants, whose diagonal entries Dn,
Ds and Dt are in [N/m3]. It should be noted that, in contrast to volume elements, no
shape function derivatives are involved in the stress-displacement relation. Thus, the
stress distribution of the low-order interface elements is linear whereas adjacent volume
elements exhibit a constant stress distribution. The irreversible slip rate ẇ

p corresponds
to the flow rule [62]

ẇ
p = λ̇

∂g

∂t
(4.3)

where ∂g
∂t

determines the direction of plastic slip and λ̇ is the magnitude of the plastic
slip rate. The plastic potential function g is defined as

g (t) =
√

τ 2s + τ 2t + τn tanψi (4.4)

where ψi is an interface angle of dilatancy that relates plastic volume change to plastic
slip. On substituting Equation 4.3 into 4.2, it is found that

ṫ = D

(

ẇ − λ̇
∂g

∂t

)

(4.5)

Irreversible slip occurs if the condition

f (t) =
√

τ 2s + τ 2t + τn tanφi − a = 0 (4.6)

is fulfilled. Here, f denotes the yield function, φi the interface friction angle and a the ad-
hesive interface strength. Equation 4.6 takes the form of a cone in the three-dimensional
stress space as shown in Figure 4.3 (left). In case of f < 0 only elastic deformations occur,
which requires no further consideration. A state f > 0 is not allowed. Thus, stress states
are either located on the cone surface of Figure 4.3 (left) or in the elastic range repre-
sented by the interior of the cone. If f = 0, distinction must be made between the case

that loading shifts the stress state into the elastic range (ḟ < 0) and the case that loading

keeps the soil in a plastic state (ḟ = 0). Only the latter case produces irreversible slip.

Writing out the consistency condition ḟ = 0 gives

∂f

∂t

T

ṫ = 0 (4.7)
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Inserting Equation 4.5 into Equation 4.7 renders

∂f

∂t

T

D

(

ẇ − λ̇
∂g

∂t

)

= 0 (4.8)

From it, λ̇ can be determined to be

λ̇ =
1

d

∂f

∂t

T

Dẇ with d =
∂g

∂t

T

D
∂f

∂t
(4.9)

Insertion of this equation for λ̇ into Equation 4.5 gives the following relation between
stress and relative displacement

ṫ = M ẇ with M = D − 1

d
D
∂g

∂t

∂f

∂t

T

D (4.10)

4.1.1 Time integration of the constitutive equation

What remains to be done is integration of Equation 4.10 over a load step. Writing Equa-
tion 4.2 in incremental form renders

∆t = D (∆w − ∆w
p) = D

(

∆w − ∆λ
∂g

∂t

)

= D∆w − ∆λD
∂g

∂t
(4.11)

Stresses at the end of a load step t can be computed from interface stresses t0 at the
beginning of a load step by means of t = t0 + ∆t. Inserting Equation 4.11 gives

t = te − ∆λD
∂g

∂t
with te = t0 + D∆w (4.12)

Let t
∗ denote the stress state where a stress path starting from t0 crosses the yield

surface. Depending on the choice of integration scheme, the terms ∂f
∂t

and ∂g
∂t

might be
evaluated for t∗ (explicit integration), t (implicit integration) or for instance the average
of t∗ and t. Vermeer and Van Langen [62] argue that the most stable time integration is
obtained when evaluating the term ∂g

∂t
for the final stress state t of a load step. As t is

of course not known in advance, evaluation is performed for te instead. But Figure 4.3
(right) shows that this renders the same gradient ∂g

∂t
.

A solution for ∆λ is derived from the yield condition f (t) = 0 [62] with t taken from
Equation 4.12. This gives

∆λ =
1

d
f (te) with d =

∂f

∂t

T

D
∂g

∂t
(4.13)

and together with Equation 4.12 one obtains

t = te − 〈f (te)〉
d

D
∂g

∂t
(4.14)

where ∂g
∂t

is evaluated for te. The brackets 〈.〉 imply 〈x〉 = 0 for x < 0 and 〈x〉 = 1 for
x ≥ 0.
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Special attention must be paid to the apex point of the yield surface. Here,

τn = a cotφi and τs/t = 0 (4.15)

for f (te) > 0. Even closing a gap might be accounted for, but this is not considered in
the present study.

4.1.2 Evaluation of the elastic stiffness matrix

The definition of the elastic stiffness matrix D, the diagonal terms Dn, Ds and Dt respec-
tively, may be evaluated by considering deformations of a thin soil sample in a simple
shear test. To this end, a virtual interface thickness δ is introduced that corresponds to
the height of a simple shear sample. The virtual thickness represents the thickness of the
shear zone along the slip surface. The stiffness terms in normal and tangential direction
may now be written as

Dn =
Eoed

δ
and Ds = Dt =

G

δ
(4.16)

where Eoed denotes the constrained modulus and G the soil’s shear modulus. The Pois-
son ratio ν is set to a value of 0.45 in order to prevent interface elements from inverting:
nodes of one face would cross the opposite face which would imply a negative thick-
ness. Thereby, Dn is roughly 10 times larger than Ds/t. The specification of the virtual
thickness would require calibration for a specific soil-structure problem through testing.
Setting the virtual thickness to one tenth of the average element size proved to be a good
compromise. A large virtual thickness induces unrealistic large deformations in the elas-
tic range of deformation. A small virtual thickness might lead to an ill-conditioning of
the global stiffness matrix.

Computation of the linear-elastic element stiffness matrix Kinterface and internal force
vector Finterface is straightforward

Kinterface =

∫

S

N
T
DN dS =

nife
∑

e=1

nip
∑

i=1

N
T
i DNi ∆Si (4.17)

Finterface =

∫

S

N
T
t dS =

nife
∑

e=1

nip
∑

i=1

N
T
i ti ∆Si (4.18)

where nife denotes the number of considered interface elements, nip is the number of
integration points per interface element and ∆Si stands for the weight of integration
point i which is computed as described in Appendix A.4.

Newton-Cotes integration is used with interface elements because it proved conve-
nient with regard to the adaptation of the interface elements to the MPM. Furthermore,
as reported by [57], Newton-Cotes integration reduces oscillations at stress concentra-
tions, produces a continuous stress distribution across element boundaries and keeps
disturbances confined to small regions.
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deactivated volume element

deactivated interface element

newly activated volume element

newly activated interface element

Figure 4.4: Usage of interface elements with the MPM; (left) deformed state as result of
the Lagrangian phase of a calculation step; (right) reset mesh directly after
each Lagrangian phase

4.2 Adaptation of interfaces to the Material Point Method

In most cases, interface elements are used in between a soil and a stiffer body, where
both bodies have a finite element discretisation. In the following, the special situation of
Figure 4.4 is considered where interface elements are located at a fixed boundary.

With the MPM only small deformations of the mesh occur as the mesh is frequently
reset to its initial configuration. Consequently, interface elements attached to the mesh
must likewise be reset. As indicated in Figure 4.4 (right), material points might even-
tually enter volume elements adjacent to interface elements that were initially empty.
Inversely, initially filled volume elements might become void of material points. Thus,
interface elements must cover the entire surface along which material is expected to
move. According to the approach taken with volume elements, interface elements that
are adjacent to activated soil elements are marked as activated while all other interface
elements are marked as deactivated.

In contrast to volume elements, interface elements do not make use of material points.
Thus, when resetting the mesh, interface stresses cannot be computed from moving in-
terface material poins. Nevertheless, interface stresses must be computed after resetting
the mesh. This can be done by considering equilibrium of forces acting on the interface
nodes in contact with the soil. Here, use is made of the fact that accurate stresses are
available in the material points of the soil adjacent to the interface. Accurate interface
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stresses can then be computed from the nodal force equilibrium equation

Finterface = Fexternal − Fsoil (4.19)

where

Fsoil =

∫

V

B
T
σ dV Fexternal =

∫

V

N
T
b dV

In the following, interface stresses at pairs of dual nodes t̂ are considered which relate to
the interface stresses ti at integration points i by

ti =
nn
∑

j=1

Nij t̂j (4.20)

where nn is the number of pairs of interface dual nodes. The contribution of Finterface to
the nodal force equilibrium is then

Finterface =

∫

S

N
T
N t̂ dS =

nife
∑

e=1

nip
∑

i=1

N
T
i Ni t̂ ∆Si (4.21)

After resetting the mesh at the end of a loading step, all above quantities are known with
the exception of the interface stresses t̂. Hence one is left with the calculation of t̂. For
further consideration, it is convenient to assemble all stresses of pairs of interface dual
nodes into a super vector

T = [τ̂n 1 τ̂s 1 τ̂t 1 ... τ̂t nI
]T (4.22)

where nI is the number of pairs of dual nodes of all interfaces. Now Equation 4.21 can
be written as

Finterface = M · T M =

nife
∑

e=1

nip
∑

i=1

N
T
i Ni ∆Si (4.23)

For the situation of Figure 4.4, vector T has a length of three times the number of pairs
of interface dual nodes, i.e. 3 nI . The matrix M has dimension 3 (nife nip × nI). Hence,
Equation 4.19 can only be solved for t̂ in the special case of nI = nife nip, when the
number of pairs of dual nodes coincides with the number of interface integration points.
This special case is obtained for Newton-Cotes integration, being thus most suitable for
the devised algorithm. Another convenient property of Newton-Cotes integration lies
in the fact that it results in a diagonal matrix M so that Equation 4.23 is extremely easy
to solve for t̂.

In the case that interface elements are placed in between solid bodies rather than on
the boundary of the mesh, the mesh cannot simply be reset to its initial configuration, as
in contrast to Figure 4.4 the interface moves inside a soil body. Rather than resetting the
mesh to its initial position it is now possible to rotate and translate the mesh according
to the new position of the structural body. The stress recovery algorithm will now yield
two possibly slightly different solutions for the interface stress; one solution is obtained
from the nodal forces on the soil-side nodes and another from nodal forces on the side of
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the structural body. In case of significant differences between both solutions, the average
of both solutions may be computed and a zero load step may be performed, in which
all loads are kept constant. This intermediate load step has no physical meaning and
resulting deformations are neglected. However, in the frame of the presented study only
the situation of interface elements placed along a mesh boundary has been considered.

4.3 Validation

4.3.1 Block-pushing test

For validation, the sliding of a rigid block discretised by material points over a surface
featuring interface elements has been simulated. The cases of a purely adhesive and a
purely frictional sliding surface have been considered.

The block has a length of 4 m and a height of 2 m. Only a thin slice with a width of
0.5 m is considered. The block material is linear-elastic with a Young’s modulus of 15
MPa and a Poisson ratio of 0. The geometry and discretisation of the block in its initial
configuration are shown in Figure 4.5 (top). The block is pushed along the bottom sur-
face by a uniformly distributed load acting on the side of the block. In case of frictional
contact, a self-weight of 5 kN/m3 is applied on the block before it is pushed along the
bottom surface. With this benchmark, the distributed load is not applied on nodes which
would imply adjustment of the mesh to the moving boundary of the block but on mate-
rial points as described in Chapter 3. The resulting smearing out of the applied traction
across a layer of block elements appears not to have a significant impact on results.

In case of adhesive contact, an adhesion of a = 10 kPa has been applied and tensile
stresses are allowed to occur in the sliding surface. In case of frictional contact a friction
angle of φi = 45◦ has been used and, for numerical reasons, a small value of adhesion
of 0.001 kPa. With the benchmarks presented in this chapter, the interface dilatancy
angle ψi is set equal to zero which implies non-dilatant behaviour. In both computations,
interface stiffnesses of Dn = 10 MN/m3 and Ds/t = 1 MN/m3 have been used which
render a very soft sliding surface.

Figure 4.5 (center) shows the final deformed state of the block after it has been moved
by a distance of 1.2 m. The load-displacement curves for a point on the right side of
the block are shown in Figure 4.6 for the cases of frictional and adhesive contact. After
reaching the threshold value of plastic slip, a constant reaction force of 20 kN is obtained
for both computations that corresponds well to the theoretical sliding resistance

R = (γh tanφ + a) s = 20 kN (4.24)

with s = 2 m2 being the area covered by the block.
On considering adhesive interfaces, it is important to distinguish between fully filled

and partially filled interfaces. Partially filled elements will occur just in front and just
behind the block as shown in Figure 4.5 (bottom). In order to take into account such
partially filled interface elements, the adhesion of interface elements adjacent to partially
filled block elements is reduced. The degree of filling of an adjacent volume element is
used as reduction factor for the adhesion of the interface element.
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Figure 4.5: Block-pushing test; (top) discretisation of block with 4-noded tetrahedral el-
ements; (center) material point discretisation after block displacement of 1.2
m; (bottom) activated interface elements in final deformed state
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Figure 4.7 shows the resulting normal and shear stress distributions of the activated
interface elements at the final deformed state of the block for the cases of adhesive and
frictional contact. It should be noted that the presented stress distributions are ’raw’ data
computed at interface nodes rather than results postprocessed by means of smoothing
techniques commonly used with the FEM. The normal stress distributions reflect the
momentum induced by the applied distributed load. As may be expected, the normal
and shear stress distributions are approximately the same in case of the pure frictional
contact. Oscillations occur locally at the front and back of the active sliding surface that
coincide with stress peaks inside the block.

4.3.2 Slope analysis

The second analysed boundary value problem consists of a slope with the same dimen-
sions and material properties as the problem considered in Chapter 3: a Young’s mod-
ulus of 100 kPa, a Poisson ratio of 0.33 and the Tresca failure criterion with a cohesion
of 1 kPa. The weight of the material is gradually increased up to a value of 10 kN/m3.
The slope is discretised with 4-noded tetrahedral elements, each containing initially 10
material points. Horizontal nodal displacements are fixed at the left and right side of the
mesh. Figure 4.8 shows the used discretisation. The frame indicates the size of the space
that is discretised by finite elements.

However, now, interface elements are placed at the bottom of the mesh to model adhe-
sive contact with an adhesion of 0.5 kPa as well as an adhesion equal to the soil’s cohe-
sion of 1 kPa. The normal stiffness of the interface elements is set toDn = 76 MN/m3 and
the tangential stiffness to a value of Ds = Dt = 7.6 MN/m3. Tensile stresses are allowed
to occur both in interface as well as volume elements.

Figure 4.9 shows the load-displacement curves for the computations of the slope with
adhesive bottom surface plotted for an identical sample point at the head of the slope.

Figure 4.8: Discretisation of slope with 4-noded tetrahedral elements
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Furthermore, the curve for the computation with a fixed bottom boundary of the mesh
of Figure 3.12 (bottom) is plotted. The obtained results indicate that the deformation
mechanisms for the computation with interfaces and a = c is largely identical to the
one without interfaces. The insertion of interface elements corresponds to a local mesh
refinement at the bottom of the mesh. Given that both computations produce similar
results, the degree of refinement used along the fixed bottom of the mesh, shown in
Figure 3.12 (c), appears to be comparable to the insertion of interface elements. In case
of the computation with a = c / 2, plastic deformation starts to dominate the defor-
mation process at a smaller soil weight compared to the computation with fully rough
contact whereas the subsequent displacement increments are identical in magnitude —
the load-displacement curve is just shifted downward. The final deformed state of the
slope is compared in Figure 4.10 for the cases of a = c / 2 and a = c through plotting
the respective material point discretisations inside the discretised space. In case of the
computation with a = c / 2, one layer of deactivated elements separates the toe of the
slope from the mesh boundary so that the boundary is not just yet ’felt’ by the advancing
slope. In case of the computation without interface elements, material topples over the
(fixed) toe of the slope as shown in Figure 3.14. When employing interface elements, soil
material slides along the bottom of the mesh, which yields a somewhat more realistic
deformation process. This can be seen in Figure 4.10, where material points lie closer
to the bottom surface compared to the computation with a fixed boundary. This is even
more pronounced in case of a = c / 2 than a = c.

Figure 4.11 shows the incremental shear strains of the final load increment for the two
computations with interface elements. The development of shear bands in case of a = c
agrees with the one shown in Figure 3.15 for the computation without interface elements.
This confirms that both deformation processes are very similar. For a = c / 2, incremental
shear strains concentrate in inclined shear bands rather than in a shear band that extends
along the bottom of the mesh from the very toe of the slope to the back as with fully
rough contact. With both computations, some mesh dependency can be observed in the
development of shear bands. It should be noted that different color legends are used for
the two figures so that the coloring does not reflect identical magnitudes of straining for
the two computations. When displaying incremental strains that may vary significantly
from one load step to the next, comparing the magnitudes of shear strain increments
would not be very meaningful.

