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Preface

In 1936 Casagrande subjected sand samples to continuous shearing and found that all
samples would asymptotically reach a so-called critical porosity independent of the ini-
tial porosity of the samples. Since then this finding played a significant role in under-
standing soil behaviour and in constitutive modelling of large soil deformation. Large
deformations also occur in shear bands so that the concept of a critical state is also rel-
evant of studies on shear banding. In fact, large deformations are always connected to
shear banding and it is difficult to measure average porosities of shear bands. For this
reason, both experimental data and the concept of critical state have been questioned. It
would seem that this question can only be answered by micro-mechanical investigations
as reported in the manuscript under review. Originally the Discrete Element Method
was applied to circular discs, but it is now applied to assemblies of highly anisotropical
polygons with aspect ratios up to 2.3. For such assemblies one defines not only the fabric
tensor for contact points, but also the inertia tensor for the direction of the particles.

Chapter 4 is for sure the scientific kernel of this thesis, as it concentrates on the in-
fluence of anisotropic particle shapes on the global mechanical behaviour of granular
material. For anisotropic particles, it is shown that a critical state cannot be reached in
biaxial tests with strains up to 40 %. In order to allow for larger deformations numerical
simulations are carried out for a simple shear test. In these simulations a critical void
ratio is obtained for relatively low shear strains independent of the original orientations
of the anisotropic particles.

An interesting finding concerns the principal stress direction. Independent of the par-
ticle shapes a principal stress direction of about 45◦ is found at critical state, which im-
plies full coaxiality with the applied strain rate.

Finally solid proof on the existence of a critical state in granular material is given, even
for highly anisotropic particles. On top of that numerical procedures within the Discrete
Element Method are critically reviewed and significantly improved.

Stuttgart, 6th of June 2008
Prof. Dr.-Ing. P. A. Vermeer
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Abstract

Granular soils exhibit under loading a complex macro-mechanical behavior, which is a
result of the discrete character of the media. This macro-mechanical response depends
on the grains themselves, on the evolution of the granular structure and on phenomena
occurring at the grain scale. This global response also involves the existence of the so-
called asymptotic stress-strain states, which are independent of the initial state of the
material. Different methods have been developed in order to predict and understand
soil behavior. One of the most common approaches is the Finite Element Method (FEM),
which requires as input a constitutive relation between stress and strain. However, one
of the fundamental drawbacks with these relations is that they involve parameters that
either lack of physical meaning or might be very difficult to calibrate with experimental
data [1].

Numerical simulations using the discrete element method (DEM) have become a prom-
ising tool in the study of granular materials [2, 3]. In DEM the mechanical response
of the media is obtained by modeling the interactions between the individual particles
as a dynamic process and by using