Figure 4.12 depicts the accumulated shear strains for all three slope computations in
the final deformed state. The color legends used for the computations without interface
elements and with interfaces and a = c are identical. Because the accumulated shear
strains of the computation with a = c / 2 are far smaller than those for the fully rough
contact, a different legend has been chosen for the bottom figure. In compliance with
the observed similarity of the two computations with a fully rough bottom boundary,
the layer of heavy shear strains is only slightly wider in case of the computation without
interface elements. For the computation with a = c / 2, maximum shear strains concen-
trate further in the interior of the slope. The toe of the slope is pushed forward as a more
or less rigid block. The maximum shear strain is only one sixth of the maximum shear
strain of the computation without interface elements.
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Figure 4.9: Load-displacement curves for the slope computed with the MPM using 4-
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Figure 4.10: Location of material points for the deformed slope for a = c and a = c / 2
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4.3 Validation

Figure 4.11: Incremental shear strains for the slope in the final deformed state with in-
terface elements placed along the bottom boundary with (top) a = c and
(bottom) a = c / 2

Figures 4.13, 4.14 and 4.15 show the normal and shear stress distributions along the
bottom surface of the slope for the final deformed state of the slope. In case of the com-
putation without interface elements, stresses are plotted for a horizontal cross section
drawn slightly above the bottom surface. Here, σxy inside the soil is plotted instead
of the shear stress within the interface elements. For all three computations, the maxi-
mum value of the normal stress of about -8 kPa corresponds well to the expected stress
value that can be roughly estimated from a final height of the slope at the left boundary
of the mesh of approximately 0.8 m. As can be seen in Figure 4.10, the height of the
slope is slightly lower in case of the computation with a = c / 2, which reflects in the
lower normal stresses of the interface elements. Throughout the zones of heavy shear
strain shown in Figure 4.12, the maximum shear stress imposed by the respective limit is
reached. Shear stresses gradually decrease towards the back of the slope, where only a
small lateral movement of soil occurs. In case of the computations with a fully rough bot-
tom surface, with or without interface elements, slight oscillations of normal and shear
stresses occur.
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Chapter 4 Soil-structure interaction

Figure 4.12: Accumulated shear strains for the slope in the final deformed state: (top)
analysis without interface elements; (center) with interface elements and a
= c and (bottom) a = c / 2
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Figure 4.13: Distribution of normal (top) and shear stresses (bottom) along the bottom of
the slope in the final deformed state without interface elements for a cross
section just above the bottom surface
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Figure 4.14: Distribution of normal (top) and shear stresses (bottom) along the bottom of
the slope in the final deformed state within interface elements for a = c
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Figure 4.15: Distribution of normal (top) and shear stresses (bottom) along the bottom of
the slope in the final deformed state within interface elements for a = c / 2
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Chapter 5

Constitutive modelling of undrained clay

The numerical analyses of cone penetration testing as presented in this study are per-
formed for fully saturated clay. When the rate at which a load is applied on soil is much
faster than the rate at which pore water is able to dissipate out of the soil, volume change
is prohibited and pore water pressures are generated that balance, together with effec-
tive stresses, the applied load. With cone penetration testing, a steel bar is pushed into
the ground at a velocity of 2 · 10−2 m/s. When considering clay that generally possesses
a permeability below 10−6 m/s such undrained conditions occur in the vicinity of the
advancing cone [15].

In the following three sections, aspects of constitutive modelling of undrained clay are
covered that are relevant to the numerical analyses presented in Chapter 6. For a broader
treatment of the matter, the reader is referred to [19] and [46].

In Section 5.1, general definitions that form the basis for subsequent elaborations on
the modelling of undrained clay are provided. In Section 5.2, the modelling of stiff-
ness of undrained clay is considered and in Section 5.3 the modelling of strength of
undrained clay. With regard to the latter, the Mohr-Coulomb, Tresca as well as a new
more advanced material model called Anisotropic Undrained Clay model are treated.
The Anisotropic Undrained Clay model which has recently been developed by Vermeer
and Teunissen, first reported in [64], takes into account the anisotropic strength of clay.
In Chapter 6, these models will be used for the simulation of cone penetration testing.
Only the case of normally-consolidated clay is considered.

5.1 General definitions

The distribution of total stresses σ̇ over effective stresses of the soil skeleton σ̇
′ and pore

water pressures ṗw can be written as

σ̇ = σ̇
′ + ṗw I and ṗ = ṗ′ + ṗw (5.1)

where I denotes the identity matrix with components Iij = 1 for i = j = 1, 2, 3 else 0, ṗ
is the total mean stress rate given by ṗ = (σ̇11 + σ̇22 + σ̇33) /3 and ṗ′ the effective mean
stress rate computed from σ̇

′.

With the used sign convention, compressive stresses are negative. Because the str-
ength of soil is related to effective stresses that act on the soil skeleton rather than total
stresses, only effective stress measures are considered in the following.
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Figure 5.1: Illustration of principal stress space

Any stress tensor σ
′ can be split into an isotropic stress p′I and a deviatoric stress s

defined as
s = σ

′ − p′ I (5.2)

From the second invariant of the deviatoric stress tensor J2, a deviatoric stress measure
q∗ can be derived which quantifies the shear stress intensity

q∗ =
√

3 J2 =

√

3

2
(sT : s) =

√

3

2
sij sji

=

√

1

2

(

(σ′

1 − σ′

2)
2 + (σ′

2 − σ′

3)
2 + (σ′

3 − σ′

1)
2
)

(5.3)

where σ′

1, σ′

2 and σ′

3 denote principal stresses.
For the special case of σ′

2 = σ′

3, the deviatoric stress measure reduces to | σ′

1 − σ′

3 |. In
the following, the deviatoric stress measure q will be used, defined as σ′

1 − σ′

3.
Figure 5.1 illustrates the principal stress space generally used to visualise stresses and

stress paths. Here, negative signs are used for denoting the axes of principal stress space
because in the following explanations compressive rather than tensile stresses are con-
sidered. Lines p′ and q form the p′-q-coordinate system, referred to as p′-q-space. Letter
D denotes the deviatoric plane. A change of stress with σ̇′

2 = σ̇′

3 and σ̇′

1 = K0 σ̇
′

3 follows
a line denoted in Figure 5.1 as K0 line.

The orientation of a deviatoric stress vector (s1, s2, s3) within the deviatoric plane can
be described by means of the Lode angle Θ. Figure 5.2 shows the Lode angle for the six
sections of the deviatoric plane that are created through the projected axes of σ′

1, σ′

2 and
σ′

3. More than one definition of this angle exists. The definition of the Lode angle used
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Figure 5.2: Definition of the Lode angle in the deviatoric plane

here is

cosΘ = −3

2

s1
q

(5.4)

with | σ′

1 | ≥ | σ′

2 | ≥ | σ′

3 |. For Θ = 0◦, the intermediate principal stress σ′

2 is equal to the
minimum principal stress σ′

3. For Θ = 60◦, the intermediate principal stress σ′

2 is equal
to the maximum principal stress σ′

1. The angle can be defined correspondingly for all
principal axes.

Figure 5.3 depicts the triaxial compression and triaxial extension test. In triaxial com-
pression tests, a soil sample is first subjected to K0 loading and then sheared by increas-
ing the vertical load σ1 while keeping the horizontal stresses σ2/3 constant. In triaxial
extension tests, a soil sample is sheared after initial K0 loading by increasing the hor-
izontal stresses σ2/3 while keeping σ1 constant. Alternatively, σ1 might be reduced in
triaxial extension tests. Figure 5.3 also illustrates a simple shear test which will be con-
sidered later on. In simple shear tests, a vertical load is initially applied on a laterally
confined soil sample. In a second step, the soil sample is sheared. When considering
undrained conditions, these tests are performed in a slightly different manner. After
initial loading under drained conditions, the soil probe is sheared under undrained con-
ditions. As shown in Figure 5.4, triaxial compression and extension as well as simple
shear tests reproduce loading paths that occur for example at different locations along
the surface of a slip circle.

For triaxial tests, σ′

2 is equal to σ′

3, principal stress directions coincide with the di-
rections of the applied vertical and horizontal loads and do not change throughout the
loading process. Thus, stress states occurring in triaxial tests can be illustrated in p′-q-
space — unlike stress states found in simple shear. Figure 5.5 (left) shows stress paths
for triaxial compression and extension tests under drained conditions. Here, the stress
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Chapter 5 Constitutive modelling of undrained clay

paths first follow the p′ axis (K0 = 1) and then deviate from it when shearing the sample.
In the deviatoric plane, a Lode angle of Θ = 0◦ corresponds to triaxial compression, a
Lode angle of Θ = 60◦ corresponds to triaxial extension (see Figure 5.2).

s1

t
s1

s2/3

Ds1

s1

Ds2/3

s2/3 s2/3

Figure 5.3: Triaxial compression (left), triaxial extension (center) and simple-shear test
(right)

Figure 5.4: Loading types found along slip circle [10]
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Figure 5.5: Stress paths for triaxial compression and extension in p′-q-space and yield
loci of the Mohr-Coulomb model for c′ = 0; (left) drained conditions; (right)
undrained stress paths according to the Mohr-Coulomb model for incom-
pressible undrained soil (νu = 0.5)
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Chapter 5 Constitutive modelling of undrained clay

5.2 Stiffness of undrained clay

Which fraction of an applied incremental load is carried by the soil skeleton and which
fraction is carried by the pore water follows from the consideration of strain compatibil-
ity between the two materials and, thus, the consideration of the stiffnesses of the soil
skeleton, the soil minerals and the pore water. This, of course, only holds for undrained
conditions when no dissipation of water with time is considered. Equation 5.1 implies
that only the distribution of pressures p′ and pw inside the soil body requires further
consideration. The bulk modulus of water Kwater is approximately 2.1 GPa, the bulk
modulus of the soil minerals Ks lies in the range of 36 to 69 GPa and the bulk modu-
lus of the soil skeleton K ′ lies between 3 and 30 MPa [54]. In view of these values, the
soil minerals can be considered as incompressible so that only Kwater and K ′ are of rele-
vance for the distribution of stresses within the soil. Pore water is mostly assumed to be
slightly more compressible than pure water because the pore space is generally filled to
some extend with air even for a fully saturated soil. Strain compatibility requires that the
change of volume of the soil-water mixture due to loading ε̇vol corresponds to the change
of volume of the soil skeleton due to effective pressure and to the change of volume of
the water-filled pores due to pore water pressure. This is illustrated in Figure 5.6. Thus,

ε̇vol =
ṗw

Kwater

n

=
ṗ′

K ′
with n =

V0
V

(5.5)

where ε̇vol = ε̇11 + ε̇22 + ε̇33, n is the porosity of the soil, V0 is the pore volume and V
the total volume of a soil body. Introducing the porosity n takes into account the above
mentioned reduction of the bulk modulus of the pore water. This approach goes back to
Bruggeman [12] as reported by Bishop in [9].

t

eVol u=                  p / K =                   p’ / K’ =                  p / (K / n)w w

Figure 5.6: Illustration of strain compatibility considerations for the modelling of un-
drained clay
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Rearranging Equation 5.5 gives

ṗw =
Kwater

n
ε̇vol and ṗ′ = K ′ ε̇vol (5.6)

With these equations and ε̇vol as input, the excess pore pressures as well as the effective
and total stresses can be computed.

For an elastic soil skeleton, the bulk modulus K ′ can be computed from the shear
modulus and Poisson ratio by means of

K ′ =
2G (1 + ν ′)

3 (1 − 2 ν ′)
(5.7)

Similarly, a so-called undrained bulk modulus Ku can be written as [59]

Ku =
2G (1 + νu)

3 (1− 2νu)
(5.8)

where νu is an undrained Poisson ratio. It yields

ṗ = Ku ε̇vol (5.9)

Inserting Equations 5.6 and 5.9 into Equation 5.1 renders

Ku = K ′ +
Kwater

n
(5.10)

Combining Equations 5.7, 5.8 and 5.10 gives

Kwater

n
=

3 (νu − ν ′)

(1 − 2 νu) (1 + ν ′)
K ′ (5.11)

which relates the bulk modulus of the pore water to the effective bulk modulus by means
of the effective Poisson ratio and the undrained Poisson ratio.

Upon sudden oedometric loading a fully saturated soil shows no noteworthy change
of volume and the applied load is found to be carried almost entirely by the pore water.
This implies incompressibility of the soil and thus νu being close to 0.5. The bulk mod-
ulus of the pore water Kwater

n
would be almost equal to Ku and K ′ relatively small. The

applied load would then indeed be carried almost entirely by the pore water.
On the other hand, assuming slight compressibility of the pore water is of advantage

for numerical analyses, because a high stiffness of the pore water resulting in a near-
incompressible material causes numerical problems such as volumetric locking and a
severe ill-conditioning of the stiffness matrix. In order to prevent numerical problems,
the undrained Poisson ratio is generally set to a value between 0.485 and 0.495.

In Figure 5.7 the ratio of Kwater

n
and Ku is plotted over the undrained Poisson ratio for

different values of the drained Poisson ratio. For a drained Poisson ratio of 0.25 and an
undrained Poisson ratio of 0.495 Figure 5.7 shows that 98 percent of the applied external
load is carried by the pore water. Changing the undrained Poisson ratio to 0.485 causes
an increase of 3 percent of the part of the load that is carried by the soil skeleton. The
higher the drained Poisson ratio, the smaller the percentage of the load carried by the
pore water. Thus, besides specifying an undrained Poisson ratio in the range of 0.485 to
0.495, the drained Poisson ratio should preferably lie below a value of 0.35.
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5.3 Strength of undrained clay

5.3 Strength of undrained clay

In Subsections 5.3.1 and 5.3.2 the modelling of the strength of undrained clay by means of
the Mohr-Coulomb and Tresca models is presented. Subsequently, the concept of critical
state soil mechanics as used with the Anisotropic Undrained Clay model is introduced
in Subsection 5.3.3 by means of the Modified Cam Clay model. Here, too, focus lies on
the modelling of undrained clay. Finally, the Anisotropic Undrained Clay model itself is
presented in Subsection 5.3.4. Only normally-consolidated clay will be treated.

5.3.1 The Mohr-Coulomb model

Section 4.1 covers in detail the stress-strain relationship for an elastic-plastic constitutive
model used with the interface elements. These derivations of plastic slip rate and stress
rate apply in similar manner to the models described below so that they are not repeated
here. In contrast to the smooth yield locus presented in Section 4.1, the Mohr-Coulomb
yield locus is a cone with a hexagonal cross section as shown in Figure 5.8 (left). The
Tresca yield function is a prism with six sides shown in Figure 5.8 (right). At the in-
tersections of the sides, the direction of mapping of stresses onto the yield loci is not
uniquely defined. The mapping for these intersections is not presented here. The reader
is referred to [33].

The Mohr-Coulomb model possesses three strength parameters: the friction angle φ′,
the cohesion c′ and the dilation angle ψ′. Its yield functions are

f = | σ′

1 − σ′

2 | − (σ′

1 + σ′

2) sinφ
′ − 2 c′ cosφ′ = 0

f = | σ′

2 − σ′

3 | − (σ′

2 + σ′

3) sinφ
′ − 2 c′ cosφ′ = 0

f = | σ′

3 − σ′

1 | − (σ′

3 + σ′

1) sinφ
′ − 2 c′ cosφ′ = 0 (5.12)

and its plastic potential functions are

g = | σ′

1 − σ′

2 | − (σ′

1 + σ′

2) sinψ
′

g = | σ′

2 − σ′

3 | − (σ′

2 + σ′

3) sinψ
′

g = | σ′

3 − σ′

1 | − (σ′

3 + σ′

1) sinψ
′ (5.13)

With the computations presented in Chapter 6 that use the Mohr-Coulomb model, no
cohesion is considered so that it is also left out in the following explanations. Figure 5.5
(left) and (right) depict the yield locus of the Mohr-Coulomb model in p′-q-space for a
purely frictional soil (c′ = 0). The upper line with inclination Mc limits elastic defor-
mations for triaxial compression, the line below the p′ axis with inclination Me elastic
deformations for triaxial extension. The inclinations Mc and Me are given by

Mc =
6 sinφ′

3 − sinφ′
and Me =

6 sinφ′

3 + sinφ′
(5.14)

Figure 5.9 shows the yield locus of the Mohr-Coulomb model and circles with radii
Mc and Me in the deviatoric plane for a friction angle of 30◦. Furthermore, stress paths
for triaxial compression and extension are indicated.
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Figure 5.8: Mohr-Coulomb yield locus in principal stress space for c′ = 0 (left) and Tresca
yield locus (right)

With the cone penetration simulations that use the Mohr-Coulomb model, non-asso-
ciated plasticity with ψ′ = 0◦ is considered. Figure 5.10 (left) shows the orientation of
the plastic potential function g in p′-q-space and the orientation of the plastic strain rates
derived from it for the Mohr-Coulomb model. A dilation angle ψ′ equal to zero results
in plastic deformations with no change of volume of the soil.

Figure 5.5 (right) shows stress paths up to failure for undrained triaxial compres-
sion and extension tests on the basis of the Mohr-Coulomb model for c′ = 0 and νu =
0.5. In contrast to the drained stress paths shown on the left, the increase of the mean
stress is carried by the excess pore pressure whose magnitudes are also indicated in Fig-
ure 5.5 (right). The Mohr-Coulomb model predicts a larger shear strength for triaxial
compression su,compression than for triaxial extension su,extension. This corresponds to mea-
surements of laboratory tests. However, for reasons explained below, the magnitudes
of shear strength obtained with the Mohr-Coulomb model are higher than measured
shear strengths. The shear strengths su,compression and su,extension are indicated in Figure 5.5
(right). They are generally referred to as undrained shear strengths. It should be empha-
sised, that the widely-used term ’undrained shear strength’ represents no unique soil pa-
rameter, but depends on the type of loading considered and on the effective mean stress.
Obviously, without the generation of effective stresses through initial drained loading,
the undrained shear strengths would be zero, at least for c′ = 0. Furthermore, laboratory
tests show that undrained shear strengths are influenced by the rate of shearing, but this
is not considered here. Besides undrained shear strengths for triaxial compression and
extension, simple shear tests render an undrained shear strength su,simpleshear that lies in
between su,compression and su,extension.
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5.3.2 The Tresca model

The Tresca model, originally developed for metal plasticity, does not incorporate fric-
tional strength but assumes a constant, pressure-independent strength. The yield func-
tions of the Tresca model correspond to those of the Mohr-Coulomb model when setting
the friction angle to zero. The yield locus in principal stress space is illustrated in Fig-
ure 5.8 (right). In p-q-space, the yield locus shows up as two lines parallel to the p axis at
distances of twice the specified cohesion.

The Tresca material model can be used instead of the Mohr-Coulomb model for un-
drained analyses by setting the cohesion to an undrained shear strength su. Under
undrained conditions the undrained shear strength remains constant throughout the
loading process as described above. The formulation of the Tresca model reflects such
strength behaviour.

Obviously, the initial effective stresses must be known as well as the loading type in
order to specify the undrained shear strength. It might for example be determined on the
basis of a triaxial compression or extension test. For numerous geotechnical problems
such as the one depicted in Figure 5.4, a unique loading type cannot be specified. Any
choice of su will then either under- or overestimate the soil’s undrained shear strength in
some part of the modelled soil body. As a kind of average, an undrained shear strength
obtained from simple shear tests is generally used.

Undrained analyses with the Tresca model can be performed with or without distin-
guishing between effective stresses and excess pore pressures. The Tresca yield crite-
rion can be formulated identically on the basis of both the total as well as the effective
stress tensor: plastic yielding is predicted to occur once q∗ reaches a value of 2 su. When
total stresses are split into effective stresses and excess pore pressures as described in
Section 5.2, the analysis is referred to as ’effective stress analysis’. Analyses that only
consider total stresses are in the following referred to as ’total stress analyses’. With total
stress analyses, the specified Poisson ratio corresponds to the undrained Poisson ratio νu
used in effective stress analyses. First computations presented in Chapter 6 follow the
approach of the total stress analysis.

With simulations that use the Tresca model, an associated flow rule is used, so that g
= f . Figure 5.10 (right) depicts the orientation of plastic strain rates for the associated
Tresca model that produce no plastic volumetric straining.

5.3.3 The Modified Cam Clay model

Figure 5.11 shows the undrained stress paths for triaxial compression and extension,
both for the Mohr-Coulomb model and from tests on isotropically consolidated clays
(without over-consolidation). Tests result in lower undrained shear strengths than the
values predicted with the Mohr-Coulomb model. The measured undrained shear str-
engths are indicated in Figure 5.11 by dashed horizontal lines for triaxial compression
and extension. On the right, the change of deviatoric stress with vertical compression /
extension of the soil sample is plotted for these two cases.

Reason for this discrepancy between measurement and prediction is that the Mohr-
Coulomb model underestimates the generation of pore pressure observed in laboratory
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Figure 5.11: (left) Stress path for triaxial compression and extension in p′-q-space; (right)
deviatoric stresses plotted over the vertical strain for triaxial compression
(negative strain) and triaxial extension (positive strain)

tests when shearing normally-consolidated clay under undrained conditions. Under
drained conditions, normally-consolidated clay exhibits contractant behaviour when
sheared, being not captured by the Mohr-Coulomb model. Under undrained conditions,
contractant behaviour gives rise to pore pressures. The evolving pore pressures in turn
act on the soil skeleton resulting in a decrease of effective pressure. This leads to the
reduction of the undrained shear strengths in triaxial compression as well as extension
shown in Figure 5.11.

Soil models that are based on the concept of critical state soil mechanics such as the
Cam Clay and Modified Cam Clay model do better than the Mohr-Coulomb and Tresca
models in reproducing results of triaxial compression and extension tests on undrained
clay. They take into account the shear-induced volume change. The concept of critical
state soil mechanics is presented in detail by amongst others Schofield and Wroth [46]. In
the following, general aspects of critical state soil mechanics that apply to the modelling
of undrained clay will be explained. The attention will be focussed on the Modified Cam
Clay (MCC) model.

Figure 5.12 shows the yield locus of the MCC model in p′-q-space. The shape of the
yield locus is specified through an isotropic preconsolidation pressure p′p and peak points
whose locations are given by the intersections of the yield locus with critical state lines.
The critical state lines are fixed so that the extend of the yield locus solely depends on
p′p. The yield locus has vertical tangents at p′ = 0 and p′ = -p′p. The yield function is

f = p′ +
q2

M2 p′
− p′p = 0 (5.15)

where the parameter M is defined below. Under the assumption of normally-consoli-
dated clay, stress states initially lie for K0 loading conditions at the point where the K0

line intersects with the yield locus. For this case, the initial yield locus, the isotropic
preconsolidation pressure p′p respectively, can be initialised from the condition f = 0.

The elliptic shape of the yield locus stems from experimental results as shown in Fig-
ure 5.13. Compaction of normally-consolidated clay occurs either through isotropic load-
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Figure 5.12: Yield locus of the MCC model with critical state specified through the Mohr-
Coulomb yield functions

Figure 5.13: Contourlines of equal volumetric strain found in triaxial compression and
extension tests for clay by Henkel [25]
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Figure 5.15: Direction and volumetric and deviatoric components of plastic strain rates
for an associated flow rule

ing or through shearing. Thus, a certain degree of volumetric straining can be produced
through different stress paths. As shown in Figure 5.13, stress states of equal compaction
of soil lie for triaxial tests on curved lines that ressemble ellipses. Figure 5.14 illustrates
how such an idealised contour of equal volumetric strain is reached for different stress
paths. The extend of these contourlines can be specified through the isotropic precon-
solidation pressure p′p, which is related to the maximum applied compaction of the soil.
Once loading moves a stress state beyond such a contourline, the soil is compacted be-
yond any previous level of compaction which implies irreversible volumetric straining.
The elliptic yield locus is based on these contours of constant volumetric strain.

Figure 5.15 shows directions of plastic straining ε̇
p for an associated flow rule. As

indicated in Figure 5.15, ε̇p can be split into a volumetric component ε̇pvol and a deviatoric
component ε̇pd. At the peak point, the soil is sheared without any volume change which
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Figure 5.16: Change of porosity for normally-consolidated and over-consolidated clay
through shearing

corresponds to a soil being in a critical state.

Normally-consolidated clay with a high initial porosity will experience a decrease of
its pore volume upon shearing. When shearing over-consolidated clay that possesses a
low porosity, its particles are tightly packed and shear deformations are accompanied
by an increase of the soil volume. On continued shearing a limit porosity is reached
for both normally- and over-consolidated clay. No further volume change is observed
during shearing of the soil which corresponds to the soil being in a critical state. This is
illustrated in Figure 5.16. The MCC model predicts such behaviour for a stress state that
reached a peak point of the ellipse.

The critical state lines that cross the yield locus at its peak points correspond to stress
states with a ratio q/p′ for which soil is in a critical state. With the implementation of the
concept of critical state soil mechanics, the Mohr-Coulomb yield functions often serve
for specification of the critical state. In p′-q-space the two critical state lines for triaxial
compression and extension then possess inclinations of Mc, Me respectively, defined in
Equations 5.14 (see Figure 5.12). Here, the friction angle φ′ must be replaced by a friction
angle for the critical state φ′

cs. Congruence between the peak points of the yield locus for
both triaxial compression and extension with the critical state lines can be obtained by
defining M in Equation 5.15 as a function of the Lode angle Θ so that M varies between
Mc for triaxial compression and Me for triaxial extension. Figure 5.17 exemplifies this
yield locus and the critical state lines in the deviatoric plane for an arbitrary p′.

Yielding of soil that is accompanied by dilation is related to softening behaviour as
observed with densely packed over-consolidated clays. However, these are not consid-
ered here. Irreversible compaction (ε̇pvol < 0) is related to hardening behaviour of soil. It
is associated with normally-consolidated clays and modelled through an expansion of
the yield locus. The respective amount of hardening depends on the plastic volumetric
strain rate.
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Figure 5.18: Stress paths for triaxial compression and extension as predicted by the MCC
model

For undrained conditions, only slight hardening or softening occurs because a change
of volume is constrained and instead translates into the generation of excess pore pres-
sures. With the MCC model, effective stress states thus only deviate slightly from the
initial yield locus upon shearing. Figure 5.18 illustrates the resulting respective stress
paths for triaxial compression and extension. Clearly, the thus obtained stress paths
correspond to measurements of triaxial compression and extension tests as indicated in
Figure 5.11.

The slight expansion of the yield locus found with the MCC model occurs because
prohibited plastic volumetric strains ε̇pvol translate into inversely oriented elastic strains
(ε̇pvol = − ε̇evol). Consequently, the yield locus expands to a new isotropic preconsolidation
pressure p′p.
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5.3.4 Consideration of the strength anisotropy of clay with the

Anisotropic Undrained Clay model

In case of clay, the proper reproduction of the pore pressures generated through shearing
requires to take into consideration anisotropy. During deposition, clay is generally com-
pacted vertically under its self-weight, which leads to the arrangement of clay particles
in layers rather than a random configuration. As a consequence, natural clay generally
shows a different strength in horizontal directions than in vertical direction. This special
case of anisotropic material behaviour is referred to as cross-anisotropy or transverse
anisotropy.

In the frame of this study, the Anisotropic Undrained Clay (AUC) model developed
by Vermeer and Teunissen is considered for the simulation of cone penetration testing
in order to capture the cross-anisotropic strength of clay and to properly predict the
magnitude of excess pore pressures generated during cone penetration. The AUC model
is largely based on the S-CLAY1 model developed by Wheeler et al. [65] which will be
presented first in the following.

The S-CLAY1 model This elastoplastic anisotropic model forms a considerable exten-
sion of the MCC model. It is amongst others based on the works of Dafalias [18] and
Korhonen et al. [34]. It takes into account the initial anisotropic strength of clay as well as
the development and erasure of fabric anisotropy through volumetric and shear strains
by means of a rotational hardening law.

The yield function of the S-CLAY1 model is

f = p′ +
3/2 (s − p′ αd)

T : (s − p′ αd)

(M2 − 3/2αT
d : αd) p′

− p′p (5.16)

The deviatoric fabric tensor αd takes into account the anisotropic strength of the soil.
For initialisation, it is related to s0, q0 computed on the basis of the initial stress state and
a parameter α0 by means of

αd,0 =
α0

q0
s0 (5.17)

Tying the initial deviatoric fabric tensor to the initial deviatoric stress tensor takes into
account that the anisotropic initial stresses of a clay largely define the formation of its
fabric. For normally-consolidated clay, Wheeler et al. relate α0 to K0 with K0 estimated
from Jaky’s formula K0 ≈ 1− sinφ′. This results in

α0 = 3

(

(

sinφ′

3− 2 sinφ′

)2

+

(

sinφ′

3− 2 sinφ′

)

− 12

(

sinφ′

3− sinφ′

)2
)

(5.18)

Expressing Equation 5.16 in terms of p′0 and q0 as well as α0 renders

f0 = p′0 +
(q0 − α0 p

′

0)
2

(M2 − α2
0) p

′

0

− p′p,0 (5.19)
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Figure 5.19: Initial yield locus of the AUC and S-CLAY1 models in p′-q-space

which is illustrated in Figure 5.19.

As shown in Figure 5.19, the yield locus produces a higher undrained shear strength
for triaxial compression compared to the yield locus of the MCC model. Inversely, the
undrained shear strength for triaxial extension decreases.

Wheeler et al. as well as Leoni et al. [35] present, amongst others, extensive results
of laboratory testing on natural clays and convincingly show that such a yield locus
matches well the yield behaviour of the tested clays.

Simulating undrained loading with the S-CLAY1 model gives negligible hardening
and softening as explained above for the MCC model. So, it behaves for undrained
conditions nearly as an elastic, perfectly plastic model. On reducing the model to perfect
plasticity, one obtains the AUC model which is described in the following.

The AUC model The AUC model [61] is tailored for the modelling of the anisotropic
strength of clay under undrained conditions. Density and rotational hardening as well as
softening are not considered which reduces the number of soil parameters required for
the AUC model compared to the S-CLAY1 model. The AUC model requires only 4 input
parameters, namely E ′, ν ′, φ′

cs and the overconsolidation ratio OCR. OCR is defined as
the preconsolidation stress divided by the vertical effective stress. This makes the AUC
model more adapted to engineering practice of undrained analyses than the S-CLAY1
model which covers a much broader range of applications but entails a much higher
level of complexity that is not needed for the modelling of undrained clay.

The stiffness and shear strength parameters are generally well known or can be es-
timated relatively easily. However, the sensitive overconsolidation ratio of soil is often
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difficult to assess accurately. This parameter might be determined for undrained condi-
tions from evaluation of the undrained shear strength su,simpleshear obtained from simple
shear tests as suggested by Vermeer [64]. Alternatively, an undrained shear strength ob-
tained from cone penetration testing could be used which can be related to su,simpleshear

through empirical or theoretical correlations. Such an extension would make the model
even easier to use in practice.

With the AUC model, the isotropic preconsolidation pressure and deviatoric stress
tensor s0 remain fixed after initialisation. The yield function of the AUC model then
takes the form

f = p′ +
3/2

(

s − p′ α0

q0
s0

)T

:
(

s − p′ α0

q0
s0

)

(M2 − α2
0) p

′
− p′p,0 (5.20)

Initialisation of p′p,0 follows the procedure presented above for the MCC model for nor-
mally-consolidated clay.

Equation 5.20 can likewise be written in terms of p′, q and α0

f = p′ +
(q − α0 p

′)2

(M2 − α2
0) p

′
− p′p,0 (5.21)

provided that s = λ s0 and q = λ q0 where λ is an arbitrary scalar. This condition
applies to triaxial compression and extension.

A change of M depending on the Lode angle Θ is not considered with the AUC model
in contrast to the S-CLAY1 model. The factor M is initialised to Mc with

Mc =
6 sinφ′

cs

3 − sinφ′

cs

(5.22)

The peak point of the yield locus shown in Figure 5.19 therefore only coincides with the
critical state locus for triaxial compression, not for triaxial extension.

Referring to results of laboratory tests, Wheeler et al. conclude that associated plastic-
ity is a reasonable assumption for natural clays with the considered yield function. Here,
too, only associated plasticity is considered, so that a separate specification of a plastic
potential function is not needed. With the AUC model as with the S-CLAY1 model,
elastic behaviour is assumed to be isotropic rather than anisotropic.

In addition to stresses, the AUC model requires two more state parameters that define
the shape of its yield locus. With the computations performed in Chapter 6, only uni-
form initial stresses are considered so that the latter two state parameters are identical
throughout the soil body. Furthermore, they are constant throughout the computation.
Whereas stresses are mapped with the quasi-static MPM between material points and
Gaussian integration points as described in Section 3.5, these two state parameters are
therefore only mapped from material points to Gaussian integration points but not from
Gaussian integration points to material points. The mapping of the state parameters is
trivial for the 4-noded tetrahedral elements considered in Chapter 6.
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Validation of the Anisotropic Undrained Clay model In the following, results ob-
tained from numerical analyses of triaxial compression, triaxial extension and direct
shear tests are presented to illustrate the performance of the AUC model. These analy-
ses were performed with the quasi-static Plaxis 2D FEM code as well as the quasi-static
MPM code. With the former, the triaxial tests were simulated as axisymmetric problems
and the direct shear tests as a plane-strain problem. With the quasi-static MPM, these
soil tests were modelled as fully three-dimensional problems. Given that failure of the
soil is already obtained for small deformations, the computations with the quasi-static
MPM correspond to FEM computations because material points do not show any no-
table displacements. Correspondingly, results for both methods were found to render
the same undrained shear strengths.

For triaxial compression and extension, a vertical load σv of 10 kPa and horizontal
loads σh of 5 kPa (K0 = 0.5) are applied in a first computation stage under drained con-
ditions. For triaxial compression, the soil body is afterwards compressed in the direction
of σv under undrained conditions. For triaxial extension, the soil body is extended in a
second stage in the direction of σv under undrained conditions. The computations were
performed for the Mohr-Coulomb material model and the AUC model. For the Mohr-
Coulomb and the AUC model, a Young’s modulus of 6 MN/m2, a Poisson’s ratio of 0.25
and an undrained Poisson’s ratio of 0.495 were specified which results in a bulk modu-
lus Kwater

n
= 235.2 MN/m2. The friction angle φ′ in case of the Mohr-Coulomb model and

the friction angle for the critical state φ′

cs in case of the AUC model are set to 30◦. For
the Mohr-Coulomb model a dilation angle of 0◦ is specified. The generated initial stress
state results with the AUC model in a rotation angle α0 of -0.458.

The same material parameters were used for the simple shear test. Here, initially, a
vertical load of 10 kPa is applied on the drained soil body. Afterwards, the soil body is
sheared horizontally under undrained conditions.

Figure 5.20 shows stress-strain-curves for the numerical analyses of the triaxial tests.
The obtained curves correspond to the illustration of Figure 5.11 (right). The Mohr-
Coulomb soil yields for triaxial compression at su,compression = 4 kPa and for triaxial exten-
sion at su,extension = 2.8 kPa. The AUC model renders an undrained strength of 3 kPa for
triaxial compression and 1.2 kPa for triaxial extension.

Figure 5.21 shows stress-strain-curves for the simulation of the simple shear test with
the Mohr-Coulomb and AUC models. The Mohr-Coulomb model gives an undrained
shear strength of 3.8 kPa, the AUC model gives an undrained shear strength of 2.15 kPa.

Figure 5.22 shows the loading type dependency of normally-consolidated clay re-
ported by Hansen and Clough [23] for laboratory tests on different natural clays. Here
the abbreviation CK0UC stands for triaxial compression under undrained conditions af-
ter drained K0 loading, DSS denotes direct simple shear conditions and CK0UE stands
for triaxial extension under undrained conditions after drained K0 loading. The un-
drained shear strength normalised by the vertical initial stress is plotted relative to the
undrained shear strength obtained for triaxial compression. The ratio of su,extension over
su,compression of 0.4 as well as the ratio of su,simpleshear over su,compression of 0.72 found for
the AUC model correspond well to results presented in Figure 5.22. For the ratio of
su,simpleshear/σv a value of 0.22 is obtained. As reported in [64], this value corresponds well
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Figure 5.20: Stress-strain-curves of 2D axisymmetric FE analyses of drained consolida-
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terial models
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Figure 5.22: Measured undrained shear strengths of clay for different loading types [23]

to experimental results reported by Jamiolkowski et al. [32] for normally-consolidated
clay.
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Chapter 6

Analysis of cone penetration testing in
undrained saturated clay

Invention, first employment and early enhancements of the cone penetration test go back
to the works of Buisman [13], Barentsen [3], Huizinga [31] and Begemann [4]. Nowa-
days, cone penetration testing is a widely used in-situ test for soil profiling as well as
estimating soil properties of strength and stiffness. The cone penetration test is per-
formed by pushing a measuring device, the cone penetrometer, that is attached to the tip
of a steel cylindrical rod into the ground with a constant rate of penetration of 2 cm/s.
The standardised cone penetrometer features a conical tip with an apex angle of 60◦ and
a base area of 10 cm2 (corresponding to a diameter D of 3.57 cm). A friction sleeve with
an area of 150 cm2 is located above the cone. Load cells allow for continuous measure-
ment of the vertical pressure qc on the cone (tip or cone resistance) and of the horizontal
pressure on the friction sleeve while the cone is pushed into the ground. Pore pressures
are measured through a pressure sensor that is located either on the cone or just above
it. Figure 6.1 provides an overview of the terminology for the cone penetrometer. For a
detailed description of penetrometer designs the reader is referred to Lunne et al. [40].

In many cases, cone penetration testing is supplemented by laboratory tests on probes
taken from the investigated site. This allows to assemble empirical correlations between
in-situ CPT measurements and soil properties such as density, permeability, strength or
stiffness. For an overview of empirical correlations the reader is again referred to Lunne
et al. [40].

In the frame of this study, the relation between tip resistance and undrained shear
strength of clay is investigated. Generally, the tip resistance is related to an undrained
shear strength su by means of

qc = Nc su + σ0 (6.1)

Here, Nc denotes a cone factor and σ0 the overburden stress, which is at present not
uniquely defined and can be either the vertical stress, horizontal stress or mean stress [44].
In the following, σ0 is equated with the vertical stress. Empirical cone factors are deter-
mined for clay deposits from measured cone tip resistances and values of undrained
shear strength that are obtained through laboratory testing on samples taken from the
considered deposits. As described in Chapter 5, no unique undrained shear strength
exists. Lunne et al. [40] therefore recommend to assemble cone factors not as stand-alone
values but to complement them by information on how the underlying undrained shear
strengths were obtained (triaxial compression test, triaxial extension test, simple shear
test ... ).
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Figure 6.1: Terminology for the cone penetrometer

Empirical correlations are supplemented with theoretical correlations based on ana-
lytical or numerical models of the cone penetration process. Undoubtedly, theoretical
approaches are necessarily based on simplifications so that obtained results form a mere
approximation of in-situ measurements and soil properties. However, numerical ap-
proaches reproduce mechanical processes along the lines of a framework of equilibrium
equations, boundary conditions, kinematic relations and constitutive relations that is
well-founded on physical principles. Obtained results thus provide a sound basis for
corroborating field observations and experimental correlations.

The cone tip resistance for undrained clay is determined by a number of soil prop-
erties. Numerous studies such as those by Robertson and Campanella [44], Van den
Berg [55], Schneider et al. [45] and others summarised by Lunne et al. [40] address the
investigation and quantification of relations between cone tip resistance and soil prop-
erties. Penetrometer roughness, the relation between vertical and horizontal initial str-
esses, soil strength as well as stiffness have an impact on the measured tip resistance.
When relating the cone tip resistance to the undrained shear strength of soil, these as-
pects have to be addressed properly.

As demonstrated in Chapter 3, the implemented quasi-static MPM is well suited to
reproduce the evolving stress field for the steady-state penetration process and thus its
impact on the recorded cone tip resistance. Investigating the impact of penetrometer
roughness on the tip resistance is made possible through the interface elements pre-
sented in Chapter 4. With the analyses presented in this chapter, the undrained clay is
modelled by means of the AUC model described in Chapter 5. Thus, all of the above
listed aspects that determine the cone tip resistance are addressed. As shown in Chap-
ter 5, incorporating anisotropy into the material model allows to model undrained clay
with a considerably higher accuracy than with the Mohr-Coulomb, Tresca or Modified
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Cam Clay models.
In Section 6.1, at first, numerical analysis of cone penetration testing in undrained

clay by Van den Berg [55] is presented. His work plays a prominent role for the per-
formed analyses, as his computations serve as a archetype. In Section 6.2, the set up of
the performed computations is presented in detail, the geometry of the considered prob-
lem, applied boundary conditions, the discretisation by means of finite elements and
material points. Results of the performed computations are presented and evaluated in
Section 6.3.

6.1 Numerical analysis of cone penetration in undrained

clay by Van den Berg

In the dissertation of Van den Berg [55], cone penetration testing is simulated by means
of an ALE implementation called DIEKA which has been developed by Huétink (see [28]
and [29]). With this code, the equilibrium equations are solved for a load increment as
with the UL-FEM. The mesh is reset to its initial configuration after each load increment.
Stresses are then computed at the locations of Gaussian integration points in the reset
mesh on the basis of generated global stress fields.

Van den Berg investigated cone penetration into homogeneous undrained clay, homo-
geneous drained sand as well as layered soil. For clay, he investigated the dependence
of the cone factor Nc on the undrained shear strength and the stiffness of clay, the rough-
ness of the penetrometer surface and the initial stress state. He compared his results with
other theoretical correlations.

The undrained clay is modelled by means of the Tresca material model. Van den Berg
performed total stress analyses, thus no distinction is made between effective stresses
and excess pore pressures. The specified soil cohesion is equal to the assumed undrained
shear strength. Incompressibility is modelled through a high Poisson ratio of 0.49.

Figure 6.2 (left) shows the 2D discretisation of the axisymmetric problem used by Van
den Berg. The penetrometer itself is not discretised, its surface coincides with the bound-
ary of the mesh. Penetration is simulated by pushing the soil upwards against the pen-
etrometer surface through prescribed displacements that are applied along the bottom
of the mesh.

The discretisation consists of 360 elements. 4-noded quadrilateral elements are used.
In order to reduce locking, the constant volume condition that applies to undrained
soil is fullfilled in an average sense rather than at all integration points with the used
elements. Elements with a reduced stiffness are placed along the right boundary of the
mesh in order to eliminate boundary effects.

Adhesive contact between penetrometer and soil is modelled by placing 4-noded in-
terface elements along the penetrometer surface as shown in Figure 6.2 (right). As with
the interface elements implemented with the quasi-static MPM, these elements make use
of a Coulomb-type friction law. Gapping between penetrometer and soil is not consid-
ered. Van den Berg considered adhesive contact with adhesion a equal to su as well as a
equal to su / 2. Smooth contact is modelled by setting a to 0.
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interface

Figure 6.2: Discretisation of the cone penetration problem (left) and application of inter-
face elements along the penetrometer (right) by Van den Berg [55]

The standard CPT device possesses a discontinuous edge at the base of the cone. At
this location, boundary conditions are not uniquely defined. Van den Berg investigated
three possible solutions to this discretisation problem illustrated in Figure 6.2 (right).
Either, the node at the base of the cone moves vertically upwards, in the direction of the
slope of the cone tip or along an intermediate prescribed displacement. In case of smooth
contact, Van den Berg followed the approach of the intermediate solution whereas no
boundary conditions were prescribed on the soil-side nodes of the interface elements.
Furthermore, he introduced a slight curvature at the base of the cone in order to reduce
stress oscillations that are introduced through discontinuities within the displacement
field.

The cone is initially located inside a pre-bored hole at a depth of 4.5 cone diameters
D measured from the base of the cone (D is 0.0357 m). For penetration of the cone at
greater depths, the gradient of vertical stresses due to soil weight is small compared to
the magnitude of stresses. Therefore, uniform initial stresses are considered.

In the performed series of computations, Van den Berg varied the stiffness of the soil,
the undrained shear strength, the adhesion of the contact surface between penetrometer
and soil as well as the K0 factor. Results for variation of soil stiffness and penetrometer
roughness are summarised and compared to theoretical solutions in Figure 6.3. Here,
the obtained cone factors are plotted over the rigidity index Ir which is defined as G/su.
The results obtained with the ALE method are represented by the hatched area. The up-
per bound of the hatched area corresponds to computational results for a rough contact
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Figure 6.3: Relation between cone factor Nc and rigidity index Ir according to different
models and numerical analyses with the ALE method, Van den Berg [55]

surface, the lower bound to results for a smooth contact surface.

6.2 Geometry and discretisation

Geometry The geometry of the problem is shown in Figure 6.4. It is closely based on
the analyses made by Van den Berg in order to allow for comparison of results. Differ-
ences with regard to geometry and discretisation of the problem are noted in the follow-
ing.

A 20◦ slice of the axisymmetric problem is considered. With smaller angles, finite ele-
ments near the longitudinal axis exhibit extreme aspect ratios that are known to produce
numerical inaccuracies. The slice possesses a triangular base area rather than the shape
of a cylindrical segment as might be expected for an axisymmetric problem. Advantage
of the chosen geometry is that it simplifies the application of boundary conditions on
the planar outer boundary surface. Van den Berg states that a width of the discretised
space of 20 to 25 cone diameters D is needed for his analyses to eliminate boundary ef-
fects. Lu et al. mention that a mesh width of 0.75

√
Ir D represents a safe estimate [39].

Check analyses showed that this equation provides a good estimate for the required
mesh width when considering the prevention of any boundary effect. Some of the per-
formed computations would require according to this equation a mesh width of 18 and
26 D. However, such large grids could not be used for extensive series of computations
due to the high involved computation times and memory consumption. With all com-
putations, the mesh extends outwards by 14 D at the shorter edge. This represents the
limit of what is feasible with the present implementation of the quasi-static MPM. With
some of the performed computations, stresses along the boundary slightly deviate from
the initial stresses. However, they subside sufficiently so as not to alter the occurring
mechanical processes. This is confirmed by check analyses with a mesh width of 19 D
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Chapter 6 Analysis of cone penetration testing in undrained saturated clay

Figure 6.4: Geometry of the discretised space (left) and initial configuration (right)

which showed that the tip stress is not influenced by the mesh width with any compu-
tation.

In the initial configuration, the cone of the penetrometer is located inside the soil up
to its base as shown in Figure 6.5 (left). Here, the cone tip initially lies 1.37 D below the
soil surface. In contrast, Van den Berg placed the cone initially at a depth of 4.5 D mea-
sured from its base. Placing the cone initially inside the soil complicates the generation
of initial stresses within the soil body. In order to obtain an even stress field, the location
of the rigid cone has to be adapted to the deformations of the adjacent soil due to the
applied initial loading. Alternatively, computations with the cone initially located 1 D
above the soil surface were performed as illustrated in Figure 6.5 (right). However, when
increasing the complexity of the simulations, for example by taking into consideration
the anisotropy of clay, the penetration of the cone tip into the ground brought consid-
erable numerical complications with it. Therefore, this approach was abandoned. The
implemented approach to the generation of soil stresses for initial loading is presented
below when elaborating on boundary conditions.

The chosen geometry of the cone is shown in Figure 6.6 (left). As with Van den Berg
the cone is slightly rounded in order to circumvent numerical problems induced by a
discontinuous edge at the base of the cone. Hence, the cone features a double-curvature
surface. For comparison, the true geometry of the standardised cone is shown. Apart

88



6.2 Geometry and discretisation

Figure 6.5: Considered initial configurations; (left) cone initially located inside soil;
(right) cone initially located above the soil

from this modification, the dimensions of the penetrometer correspond to those of a
standard penetrometer. The apex of the cone likewise exhibits a discontinuity in the
displacement field. The treatment of this discontinuity will be considered below.

The height of the discretised space has been chosen so as to accomodate for a pene-
tration depth of up to 18 D measured from the base of the cone. This penetration depth
ensures that the influence of the soil surface on the evolving steady-state deformation
process is eliminated for any of the performed computations in the final deformed state.

With the performed computations, only rectilinear penetration is considered and the
cone penetrometer is rigid. As laid out in Chapter 3, the surface of the penetrometer
preferably coincides throughout the computation with finite element boundaries. Con-
sequently, there is no need to discretise the penetrometer itself, analogous to the ap-
proach taken by Van den Berg. This simplifies the application of boundary conditions,
interface elements respectively, along the penetrometer surface. To this end, the ap-
proach of moving the finite element discretisation relative to the material point discreti-
sation as presented in Chapter 3 is used, though in a slightly altered manner.

Rather than incrementally moving the penetrometer surface downwards into the gr-
ound, and with it the entire finite element discretisation, the soil is pushed upwards
against the fixed penetrometer surface. The upward displacement of the material point
discretisation is realised by prescribed displacements applied on the bottom boundary
of the mesh. At the end of an increment, the deformed finite element mesh is reset to
its initial configuration while material points maintain their displacements. Obviously,
elements along the bottom boundary would become void of material points. Therefore,
material points are continuously fed along the lower boundary into the mesh from a
cloud of material points that is initially located outside the discretised region as pre-
sented in Chapter 3.

In order to ensure that the change of the stress field due to the penetration process
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30° 30°

Figure 6.6: Used double-curved geometry of the cone tip (left) and geometry of the stan-
dard CPT (right)

does not extend to the bottom boundary of the finite element discretisation with any of
the performed computations, the lower mesh boundary is located 18 D below the tip of
the cone. According to [40], the cone senses a layer at a distance of 10 to 20 D ahead,
depending on the stiffness of the soil, which supports this choice.

Boundary conditions Along the sides of the mesh, displacements are fixed normal to
the vertical planes (roller boundaries).

Smooth contact between soil and penetrometer is modelled by prescribing roller boun-
daries along the penetrometer surface as shown in Figure 6.7 (left). The degrees of free-
dom along the surface are rotated such that nodal displacements are fixed normal to the
penetrometer surface and free in tangential directions. Here, the tangential directions are
averaged from the orientations of the (plane) element sides that lie on the penetrometer
surface. This approach corresponds to the averaged orientation of boundary conditions
along the penetrometer used by Van den Berg. The apex of the cone exihibits a disconti-
nuity of the displacement field similar to the one at the base of the cone. Here, the apex
node is fixed as otherwise the shape of the cone would be altered during the deformation
process.

Frictional and adhesive contact between penetrometer and soil is modelled by placing
interface elements on the penetrometer surface. No special attention is paid to boundary
conditions along this surface: the structure-side nodes are fully fixed, the soil-side nodes
are free to move. This also holds for the soil-side node of the apex dual node. Figure 6.7
(center and right) shows the placement of the interface elements along the cone which
corresponds to the approach taken by Van den Berg.

Computations with the AUC model require initial stresses for initialisation of the ex-
tend and orientation of the yield surface in principal stress space. Therefore, surface trac-
tion is considered with some of the presented computations. Anisotropic initial stresses
are generated for a K0 value of 0.5. To this end, two initialisation phases are performed
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6.2 Geometry and discretisation

Figure 6.7: Application of roller boundaries along the penetrometer surface for mod-
elling of smooth contact (left), placement of interface elements along the pen-
etrometer surface for modelling of adhesive contact (center) and FE discreti-
sation of the cone with interface elements (right)

before the penetration of the cone is simulated in a third computation stage.

In order to achieve a K0 value of 0.5, the Poisson ratio of the soil is set to a value of
0.333 in the first initialisation phase, which gives for deformations in the elastic range by
means of σ2 = σ3 = ν

1− ν
σ1 the desired K0 value. Afterwards, in a "soil replacement"

phase, the initial material model, soil parameters respectively, are replaced by those used
during the cone penetration phase. The three phases of the computation, stress initial-
isation phase, soil replacement phase and cone penetration phase, are illustrated from
left to right in Figure 6.8. During the two initialisation phases, drained conditions are
considered, whereas during the cone penetration phase the soil is considered undrained.

When the tip of the penetrometer is initially located inside the soil, the application of
surface traction cannot be performed in a straightforward manner. As explained above,
the relative displacement between the fixed cone and soil due to initial loading intro-
duces inaccurate stresses within the soil. Therefore, an alternative approach was chosen.
In the two initialisation phases, nodes at the initial top surface of the soil are fixed and
the surface traction t is applied along the bottom boundary of the mesh (see Figure 6.8
(left) ). That way, soil displacements in the vicinity of the cone remain relatively small
and thus the stress field shows only a small deviation from the uniform stress field.

In the cone penetration phase, incremental prescribed displacements δu are applied at
the bottom boundary of the mesh to simulate the cone penetration process and traction
is applied on the top soil surface as shown in Figure 6.8 (right). Now, traction forces are
assigned to material points as described in Chapter 3 so that the load moves upwards
together with the soil surface. Along the penetrometer surface either roller boundaries
or interface elements are applied in this phase.

As described in Chapter 3, the application of traction forces on material points in-
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Figure 6.8: Calculation phases for CPT computations with applied traction from left to
right: 1. application of traction along bottom boundary, generation of K0

stresses for drained soil, 2. change of material model and soil parameters,
3. application of traction on top soil surface, application of incremental pre-
scribed displacements along bottom boundary

troduces local inaccuracies. Furthermore, the occurrence of slightly inaccurate initial
stresses in the vicinity of the cone cannot be prevented with the taken approach. How-
ever, because these disturbances are limited to a small region near the soil surface, they
have only a limited impact on the outcome of computations. Once a steady-state pene-
tration process evolved, the top soil surface is located more than 6D above the cone base
and has no influence anymore on the stress field near the cone tip.

Soil weight is not considered with the presented computations since the gradient of
vertical stress is not relevant at the greater depths of cone penetration that are reached in
the performed analyses. However, it poses no technical problem — computations with
soil weight have been performed recently without additional difficulty.

Finite element discretisation All computations were performed with 4-noded tetra-
hedral elements. Only two different finite element discretisations were used: one with
interface elements and one without interface elements for modelling smooth contact.
The two meshes are depicted in Figure 6.9. Table 6.1 lists the key figures of the used
discretisations.

The number of degrees of freedom of the discretisation must be sufficiently large in
order to properly reproduce the displacement field of the problem, the stress field re-
spectively, with the used constant-strain elements. Here, special attention must be paid
to the region around the penetrometer cone which exhibits large stress gradients. This
is especially true for the apex and the base of the cone, where high stress peaks occur.
At the apex of the cone, element deformations are severly restricted through boundary
conditions which introduces an unrealistically high stress peak. In case of the discretisa-
tion with interface elements, a refinement of the mesh is required along the entire length
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6.2 Geometry and discretisation

Figure 6.9: FE discretisations (left) without interface elements and (right) with interface
elements
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Figure 6.10: FE discretisation without interface elements with (left) 10,902 degrees of
freedom, (center) 11,859 degrees of freedom and (right) 15,678 degrees of
freedom
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Figure 6.11: Average vertical tip stress plotted over the cone penetration for different FE
discretisations without interface elements

of the penetrometer in order to accomodate for the heavy shear strains that occur due to
the adhesive contact between soil and penetrometer. Furthermore, a mesh refinement is
required on the narrow edge along the longitudinal axis of the discretised slice. If the
edge were discretised by only a small number of elements, nodal displacements of these
elements would be severly constrained because, in general, most nodes would lie on ei-
ther one of the converging mesh boundaries. Towards the outer side of the discretisation
a rather coarse mesh proved to be sufficient.

In order to determine the required level of refinement, analyses were performed with
different numbers of degrees of freedom of the mesh. The check was performed with-
out consideration of interface elements. The mesh refinement concentrated on the re-
gion around the cone. Figure 6.10 shows close–ups of this region for three levels of
mesh refinement. The parameters of the three discretisations are listed in Table 6.1. Fig-
ure 6.11 shows the vertical tip stress plotted over the relative cone penetration for the
three meshes. Only a slight difference in results can be observed between the discreti-
sations with 15,678 and 11,859 degrees of freedom, the obtained steady-state vertical tip
stress is identical. The computation with 10,902 degrees of freedom shows significant os-
cillations and gives a slightly larger vertical tip stress. Thus, a discretisation with 11,859
degrees of freedom would seem sufficient.

Due to the complex geometry of the considered problem, elements of the discretisation
tend to exhibit large aspect ratios. All generated discretisations showed a small number
of 5 to 10 tetrahedral elements whose minimum angle between boundary surfaces lies
between 1 and 5◦. As the discretisation with 15,678 degrees of freedom showed some-
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Number of Number of Number of
degrees of freedom elements material points

Without interface elements 15,678 24,777 286,410
11,859 17,950 255,060
10,902 16,392 243,030

With interface elements 18,779 23,880 279,340

Table 6.1: Discretisation data

what fewer elements with small minimum angles in the vicinity of the cone, this level of
refinement was chosen for further numerical analyses.

Material point discretisation With the implemented quasi-static MPM, an equal num-
ber of 10 material points is initially placed inside each finite element. Additionally, an
external cloud of material points is generated in a preliminary calculation step as pre-
sented in Chapter 3. Allowing for an upward movement of the soil of 18D from the cone
base onwards gives a height of 18 D for the external material point cloud. Figure 6.12
illustrates the material point discretisation including the generated external cloud of ma-
terial points in its initial and final configuration for the mesh with a width of 14 D. For
the computations with a grid width of 19 D, the external cloud of material points has
a height of only 12 D due to limitations on memory consumption. Consequently, com-
putations with this grid are limited to a penetration depth of 12 D. Rather dense exter-
nal clouds of material points are generated in order to prevent the occurrence of empty
elements within the discretisation. Table 6.1 lists the total number of material points,
including those of the external material point cloud.

The used finite element and material point discretisations reach the limits of the pos-
sible with the present implementation of the quasi-static MPM due to the considerable
memory consumption and computation time required with the performed analyses. A
standard 32-bit DuoCore personal computer was used whose RAM is limited to 3 GB.
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Figure 6.12: Material point discretisation for the initial configuration including the ex-
ternal cloud of material points (left) and final configuration of the material
point discretisation at a penetration depth of 18 D for a representative com-
putation (right)
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6.3 Results

In a first step, computations with material parameters that closely match those by Van
den Berg [55] were performed in order to check the proper functioning of the quasi-static
MPM for CPT analyses. Here, total and effective stress analyses based on the Tresca
model are considered. With the latter, as described in Chapter 5, distinction is made be-
tween effective stresses and excess pore pressures, whereas the former only render total
stresses. In a second step, the Mohr-Coulomb model is introduced to the simulation of
cone penetration testing and, finally, the AUC model. Results of these two computations
are compared to results of a reference computation based on the Tresca model in order
to evaluate the performance of the considered models with CPT analyses. Here, only
effective stress analyses are considered.

6.3.1 Analyses with the Tresca material model

At first, the performed series of computations are presented. Subsequently, obtained
cone factors are compared to values presented by Van den Berg. Lu et al. [39] likwise per-
formed an extensive parameter study on cone penetration in undrained clay by means
of an ALE method. Their results will be considered, too. Afterwards, aspects of the sim-
ulated penetration process such as the generation of shear strains and pore pressures are
presented.

The presented computations as well as those by Van den Berg are based on the Tresca
material model. An undrained shear strength su of 20 kPa is specified. No soil weight
or overburden stress is considered. The used material parameters and those of three
reference computations by Van den Berg are listed in Table 6.2.

Computations were performed for smooth as well as adhesive contact between soil
and penetrometer surface in compliance with Van den Berg’s analyses. With regard to
adhesive contact, the adhesion was set to both half the undrained shear strength and
equal to the undrained shear strength of the soil as specified in Table 6.2. As reported
by Lu et al. in [39], field values for adhesion between penetrometer surface and soil
are found to lie between 0.2 and 0.6 su. The stiffness of interface elements in normal and
tangential directions has been set to 4,644 MN/m3, 410 MN/m3 respectively, for all com-
putations. It should be noted that these stiffness parameters only affect deformations in
the elastic range. With the performed computations for both, soil and interfaces, tensile
stresses are allowed.

The computations are split into two groups identified by Roman numerals (I and II).
The first series comprises total stress analyses as done by Van den Berg, effective stress
analyses are pooled in the second series.

Unfortunately, an exact match of material parameters with those used by Van den Berg
was not possible for the total stress analyses. Van den Berg used a high Poisson ratio of
0.49 for his computations. Due to numerical problems, the total stress analyses with in-
terface elements required a Poisson ratio of 0.4. Thus, the incompressibility condition of
undrained behaviour is only roughly observed with these computations. With computa-
tion I.1, the impact of a smaller Poisson ratio on the cone factor has been investigated by
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Computation E ν ′ su νu Kw/n Ir a Nc

[kN/m2] [−] [kN/m2] [−] [kN/m2] [−] [kN/m2] [−]

V. d. Berg 6,000 - 20 0.490 - 100.7 0 11.0
V. d. Berg 6,000 - 20 0.490 - 100.7 10 12.2
V. d. Berg 6,000 - 20 0.490 - 100.7 20 12.9

I.1 6,000 - 20 0.485 - 101.0 0 9.9
I.2 5,656 - 20 0.400 - 101.0 0 9.4
I.3 5,656 - 20 0.400 - 101.0 10 11.3
I.4 5,656 - 20 0.400 - 101.0 20 12.9
II.1 5,050 0.25 20 0.485 63,970 101.0 0 10.2
II.2 5,050 0.25 20 0.490 92,820 101.0 0 10.2
II.3 5,050 0.25 20 0.490 92,820 101.0 10 11.8
II.4 5,050 0.25 20 0.490 92,820 101.0 20 13.4
II.5 6,000 0.25 20 0.490 110,300 120.0 0 10.2
II.6 6,000 0.25 20 0.490 110,300 120.0 10 12.0
II.7 6,000 0.25 20 0.490 110,300 120.0 20 13.8

Table 6.2: Soil material parameters and obtained cone factorsNc for series I and II as well
as the reference computation by Van den Berg [55]

setting the Poisson ratio to 0.485 for a computation with smooth contact. With all total
stress analyses the rigidity index corresponds to the one of the reference computations
by Van den Berg (Ir ≈ 101).

For the effective stress analyses (series II), the stiffness of the pore water must be speci-
fied. This is done by means of an undrained Poisson ratio as explained in Chapter 5. For
the performed analyses, an undrained Poisson ratio of 0.49 has been used. The effective
Poisson ratio of the soil has been set to 0.25 in order to ensure that the bulk modulus of
the pore water is sufficiently high compared to the stiffness of the soil skeleton. In com-
putation II.1 a slightly lower undrained Poisson ratio of 0.485 has been used in order to
investigate the impact of this parameter on results.

The effective stress analyses II.2 to II.4 correspond to the total stress analyses I.2 to I.4.
Both sets exhibit a rigidity index of 101. In the second set of computations II.5 to II.7, a
higher rigidity index of 120 is considered to investigate the effect a change of Ir has on
the cone factor.

The last column of Table 6.2 lists the cone factors Nc obtained for the respective com-
putations. The cone factors provided for the reference computations are explicitly stated
by Van den Berg in his thesis. He does not provide discrete cone factors nor material
parameters for computations with Ir = 120. Here, Figure 6.3 is used as a reference.

The cone factor is obtained by plotting the relative tip stress σc/su over the cone dis-
placement normalised by the cone diameter. Once the influence of the soil surface on
the movement of soil particles around the penetrating structure subsides, a steady-state
deformation process evolves. The tip stress σc for the fully developed steady-state pen-
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Figure 6.13: Relative tip stress plotted over the relative cone displacement for compu-
tations I.2, I.3, I.4 (total stress analyses) and II.2, II.3, II.4 (effective stress
analyses) for Ir = 101

etration process corresponds to the tip resistance qc measured during cone penetration
testing and thus renders the cone factor.

The tip stress of the cone penetrometer is computed by summing up the vertical reac-
tion forces at nodes of the cone up to its base. The nodal reaction forces are computed
from

Freaction =

∫

V

B
T
σ dV (6.2)

The resulting force is then divided by the base area of the cone segment, which equals
0.556 cm2 for the considered 20◦ slice. The obtained value represents an average vertical
tip stress. The cone displacement is taken from the accumulated displacement incre-
ments that are prescribed at the bottom of the mesh. This value only approximates the
assumed true movement of the cone as the compression of the soil is not taken into ac-
count. However, in case of the considered undrained soil, the compression of the soil is
rather small so that the prescribed displacement gives a reasonable measurement of the
penetration depth with reference to the base of the cone.

Comparison of results with analyses by Van den Berg [55] and Lu et al. [39] Fig-
ure 6.13 shows the tip stress plotted over the cone penetration for the total and effective
stress analyses I.2, I.3, I.4 and II.2., II.3, II.4 (all with Ir = 101) for a = 0, a = su/2 and a
= su. With all computations, a steady-state penetration process has fully developed at a
depth of approximately 6D. The roughness of the penetrometer surface does not appear
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Figure 6.14: Relative tip stress plotted over the relative cone displacement for computa-
tions I.1 and I.2 (total stress analyses) for Ir = 101

to have an impact on the depth at which a steady-state occurs. The cone factors for the
effective stress analyses lie above the values of the total stress analyses. The difference
is somewhat larger for the smooth contact surface than the rough contact surface. The
analyses with rough contact render the highest cone factors of 12.9 and 13.4 compared
to a value of 12.9 reported by Van den Berg. The computations with a = su/2 give cone
factors of 11.3 and 11.8 compared to 12.2 found by Van den Berg, for smooth contact the
cone factors are 9.4 and 10.2 compared to 11.

The differences between the cone factors of the total and effective stress analyses ap-
pear to have a simple cause. Figure 6.14 shows the tip stress plotted over the cone pene-
tration for total stress analyses with a variation of the Poisson ratio whereas the rigidity
index is kept at 101. Here, smooth contact is considered. The dashed line extrapolates
the tip stress of the computation by Van den Berg which was stopped at 3 D. With in-
creasing Poisson ratio, the cone factor increases from 9.4 for a Poisson ratio of 0.4 to a
value of 9.9 for a Poisson ratio of 0.485. The cone factor for a Poisson ratio of 0.49 would
thus lie slightly below a value of 10 which corresponds reasonably well to the cone factor
of 10.2 found with the effective stress analyses. Obviously, total and effective stress anal-
yses show good agreement for a proper choice of Poisson’s ratio. However, for smooth
contact the reference value by Van den Berg is not reached.

Figure 6.15 shows results for a variation of the undrained Poisson ratio as well as for a
computation with the cone initially placed above the soil rather than inside. The curves
are obtained for effective stress analyses and smooth contact. The initial location of the
cone has only a slight impact on the resulting tip stress at steady-state deformation. A
change of the undrained Poisson ratio from 0.49 to 0.485 has no significant impact on
results. The same was found for adhesive contact.

Table 6.3 lists cone factors obtained by Van den Berg, by Lu et al. [39] and results of the
performed effective stress analyses. Results by Van den Berg for Ir = 120 are taken from
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Figure 6.15: Relative tip stress plotted over the relative cone displacement for computa-
tions II.1 (νu = 0.485) with cone initially placed above the soil surface, II.1
with the cone initially placed inside the soil and II.2 (νu = 0.490)

Author Ir = 101 Ir = 101 Ir = 101 Ir = 120 Ir = 120 Ir = 120
a = 0 a = su/2 a = su a = 0 a = su/2 a = su

V. d. Berg 11 12.2 12.9 11.4 13.4 15.5
Lu et al. 10.8 11.4 12.1 11.1 11.7 12.4

this study 10.2 11.8 13.4 10.2 12 13.8

Table 6.3: Cone factors obtained by Lu et al. [39], Van den Berg [55] and for series II

Figure 6.3.
Lu et al. use an ALE method called RITSS which has been developed by Hu and

Randolph [27]. As with other ALE implementations, it solves the equilibrium equations
identical to the FEM. With RITSS, a complete remeshing is performed to circumvent
mesh distortions after an arbitrary number of load steps. Stresses at Gaussian integration
points of the new mesh are determined on the basis of the stress fields within elements of
the old mesh that new integration points are located in. On the basis of their numerical
analyses, they developed an equation for the cone factor which takes into account Ir,
penetrometer roughness and initial stress anisotropy

Nc = 3.4 + 1.6 ln Ir − 1.9∆ + 1.3αc with ∆ =
σv0 − σh0

2 su
(6.3)

where σv0 and σh0 are the initial vertical and horizontal stresses and αc represents the
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Figure 6.16: Comparison of results of computations II.2, II.3, II.4, II.5, II.6 and II.7 with
results obtained by Van Den Berg and Lu et al.

friction ratio a/su that lies between 0 for a smooth contact surface and 1 for a fully rough
contact surface.

Figure 6.16 shows the results for effective stress analyses with rigidity indices of 101
(circles) and 120 (squares) added to a chart that is generated from Equation 6.3. A further
computation that has been performed with a rigidity index of 600 is added to the chart
(triangle). The filled circles indicate cone factors stated by Van den Berg in his thesis, the
white symbols correspond to results found with the quasi-static MPM. The symbols of
each column mark from top to bottom cone factors for a contact surface with a = su, a
= su/2 and a = 0. Clearly, the change of rigidity index from 101 to 120 does not have an
impact on the cone factor for the smooth contact — both computations render the same
cone factor of 10.2. In case of adhesive contact, a slight increase of the cone factors can
be observed that corresponds to the increase indicated through the hatched region.

For a smooth contact surface, cone factors according to Lu et al. lie slightly below val-
ues obtained by Van den Berg and above the values obtained with the quasi-static MPM.
For adhesive contact, the equation of Lu et al. gives cone factors that are considerably
lower than those obtained by Van den Berg. The difference with results of the quasi-
static MPM are somewhat smaller. As a general trend, differences in results increase
with increasing roughness of the penetrometer surface. Furthermore, from the consid-
ered computations, it would seem that results deviate more, the larger the stiffness of
the soil: the largest differences in cone factors are found for Ir = 120 and a fully rough
contact surface.

The found differences can be attributed to numerous sources, which are difficult to
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quantify. Differences might be attributed to differences of the employed numerical meth-
ods, especially with regard to the contact and smoothing algorithms. Furthermore, the
interpolation of computational results for obtaining Equation 6.3 and the chart provided
by Van den Berg introduces deviations from raw numerical results. With this regard,
the cone factors provided by Van den Berg for Ir ≈ 101 form the best reference for the
performed numerical analyses.

Differences in the discretisation of the problem form another source. With the quasi-
static MPM a significantly finer mesh has been used compared to the discretisation by
Van den Berg. This is especially true for the region above the cone. Here, a mesh refine-
ment is of relevance for the case of adhesive contact when large shear strains do not only
occur at the tip of the cone but also along the shaft.

Van den Berg modelled smooth contact by setting the adhesion of the interface ele-
ments to zero, whereas roller boundaries have been used with the quasi-static MPM.
This would explain why the difference of results is larger for smooth contact than for
adhesive contact.

As shown in Figure 6.15, the initial location of the cone (inside or above the soil) does
not have a significant impact on results.

All computations are based on the Tresca material model so that the constitutive mod-
elling can be excluded as a source of differences.

Van den Berg specified a tolerated error of 0.1 percent for his computations. With
the quasi-static MPM, a tolerated error of 1 percent was used instead which might also
contribute to the difference in results.

It seems justified to state that the results of the quasi-static MPM agree well with those
of the reference computations within the range of accuracy that can be obtained by any
numerical method.

Soil strains and stresses for steady-state penetration The following illustrations are a
snapshot of the steady-state penetration process taken at a penetration depth of 10 D.

If not otherwise stated, the figures depict soil strains and stresses that are post-pro-
cessed by mapping data of Gaussian integration points onto element surfaces as com-
mon with Finite Element post-processors. With this procedure, smoothing is applied to
the raw Gauss point data. For the used constant-strain elements, material points of an
element and Gauss points carry the same stresses. This approach proved very conve-
nient as the full functionality of the used FEM post-processing application could be used
that way without any modification. Generally, the surface between active and inactive
finite elements will not be even in case of the used irregularly shaped tetrahedral ele-
ments. For better illustration, the top layer of partially-filled elements is removed in the
following plots. Most images of this section show a plot of soil strains or stresses for
smooth contact on the left half and next to it mirrored on the right half of the image the
corresponding plot for fully rough contact.

Figure 6.17 shows the incremental displacements δuy and δux of the soil for the total
stress analysis I.1 with smooth contact surface. Here, nodal displacement values form
the basis for the shown plots. As is to be expected, incremental soil displacements (rel-
ative to the penetrometer displacement) concentrate in the vicinity of the cone. Soil
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Figure 6.17: Incremental deformations for total stress analysis I.1 with smooth contact
surface: (left) vertical displacement increments; (center) horizontal displace-
ment increments in x direction; (right) incremental shear strains

particles below the cone are compacted vertically, soil particles next to the cone experi-
ence lateral compression. With regard to vertical displacement increments, the region
that is colored red corresponds to the vertical prescribed displacement δuy applied along
the bottom of the mesh. Soil below the cone shows smaller incremental vertical dis-
placements than the surrounding soil. The region colored dark blue that extends 0.5 D
below the cone tip represents displacements of up to 0.8 δuy. At 2 D below the cone
tip, incremental displacements lie at 0.9 δuy. The horizontal displacements shown in the
center reach a maximum value of approximately 0.3 δuy. The region colored dark red
represents displacements between 0.1 and 0.3 δuy. Beyond a distance of 2 D, horizontal
displacements subside to less than 5 percent of the maximum horizontal displacement.
Incremental shear strains, also shown in Figure 6.17, likewise concentrate in the vicinity
of the cone. Here, shear strain is defined as the square root of the second invariant of the
deviatoric strain tensor. A comparison of incremental deformations of different compu-
tations is not of much use here as the magnitudes of displacements and strains depend
on the varying sizes of the applied prescribed displacement increments.

In the following, results of the effective stress analyses II.2 and II.4 with Ir = 101 will
be shown. With computation II.2, a smooth penetrometer surface is considered, with
computation II.4 fully rough contact is considered.

Figure 6.18 depicts the accumulated shear strains for these two effective stress anal-
yses. Raw shaded material point data is shown. White spots near the top soil surface
represent gaps in the material point discretisation. The region colored red represents
shear strains beyond 20 percent and up to 700 percent for the smooth contact surface, up
to 900 percent for the fully rough contact surface. In case of the smooth contact surface,
the large accumulated shear strains originate solely from the previously shown incre-
mental shearing of soil around the cone. The sheared material then moves upwards
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Figure 6.18: Accumulated shear strains for effective stress analyses; (left) II.2 with
smooth contact surface; (right) II.4 with fully rough contact surface

along the smooth penetrometer surface. For adhesive contact, the soil is additionally
subjected to shearing while moving along the penetrometer surface. Clearly, the zone
of heavily sheared soil is wider in case of the fully rough contact surface compared to
the smooth surface. For the smooth contact surface, the zone of shear strains beyond 20
percent has a width of approximately 1.5 D, whereas for fully rough contact the shear
zone has a width of 2.5 D.

With the fully rough contact surface, soil particles that adhere to the penetrometer
surface are pulled downwards. This shows in the formation of a funnel around the
penetrometer whereas for smooth contact the top soil surface is horizontal. In Figure 6.18
this is emphasised by purple lines drawn along the top soil surface.

Figures 6.19 and 6.20 show the principal stresses at the very tip of the cone and in the
vicinity of the cone for the effective stress analyses with smooth and fully rough contact
surfaces. In case of smooth contact, principal stresses σ1 are oriented perpendicular to
the penetrometer surface, while they are inclined by 45◦ towards the penetrometer sur-
face for fully rough contact. Because the principal stresses are plotted at a distance from
the contact surface, the shown inclinations for rough contact lie below 45◦. The principal
stresses correspond well to results found by Lu et al. [39]. Clearly visible is the radial
alignment of principal stresses further away from the cone. The principal stresses are
oriented towards a point that lies about 0.5 D below the cone base.

Figure 6.21 shows the deviatoric stress measure corresponding to the square root of
the second invariant of the deviatoric stress tensor for the effective stress analyses with
smooth and rough contact surface (II.2 and II.4). For the specified soil strength, a max-
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Figure 6.19: Principal stresses in the vicinity of the cone for effective stress analyses
scaled down by a factor of 45E-6; (left) II.2 with smooth contact surface;
(right) II.4 with fully rough contact surface

Figure 6.20: Close-up of principal stresses at cone tip for effective stress analyses scaled
down by a factor of 90E-6; (left) II.2 with smooth contact surface; (right) II.4
with fully rough contact surface
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Figure 6.21: Deviatoric stress measure q∗ for effective stress analyses; (left) II.2 with
smooth contact surface; (right) II.4 with fully rough contact surface

imum deviatoric stress of 40 kPa is obtained which corresponds to the region colored
red in Figure 6.21. The shape of the plastic zone agrees well to the shape predicted by
amongst others Lu et al. who refer to cavity expansion theory as a reference. Accord-
ing to their research, the shape and extend of the plastic zone depends on the rigidity
index and to a lesser extend on initial stress anisotropy, while the roughness of the pen-
etrometer surface has no significant impact on the size and shape of the plastic zone.
For the chosen soil parameters and initial stresses a nearly circular shape is found that
extends approximately 5.5 D below the tip and 5.5 D to the sides for smooth as well as
fully rough contact surface. Lu et al. predict for a rigidity index of 100 a smaller plastic
zone. According to their results, plastic deformations extend 2.5 D below a point that
lies slightly below the cone base and 3 D to the sides of the penetrometer. Furthermore,
they report that the lower the rigidity index, the more circular the shape of the plastic
zone, which corresponds well to the found rounded shape of the plastic zone. With all
performed computations, large deviatoric stresses occur in a thin band along the pen-
etrometer surface for smooth as well as adhesive contact.

Total horizontal and vertical stresses σxx and σyy are plotted in Figure 6.22 for the
effective stress analyses II.2 and II.4. This figure also shows total horizontal and vertical
stresses obtained by Van den Berg at a cone tip displacement of 14.6 D for the reference
computation with Ir ≈ 101 with a smooth contact surface. The maximum horizontal
stress is somewhat higher for the smooth contact surface compared to the fully rough
contact surface (-247 kPa compared to -215 kPa). Small tensile stresses occur in a region

108



6.3 Results

Figure 6.22: (top) Total horizontal stresses σxx: (left) effective stress analyses II.2 with
smooth contact surface and II.4 with fully rough contact surface; (right) total
stress analysis with smooth contact surface by Van den Berg [55]; (bottom)
total vertical stress: (left) effective stress analyses II.2 with smooth contact
surface and II.4 with fully rough contact surface; (right) total stress analysis
with smooth contact surface by Van den Berg in [kPa]
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Figure 6.23: Total mean stresses for effective stress analyses; (left) II.2 with smooth con-
tact surface; (right) II.4 with fully rough contact surface in [kPa]

below the cone tip. In case of the fully rough contact surface, horizontal stresses decrease
with a larger gradient along the penetrometer shaft compared to the smooth contact
surface. For the fully rough contact surface, vertical stresses show a sharp decrease just
above the cone base. The computation with smooth contact surface exhibits a slightly
larger maximum vertical stress than the computation with fully rough contact surface
(-245 kPa compared to -231 kPa). Van den Berg obtained somewhat lower values for the
maximum total horizontal and vertical stress of -195 kPa, -180 kPa respectively. Lu et al.
note that a concave shape of the vertical stress bulb towards the outer side indicates the
transformation from downward vertical displacement of soil below the cone to upward
vertical displacement. Below the concavity, soil is pushed to the sides and downward,
above it, soil moves to the sides in an upward direction. Obviously, some of the vertical
compression previously applied on soil particles that pass along the penetrometer must
consequently be released at this location. This can also be observed with the results of the
quasi-static MPM analyses as well as the results obtained by Van den Berg. The extend of
the horizontal and vertical stress bulbs below the cone and to its sides is approximately
identical.

As with the total vertical and horizontal stresses, the total mean stresses for smooth
and fully rough contact shown in Figure 6.23 distinguish through a difference in stresses
along the penetrometer surface above the cone. With fully rough contact, total mean
stresses subside in the narrow band where soil is sheared along the rough contact sur-
face while the total mean stresses remain at an elevated level in case of smooth contact.
The region colored red indicates total mean stresses between -100 and -216 kPa for fully
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Figure 6.24: (left) Effective mean stresses and (right) excess pore pressures each for II.2
with smooth contact surface on left half and II.4 with fully rough contact
surface on right half in [kPa]

rough contact and -100 and -239 kPa for smooth contact.
Results shown so far are basically identical for the total and effective stress analyses

I.2 and II.2, I.4 and II.4 respectively. In the following, results of the effective stress anal-
yses are shown which give some more insight into the evolving stress field around the
penetrometer for the considered undrained conditions.

Figure 6.24 (left) shows the effective mean stresses for smooth and fully rough contact.
The region colored red represents compression beyond -4 kPa. For both, smooth and
fully rough contact, the maximum mean stress lies at -8 kPa. Due to the slight compress-
ibility allowed with the performed computations (νu = 0.49), the mean stresses acting
on the soil skeleton do change. However, mean effective stresses represent only a small
fraction of the mean total stresses of -239 kPa for smooth contact, -216 kPa respectively
for fully rough contact. Consequently, the excess pore pressure distribution must corre-
spond to the total mean stresses presented in Figure 6.23. The image on the right shows
excess pore pressures for smooth and fully rough contact. The results for smooth contact
show a maximum value of -230 kPa and results for fully rough contact show a maximum
pore pressure of -209 kPa. The region colored red indicates pore pressures below -50 kPa.
The extend of the pore pressure bulb does not differ much for smooth and fully rough
contact. The decrease of excess pore pressures above the cone base next to the penetrom-
eter surface occurs with a larger gradient in case of the fully rough contact compared to
the smooth contact.

Figure 6.25 shows the horizontal and vertical effective stresses σ′

xx and σ′

yy. Clearly vis-
ible below the cone tip is a region of horizontal tensile stresses with a maximum value
of 15 kPa that does not differ neither in magnitude nor in extension for smooth and fully
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Figure 6.25: (left) Effective horizontal stresses σ′

xx and (right) vertical stresses σ′

yy each for
II.2 with smooth contact surface on left half and II.4 with fully rough contact
surface on right half in [kPa]

rough contact. Wing-shaped horizontal stress bulbs develop next to the penetrometer.
The extend of this region of large horizontal stresses and its magnitude with a maximum
value of -32 kPa is approximately the same for smooth and fully rough contact. In case of
the smooth penetrometer surface, soil particles maintain large horizontal stresses along
the penetrometer surface. A similar arrangement of stress bulbs is observed for effective
vertical stresses. Again, except for the region in the vicinity of the penetrometer sur-
face above the cone, the observed pattern is nearly identical for smooth and fully rough
contact surfaces. In the region of horizontal tensile stresses, vertical compression occurs
with a maximum value of -245 kPa for smooth contact and -208 kPa for fully rough con-
tact. The region of large horizontal stresses shows slight vertical tensile stresses. Near
the penetrometer surface, vertical tensile stresses occur. These stresses are more pro-
nounced in case of the fully rough contact, which reflects the fact that soil particles are
pulled downwards by the penetrating bar.

The horizontal and vertical stress distributions can be derived from the pear-shaped
distributions of total stresses and excess pore pressures shown above in Figures 6.22
and 6.24. Excess pore pressures are introduced through compression of the soil in the
vicinity of the penetrometer. In regions where the negative excess pore pressures exceed
the negative total horizontal or vertical stresses, tensile (positive) effective vertical or
horizontal stresses appear. Below the cone, strong vertical compression introduces large
excess pore pressures which result in tensile effective horizontal stresses. As mentioned
above, the total vertical stress distribution shows a concavity where the movement of
soil particles changes from a downward to an upward movement. Here, obviously, large
horizontal compaction of the soil shows up in excess pore pressures that lead to tensile
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Figure 6.26: Interface shear traction for effective stress analyses; (left) II.3 with a = su/2;
(right) II.4 with a = su

vertical stresses within the soil skeleton. The same holds true for the thin band along the
penetrometer shaft.

Figures 6.26 and 6.27 show tractions of the interface elements placed along the pen-
etrometer surface for the effective stress analyses II.3 and II.4. Shear tractions for both
adhesive contact with a = su/2 = 10 kPa and a = su = 20 kPa are shown. Clearly, the
found distributions comply with the specified shear strengths. Some oscillations occur
at the tip of the cone. The total normal tractions for fully rough contact surface show a
considerable peak at the cone tip. However, its extend is limited to the very tip of the
cone. The total normal traction of -241 kPa slightly above the very cone tip lies in the
range of magnitude of σ1 obtained in the vicinity of the cone tip. The sharp decrease
of normal traction just above the base of the cone complies with results for total hori-
zontal stresses shown in Figure 6.22. The excess pore pressures shown on the right side
of Figure 6.27 correspond well with the excess pore pressures within the soil shown in
Figure 6.24. Just above the cone base, excess pore pressures exhibit a sharp decrease and
further up a more gradual decrease from -45 kPa to 0 kPa.

6.3.2 Analysis with the Mohr-Coulomb material model

The effective stress analysis of cone penetration testing with the Mohr-Coulomb model
presented in this section forms an intermediate step before introducing the AUC model
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Figure 6.27: (left) Interface total normal traction and (right) interface excess pore pres-
sures for II.4 with a = su

in the following Section 6.3.3. With the Mohr-Coulomb as with the AUC model, the
undrained shear strength depends on the effective stress state and the loading type — in
contrast to the Tresca model, which assumes a unique constant undrained shear strength.

Therefore, in the following computations a vertical traction of 10 kPa is applied on
the top soil surface. Here, K0 is set to 0.5 in order to generate an initial stress typical
for a normally-consolidated clay. Only a small traction is applied because higher loads
caused numerical problems with the present implementation of the quasi-static MPM.

In contrast to the computations presented above, only smooth contact between pen-
etrometer surface and soil is considered. The iterative procedure used for solving the
equilibrium equations reached its limits with computations that involve both adhesive
contact as well as the more complex Mohr-Coulomb and AUC models.

Results obtained with the Mohr-Coulomb model are compared to results of a compu-
tation that uses the Tresca model but which is otherwise identical.

The soil properties of the performed effective stress analyses using the Mohr-Coulomb
and Tresca model are provided in Table 6.4. In Section 5.3.4, the undrained shear str-
engths for triaxial compression, extension and simple shear were computed by means
of numerical analyses for the Mohr-Coulomb model for these material parameters and
the specified surcharge: su compression is 4 kPa, su, extension is 2.8 kPa and for simple shear
su, simpleshear is 3.8 kPa. The cohesion of 4 kPa specified with the Tresca model thus coin-
cides with the undrained shear strength under triaxial compression specified with the
Mohr-Coulomb model.
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Figure 6.28: Average vertical tip stress plotted over the relative cone displacement for
the computations with the Mohr-Coulomb and Tresca model

A check analysis has been performed with the Mohr-Coulomb model with the cone
initially placed above the soil rather than inside. This check has been performed for
an undrained Poisson ratio of 0.485 because the computation with νu = 0.49 requires
significantly more computational time than for a lower undrained Poisson ratio. A tip
resistance of 60 kPa is obtained when placing the cone initially inside the soil and a tip
resistance of 61 kPa is obtained when placing the cone initially above the soil. Results
differ by 2 percent. Thus, the initial location of the cone has no significant impact on
results when using the Mohr-Coulomb model. This agrees with the results of computa-
tions presented in Section 6.3.1 in which the Tresca model is used and no surface traction
is applied.

Material model E ν ′ c′ φ′ νu Kw/n a

[kN/m2] [−] [kN/m2] [◦] [−] [kN/m2] [kN/m2]

Mohr-Coulomb 6,000 0.25 1E-4 30 0.49 110,300 0
Tresca 6,000 0.25 4 0 0.49 110,300 0

Table 6.4: Soil material parameters for the performed computations

Evaluation of results Figure 6.28 shows the average vertical tip stress plotted over the
relative cone displacement for the computations with the Mohr-Coulomb and Tresca
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Figure 6.29: Average vertical tip stress plotted over the relative cone displacement for
the Mohr-Coulomb computation with νu = 0.48, νu = 0.485 and νu = 0.49

model. The Mohr-Coulomb model gives a higher tip resistance of 57 kPa than the Tresca
model which renders a tip resistance of 51 kPa. This can be explained by a slight increase
of the effective mean stresses during the simulation with the Mohr-Coulomb model due
to the specified undrained Poisson ratio.

Figure 6.29 shows results for a variation of the undrained Poisson ratio νu for the com-
putation with the Mohr-Coulomb material model. Setting νu to 0.48 results in a bulk
modulus of the pore water of 55.7 MN/m2, νu = 0.485 gives a bulk modulus of the pore
water of 76 MN/m2 compared to Kw/n = 110.3 MN/m2 for νu = 0.49. For νu = 0.48 a tip
resistance of 64 kPa is obtained, for νu = 0.485 a tip resistance of 60 kPa and for νu = 0.49 a
tip resistance of 57 kPa. In case of relatively low values for νu, the effective mean stresses
change despite the assumed undrained conditions. With the Mohr-Coulomb model this
results in an increase of the undrained shear strength of the soil and thus in a higher
tip resistance, in contrast to the computations with the Tresca model. Extrapolation to
νu = 0.495 results in a tip resistance of approximately 56 kPa. Thus, with increasing
undrained Poisson ratio the tip resistance obtained for the Mohr-Coulomb model corre-
sponds reasonably well to the tip resistance obtained with the Tresca material model of
51 kPa. However, an undrained Poisson ratio beyond 0.49 could not be used with the
Mohr-Coulomb due to numerical problems.

With the specified undrained shear strength of 4 kPa, the computation with the Tresca
model gives a cone factor of 12.75 which corresponds well to results of previous studies
mentioned above. Van den Berg [55] reports for a smooth cone and a rigidity index Ir
= G/su = 600 a cone factor of approximately 13. Lu et al. [39], who additionally take
into consideration the initial stress state, report for Ir = 600 and ∆ = 0.625 a cone fac-
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Figure 6.30: (left) Regions of triaxial compression, extension and isotropic states-of-stress
and (right) regions of identical Lode angle each for the computation with the
Tresca model on the left half and the computation with the Mohr-Coulomb
model on the right half

tor of 12.5. With the Mohr-Coulomb model, more than one undrained shear strength
might determine the tip resistance. The proximity of the tip resistances found with the
Mohr-Coulomb model and the Tresca model indicates that in both computations the
same undrained shear strength dominates the failure mechanism.

Figure 6.30 illustrates the loading types found within the soil body. The image on
the left has been generated by coloring Gauss points dark blue for which σ′

2 ≈ σ′

3 and
σ′

1 6= σ′

2 indicating triaxial compression states-of-stress, Gauss points for which σ′

1 ≈ σ′

2

and σ′

2 6= σ′

3 are colored green indicating triaxial extension states-of-stress and Gauss
points for which σ′

1 ≈ σ′

2 ≈ σ′

3 are colored red. Of the latter, only a very small number
occurs. Gauss points for which no principal stresses are equal are colored orange. The
tolerated difference between principal stresses is chosen as 10 percent of the minimum
of the two compared stress values. The image on the right considers the Lode angle.
Blue indicates Gauss points with Lode angles between 0 and 3◦ (triaxial compression),
green indicates Lode angles between 60 and 57◦ (triaxial extension) and orange indi-
cates Lode angles between these two values. Results are approximately identical for the
computations with the Mohr-Coulomb and Tresca model. For both the Tresca and the
Mohr-Coulomb model, triaxial compression states-of-stress occur in the vicinity of the
cone. In case of the computations with the Tresca and Mohr-Coulomb model, triaxial
extension states-of-stress occur in small patches at the mesh boundary due to boundary
effects. However, effective stresses at this distance from the penetrometer nearly corre-
spond to the initial stresses so that this region plays no significant role in the penetration
mechanism. Clearly, with the Mohr-Coulomb model, the undrained shear strength for
triaxial compression determines the tip resistance.
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6.3.3 Analysis with the Anisotropic Undrained Clay model

In the following, the AUC model is introduced to the analysis of cone penetration testing
in order to take into account the shear-induced generation of excess pore pressures and
the anisotropic strength of undrained clay. Results are compared to the computation
with the Tresca model introduced in the previous subsection which is set up identically
to the computation with the AUC model.

The same boundary conditions are applied in this analysis with the AUC model as in
the analyses of the previous subsection: a surface traction of 10 kPa is applied, K0 is set
to 0.5. Normally-consolidated clay is considered, the overconsolidation ratio is thus 1.
The computation with the AUC model uses the same effective stiffness parameters as the
computation with the Tresca model presented above: E = 6,000 kN/m2 and ν ′ = 0.25. A
small cohesion of c′ = 1E-4 kN/m2 is specified, φ′

cs is set to 30◦. The factor M of the yield
surface being equal to Mc then has a value of 1.2. In contrast to the Tresca computation,
the computation with the AUC model was performed with an undrained Poisson ratio
of 0.495 instead of 0.49 resulting in a higher bulk modulus of the pore water of 235.2
MN/m2. The chosen soil parameters render for the AUC model a value α0 of -0.458 and
an isotropic preconsolidation pressure of -7.1 kPa (see Figure 5.19). The numerical anal-
yses presented in Section 5.3.4 render for the AUC model with these material parameters
undrained shear strengths of 3 kPa for triaxial compression, 1.2 kPa for triaxial extension
and 2.15 kPa for simple shear.

The computation with the AUC model and the higher undrained Poisson ratio re-
quires considerably more time and memory consumption than the other two computa-
tions. It was therefore stopped at a penetration depth of 11 D instead of proceeding up
to 16 D as with the Tresca model.

Evaluation of results The AUC model predicts a significantly lower tip resistance of
25 kPa than the reference computation with the Tresca model, being 50 kPa at 11 D. In
Figure 6.31, the relative tip stresses σc/su, simpleshear for the two computations are plotted
over the relative cone penetration. Equating su to su, simpleshear results in approximately
the same cone factor for the computations with the Tresca and AUC model. For the
Tresca model, a cone factor of 12.5 is obtained at a penetration depth of 11 D, for the
AUC model a cone factor of 11.6. The results shown in the following provide further
insight into the development of the found tip resistances.

The following stress plots are generated identically to those shown in Section 6.3.1.
The left half of each plot shows stresses being obtained with the AUC model, the mir-
rored right half shows stresses being obtained with the Tresca model. When relating
(negative) compressive stresses, terms such as ’below’, ’higher than’ relate to absolute
values as it seems more intuitive.

Figure 6.32 shows total horizontal stresses σxx on the left and vertical stresses σyy on
the right for the computations with the AUC and Tresca model. For the Tresca model, the
total horizontal and vertical stresses both lie between 0 and -78 kPa. For the AUC model,
the maximum total stresses are lower than those obtained with the Tresca model. The
total horizontal stresses lie between 0 and -57 kPa and the total vertical stresses range
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Figure 6.31: Relative tip stress plotted over the relative cone displacement for the com-
putations with the Tresca and AUC models

Figure 6.32: (left) Total horizontal stresses σxx and (right) total vertical stresses σyy each
for the computation with AUC model on the left half and Tresca model on
the right half in [kPa]
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Figure 6.33: Total mean stresses; (left) computation with AUC model; (right) computa-
tion with Tresca model in [kPa]

for the AUC model from 0 to -55 kPa. For the Tresca model the stress bulbs for total
horizontal and vertical stresses ressemble those obtained for the above presented com-
putations without overburden stress. Compared to the Tresca model, the total stresses
decrease with a larger gradient above the cone base in case of the AUC model. For both
computations, the distribution of total vertical stresses shows the same concavity that
has been described in Section 6.3.1. The ratios of the maximum total vertical stresses
correspond as is to be expected approximately to the ratios of the tip stresses of the two
computations.

Figure 6.33 shows the total mean stresses for the computations with the AUC and
Tresca model. Stresses range from 0 to -76 kPa for the Tresca model and from 0 to -55
kPa for the AUC model.

Figure 6.34 shows on the left the effective mean stresses for the computations with the
AUC and Tresca model and on the right the excess pore pressures obtained for these
two computations. The effective mean stresses range for the Tresca model from 0 to -9
kPa and for the AUC model from 0 to -6.7 kPa. The excess pore pressures range from
0 to -67 kPa for the Tresca model and from 0 to -53 kPa for the AUC model. A max-
imum effective mean stress that lies above the initial mean stress of -6.7 kPa is found
with the Tresca model. As mentioned above, this increase can be explained by the
choice of the undrained Poisson ratio of 0.49 which allows for a slight change of ef-
fective stresses. With the AUC model, the initial effective mean stress is not exceeded as
a higher undrained Poisson ratio of 0.495 is specified. The AUC model predicts a signif-
icant decrease of the effective mean stress in the vicinity of the cone. The wing-shaped
bulb of effective mean stresses has its lowest value at the height of the cone base. This
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6.3 Results

Figure 6.34: (left) Effective mean stresses and (right) excess pore pressures each for com-
putation with AUC model on left half and Tresca model on the right half in
[kPa]

reduction of the effective mean stress implies that the change of excess pore pressures
exceeds the change of total mean stresses in this region of the soil.

Figure 6.35 shows on the left effective horizontal stresses σ′

xx for the AUC and Tresca
model and on the right effective vertical stresses σ′

yy. With the Tresca model, effective
horizontal stresses range from 0 to -14 kPa and for the AUC model from 0 to -7 kPa.
Effective vertical stresses range for the Tresca model from 0 to -13 kPa and for the AUC
model from 0 to -10 kPa. Figure 6.36 shows the effective circumferential stresses for the
two computations which range for the Tresca model from 0 to -11 kPa and for the AUC
model from 0 to -5.7 kPa. The stress distributions for the Tresca model correspond to
the wing-shaped stress bulbs described in Section 6.3.1. Clearly visible is that regions
of minimum vertical stress correspond to regions of maximum horizontal and circum-
ferential stress and vice versa. With the AUC model, the shape and location of bulbs
of low vertical and circumferential effective stresses coincide. In contrast to the Tresca
computation, horizontal effective stresses only deviate slightly from the initial horizontal
effective stress with the AUC model. Below and above the cone tip a zone of somewhat
lower horizontal stresses is found. A peak of horizontal stresses occurs at the height of
the cone base at a distance of 8.5 D measured from the penetrometer axis.

The shown plots of effective stresses indicate a boundary effect. However, the dif-
ference between initial effective as well as total stresses and effective/total stresses at a
penetration depth of 11 D is rather small along the boundary. Furthermore, check com-
putations showed that an increase of the mesh width from 14 to 19 D does not influence
the tip stress.

The deviatoric stress measure plotted in Figure 6.37 lies for the Tresca model between
0 and 8 kPa and for the AUC model between 0 and 6 kPa. The initial deviatoric stress
is 5 kPa. Of course, with the Tresca model, deviatoric stresses must lie at or below the
specified limit of 2 su. With the AUC model, the maximum deviatoric stress is equal
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Chapter 6 Analysis of cone penetration testing in undrained saturated clay

Figure 6.35: (left) Effective horizontal stresses σ′

xx and (right) effective vertical stresses
σ′

yy each for computation with AUC model on the left half and Tresca model

on the right half in [kPa]

Figure 6.36: Effective circumferential stresses; (left) computation with AUC model;
(right) computation with Tresca model in [kPa]
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6.3 Results

Figure 6.37: Deviatoric stress measure q∗; (left) computation with AUC model; (right)
computation with Tresca model in [kPa]

to twice the undrained shear strength for triaxial compression which gives 6 kPa. De-
viatoric stresses in this range are found below and above the cone tip. A bulb of low
deviatoric stresses extends from the cone base into the soil.

Figure 6.38 illustrates the loading types found within the soil body. The figure has
been generated identically to Figure 6.30 through comparison of principal stresses and
evaluation of the Lode angle. Compared to the Tresca model, triaxial compression states-
of-stress occur with the AUC model in a much smaller region below the cone. A clear as-
sociation between tip resistance and undrained shear strength as with the Tresca model
therefore seems not possible.

Figure 6.39 shows that the soil in the vicinity of the cone tip is in a state of yielding.
Gauss points whose stresses lie on the yield surface (f > -1E-4) are colored black when
soil is in triaxial compression and green when soil is in another stress state. Almost the
entire soil body is in a plastic state as normally-consolidated soil is considered. The zone
at the bottom of the mesh would seem to be in an elastic state, but this can be attributed
to numerical inaccuracies.

Figure 6.40 shows in the left image Gauss point stresses of the soil body plotted in the
p′-q∗-plane and on the right plotted in the deviatoric plane for the computation with the
AUC model. Only Gauss points with a plastic state are plotted. Furthermore, only stress
states in the vicinity of the cone tip are considered. The considered rectangular region
is indicated in Figure 6.39. It extends 2.5 D above the cone tip, 11 D below the cone
tip and 9 D to the side of the cone tip. The coloring of the stress states corresponds to
that of Figure 6.39. The effective stresses are limited by the initial stress and by the yield
function which takes for triaxial compression the shape of an ellipse.
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Figure 6.38: (left) Regions of triaxial compression states-of-stress colored blue and exten-
sion colored green; (right) regions of identical Lode angle each for compu-
tation with AUC model on left half and computation with Tresca model on
right half

Figure 6.39: Region of soil with stress states on the yield surface for computation with
the AUC model
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The maximum deviatoric stress is restricted by the yield surface to values between 5
and 6 kPa for triaxial compression, at which the effective mean stress reduces from the
initial value of -6.7 kPa to -5 kPa. In the deviatoric plane, all stress states lie in the upper
left section. Stress states close to the vertical axis correspond to triaxial compression.
Those close to the inclined axis correspond to triaxial extension. The chart indicates that
triaxial extension does not occur in the vicinity of the cone as also seen in Figure 6.38.

The presented results provide some insight into the mechanical processes in the region
surrounding the cone that determine the tip resistance found with the AUC model.

Below the cone, where soil is compacted vertically through the advancing cone, soil
is in a state of triaxial compression as shown in Figure 6.38. As can be seen from Fig-
ure 6.37, deviatoric stresses increase in this region from 5 kPa to the maximum stress
of 6 kPa which corresponds to the undrained shear strength for triaxial compression.
Because stress states are limited by the elliptic yield locus, the effective mean stresses
decrease with increasing deviatoric stress down to a value of -5 kPa as illustrated in Fig-
ure 6.40. This decrease corresponds to results shown in Figure 6.34 (left). Consequently,
horizontal and vertical effective stresses decrease in this region as shown in Figure 6.35.

Next to the cone, low vertical and horizontal effective stresses σ′

yy and σ′

zz occur, where-
as σ′

xx increases slightly. This can be explained as in Section 6.3.1 by the reduction of ver-
tical compaction once soil leaves the ’shadow’ of the penetrating cone and the increase of
compaction in x direction which reaches a peak at the height of the cone base. As a con-
sequence, the mean effective stresses decrease in this region as shown in Figure 6.34 — in
contrast to computations with the Tresca model which prohibits any change of the effec-
tive mean stress. As shown in Figure 6.37, deviatoric stresses decrease with decreasing
effective mean stresses. These stress paths correspond to soil yielding in a critical state:
stress states in this region follow the critical state line. They do not correspond to triaxial
compression nor triaxial extension here as also shown in Figure 6.38.

Clearly, with the AUC model, in contrast to the computation with the Tresca model,
the tip resistance is not entirely determined through triaxial compression. Such loading
is with the AUC model confined to a wedge below the cone. As shown in Figure 6.37,
soil yields in the vicinity of the cone at deviatoric stresses as low as 3 kPa which explains
the lower tip resistance found with the AUC model.
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Figure 6.40: Evaluation of stress states on the yield surface in the vicinity of the cone:
(left) Gauss point stresses plotted in p′-q∗-plane; (right) projection of Gauss
point stresses onto the deviatoric plane for computations with the AUC
model; stress states of triaxial compression are colored black, other stress
states are colored green)
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Chapter 7

Conclusions

A new numerical approach has been presented for quasi-static analyses of geotechnical
problems involving large deformations of soil. Existing MPM codes are based on explicit
time integration using a mass matrix, whereas the new quasi-static MPM code is based
on implicit time integration. Several other novel extensions were made to the Material
Point Method in order to improve the applicability and accuracy of the method.

• Material point based integration over finite elements has been successfully ex-
tended by Gaussian integration.

• In order to accomodate for the accurate application of boundary conditions, a mesh
adjustment scheme has been devised. Instead of resetting the mesh at the end of
a load step to its initial configuration, the mesh follows the movement of a rela-
tively stiff structure such as a retaining wall. Thereby, boundaries of the structure
coincide throughout the computation with boundaries of finite elements.

• The insertion and removal of (virtual) material points has been introduced to the
method in order to ensure an even distribution of material points within a solid
body.

• So far, most implementations of the MPM are based on regular finite element grids.
For complex structures, being represented by a cloud of material points within a
grid, this would require a special CAD-type preprocessor. On the other hand, ex-
isting user-friendly preprocessors can be used in combination with non-regular
and non-structured finite element meshes. Furthermore, the use of non-structured
meshes allows for local mesh refinement. Therefore, the presented MPM formula-
tion applies to structured as well as non-structured meshes. Prismatic and tetrahe-
dral low-order as well as high-order elements are considered.

• Interface elements are of great importance for analysing the interaction between
soil and structures such as piles. In this study, interface elements commonly used
in conventional small-strain FEM have been extended to simulate slip between soil
and structure. They proved to be easy-to-use and to provide accurate results.

The quasi-static MPM can be used in combination with the 3D Plaxis-GiD pre-pro-
cessor and a Plaxis 3D post-processor. Within this study, the post-processing application
has been extended for visualisation of material point data. Moreover, mapping of state
parameters from material points to nodes has been added to the post-processor for the
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generation of shaded plots of stresses and other state parameters. In combination with
the pre- and post-processor, the quasi-static MPM provides ample and relatively easy-
to-use means for investigating three-dimensional geomechanical problems. It allows
to investigate problems such as the simulation of on- and off-shore foundation tech-
niques, the jacking of piles, the installation of bucket foundations and spudcans. Like-
wise, longterm deformation processes of soil, for example of slopes, can be investigated
with this method.

Certainly, various possibilities exist to further broaden the applicability of the devel-
oped method. The following works seem to render at present the most obvious improve-
ments:

• As yet, multi-layered soil has not been considered. This would at first require to
assess possible approaches with regard to numerical accuracy.

• At present, interface elements can only be used with rigid structures. Extending
the present implementation to accomodate for deforming structures requires re-
finement of the available mesh adjustment scheme.

• Parallelisation of the code would allow to greatly reduce the required computa-
tional time.

Application of the implemented quasi-static MPM to a series of benchmark prob-
lems proves that the presented method allows accurate simulations of large deforma-
tion problems. A deforming cantilever beam and slope have been analysed as well as a
retaining wall and a block sliding across a flat surface.

Furthermore, the quasi-static MPM has been validated through the simulation of cone
penetration testing. The relationship between cone tip resistance and the strength of
undrained clay has been investigated. Results of analyses based on the Tresca model
comply well with results reported by Van den Berg [55] and in great detail with a cor-
relation assembled by Lu et al. [39]. The obtained results show that effective and total
stress analyses render both approximately the same cone factors, at least for undrained
Poisson ratios above a value of 0.49. Beyond validation of the quasi-static MPM, the per-
formed effective stress analyses provide new insight into the generation of excess pore
pressures during cone penetration.

In a computation with the new AUC model, the load-type dependency of the un-
drained shear strength as well as the strength anisotropy of natural clay are taken into
account. Results obtained with the AUC model indicate that the failure mechanism rele-
vant for cone penetration in undrained clay differs significantly from predictions based
on the Tresca and Mohr-Coulomb model. However, the cone factor obtained for a refer-
ence computation with the Tresca model agrees well with results from the AUC model.
Hence, the Tresca model seems well suited for determining cone factors for normally-
consolidated undrained clays, provided the cone factors are related to an undrained
shear strength for simple shear.
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Apart from the Tresca model, the Von Mises yield criterion might be used for such
CPT analyses. However, when fitting the Von Mises to the Tresca yield surface so that
the yield stress coincides for triaxial compression and extension, the Von Mises model
will give larger cone factors. For a proper cone factor, the Von Mises criterion should be
matched to the Tresca yield criterion in the case of simple shear. In order to obtain this,
the Von Mises tensile strength, σtension, should be equal to

√
3 su,Tresca.

Certainly, further numerical analyses are necessary to deepen the understanding of the
mechanical processes that occur during cone penetration testing. It would be important
to investigate cone penetration in overconsolidated clays since the overconsolidation ra-
tio has a considerable influence on the undrained shear strength of clay. It would seem
that the AUC model is not only suited for normally-consolidated but also for overcon-
solidated clays. This work would allow to identify for given soil parameters of strength
and stiffness the relationship between cone tip resistance and undrained shear strength
as a function of OCR, as suggested by Vermeer 2010. Formulating such a relation would
simplify the analyses of geotechnical problems involving undrained clay and increase
their reliability.
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[67] Z Więckowski, SK Youn, and JH Yeon. A particle–in–cell solution to the silo dis-
charging problem. International Journal for Numerical Methods in Engineering, 45(9):
1203–1225, 1999. ISSN 1097-0207.

[68] II York, R Allen, D Sulsky, and HL Schreyer. The material point method for simu-
lation of thin membranes. International Journal for Numerical Methods in Engineering,
44(10):1429–1456, 1999. ISSN 1097-0207.

135





Appendix A

Finite element specifications

A.1 Specification of 15-noded prismatic elements
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Figure A.1: 15-noded prismatic element: (top) local numbering and positioning of nodes;
(bottom left) of Gaussian integration points; (bottom right) initial positioning
of material points
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Appendix A Finite element specifications

The shape functions Ni of the 15 nodes and the interpolation functions Hj used to
map data from the 6 Gaussian integration points to material points are as follows. The
indices relate to the local numbering of nodes, Gaussian integration points respectively,
as specified in Figure A.1.

N1 = − (1 − ξ − η) (1 − ζ) (2 ξ + 2 η + ζ) / 2

N2 = −ξ (1 − ζ) (2 − 2 ξ − ζ) / 2

N3 = −η (1 − ζ) (2 − 2 η + ζ) / 2

N4 = − (1 − ξ − η) (1 + ζ) (2 ξ + 2 η − ζ) / 2

N5 = −ξ (1 + ζ) (2 − 2 ξ + ζ) / 2

N6 = −η (1 + ζ) (2 − 2 η − ζ) / 2

N7 = (1 − ξ − η) ξ (1 − ζ) 2

N8 = ξ η (1 − ζ) 2

N9 = η (1 − ξ − η) (1 − ζ) 2

N10 = (1 − ξ − η) (1 − ζ) (1 + ζ)

N11 = ξ (1 − ζ) (1 + ζ)

N12 = η (1 − ζ) (1 + ζ)

N13 = (1 − ξ − η) ξ (1 + ζ) 2

N14 = ξ η (1 + ζ) 2

N15 = η (1 − ξ − η) (1 + ζ) 2
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A.1 Specification of 15-noded prismatic elements

Gauss points ξ η ζ Weight ω

1 1/6 2/3 −1/
√
3 1/6

2 1/6 1/6 −1/
√
3 1/6

3 2/3 1/6 −1/
√
3 1/6

4 1/6 2/3 1/
√
3 1/6

5 1/6 1/6 1/
√
3 1/6

6 2/3 1/6 1/
√
3 1/6

Material points

1 1/9 1/9 −1/2 1/18
2 2/9 2/9 −1/2 1/18
3 4/9 1/9 −1/2 1/18
4 1/9 4/9 −1/2 1/18
5 5/9 2/9 −1/2 1/18
6 2/9 5/9 −1/2 1/18
7 4/9 4/9 −1/2 1/18
8 7/9 1/9 −1/2 1/18
9 1/9 7/9 −1/2 1/18
10 1/9 1/9 1/2 1/18
11 2/9 2/9 1/2 1/18
12 4/9 1/9 1/2 1/18
13 1/9 4/9 1/2 1/18
14 5/9 2/9 1/2 1/18
15 2/9 5/9 1/2 1/18
16 4/9 4/9 1/2 1/18
17 7/9 1/9 1/2 1/18
18 1/9 7/9 1/2 1/18

Table A.1: Local coordinates and weights of Gaussian integration points and initial local
coordinates and weights of material points for 15-noded prismatic elements
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Appendix A Finite element specifications

A.2 Specification of 10-noded tetrahedral elements
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Figure A.2: 10-noded tetrahedral element: (top) local numbering and positioning of
nodes; (bottom left) of Gaussian integration points; (bottom right) initial po-
sitioning of material points
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A.2 Specification of 10-noded tetrahedral elements

The shape functions Ni of the 10 nodes and the interpolation functions Hj used to
map data from the 4 Gaussian integration points to material points are as follows. The
indices relate to the local numbering of nodes, Gaussian integration points respectively,
as specified in Figure A.2.

N1 = (1 − ξ − η − ζ) (1 − 2ξ − 2η − 2ζ)

N2 = ζ (2ζ − 1)

N3 = ξ (2ξ − 1)

N4 = η (2η − 1)

N5 = 4ζ (1 − ξ − η − ζ)

N6 = 4ξζ

N7 = 4ξ (1 − ξ − η − ζ)

N8 = 4η (1 − ξ − η − ζ)

N9 = 4ηζ

N10 = 4ξη

H1 = 5
√
5

(

3

20
+

1

20
√
5

)

−
√
5 ξ −

√
5 η −

√
5 ζ

H2 = 5
√
5

(

− 1

20
+

1

20
√
5

)

+
√
5 ζ

H3 = 5
√
5

(

− 1

20
+

1

20
√
5

)

+
√
5 ξ

H4 = 5
√
5

(

− 1

20
+

1

20
√
5

)

+
√
5 η
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Appendix A Finite element specifications

Gauss points ξ η ζ Weight ω

1 1/4 − 1/20
√
5 1/4 − 1/20

√
5 1/4 − 1/20

√
5 1/24

2 1/4 − 1/20
√
5 1/4 − 1/20

√
5 1/4 + 3/20

√
5 1/24

3 1/4 + 3/20
√
5 1/4 − 1/20

√
5 1/4 − 1/20

√
5 1/24

4 1/4 − 1/20
√
5 1/4 + 3/20

√
5 1/4 − 1/20

√
5 1/24

Material points

1 1/4 − 1/20
√
5 1/4 − 1/20

√
5 1/4 − 1/20

√
5 1/60

2 1/4 − 1/20
√
5 1/4 − 1/20

√
5 1/4 + 3/20

√
5 1/60

3 1/4 + 3/20
√
5 1/4 − 1/20

√
5 1/4 − 1/20

√
5 1/60

4 1/4 − 1/20
√
5 1/4 + 3/20

√
5 1/4 − 1/20

√
5 1/60

5 1/4 − 1/20
√
5 1/4 − 1/20

√
5 1/4 + 1/20

√
5 1/60

6 1/4 + 1/20
√
5 1/4 − 1/20

√
5 1/4 − 1/20

√
5 1/60

7 1/4 − 1/20
√
5 1/4 + 1/20

√
5 1/4 − 1/20

√
5 1/60

8 1/4 + 1/20
√
5 1/4 − 1/20

√
5 1/4 + 1/20

√
5 1/60

9 1/4 − 1/20
√
5 1/4 + 1/20

√
5 1/4 + 1/20

√
5 1/60

10 1/4 + 1/20
√
5 1/4 + 1/20

√
5 1/4 − 1/20

√
5 1/60

Table A.2: Local coordinates and weights of Gaussian integration points and initial local
coordinates and weights of material points for 10-noded tetrahedral elements
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A.3 Specification of 4-noded tetrahedral elements

A.3 Specification of 4-noded tetrahedral elements
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Figure A.3: 4-noded tetrahedral element: (top) local numbering and positioning of
nodes; (bottom left) of Gaussian integration points; (bottom right) initial po-
sitioning of material points

The shape functions Ni of the 4 nodes are as follows. The index relates to the local
numbering of nodes as specified in Figure A.3.

N1 = (1 − ξ − η − ζ)

N2 = ζ

N3 = ξ

N4 = η

The initial locations and weights of the 4 material points coincide with those of the
Gaussian integration points of the 10-noded tetrahedral element.

Gauss point ξ η ζ Weight ω

1 1/4 1/4 1/4 1/6

Table A.3: Local coordinates and weight of the Gaussian integration point for 4-noded
tetrahedral elements
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Appendix A Finite element specifications

A.4 Specification of 6-noded interface elements
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Figure A.4: 6-noded interface element: (left) local numbering and positioning of nodes
and (right) of Newton-Cotes integration points

The shape functions of the 6 nodes are as follows. The index relates to the local num-
bering of nodes as specified in Figure A.4.

N1/2 = (1 − ξ − η)

N3/4 = ξ

N5/6 = η

Evaluation of the shape functions at the location of integration points gives

N1/2(IP1) = 0 N1/2(IP2) = 1 N1/2(IP3) = 0

N3/4(IP1) = 0 N3/4(IP2) = 0 N3/4(IP3) = 1

N5/6(IP1) = 1 N5/6(IP2) = 0 N5/6(IP3) = 0

Integration points ξ η Weight ω

1 0.0 1.0 1/6
2 0.0 0.0 1/6
3 1.0 0.0 1/6

Table A.4: Local coordinates and weights of Newton-Cotes integration points for 6-
noded interface elements [48]
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A.4 Specification of 6-noded interface elements
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Figure A.5: Determination of the normal vector of interface elements

Computation of the normal vectors and integration weights of interface elements At
first, the normal vector of an interface element is determined as illustrated in Figure A.5
for an element number 1. Because the geometry of interface elements having no real
width corresponds to the one of triangular elements, the normal vector n1 can be deter-
mined from the vectors s1 and t1 tangential to the element surface by means of

n1 = s1 × t1 (A.1)

where the tangential vectors can be computed from

s1 =

nnodes
∑

j=1

∂Nij

∂ξ
xj t1 =

nnodes
∑

j=1

∂Nij

∂η
xj (A.2)

Here, nnodes denotes the number of nodes j of one element face, xj are the coordinates of
node j and Nij is the shape function value of node j evaluated at a point i.

The weight of an integration point i is then computed from the norm of the normal
vector and the integration weight ωi by

∆Si = ωi |n1 | (A.3)

Curved slip surfaces are taken into account by adjusting the normal vectors at interface
dual nodes and thus Newton-Cotes integration points. This is done by computing a
new normal vector nres at each interface node as the norm of the resultant of the normal
vectors of all interface elements connected to a considered node.
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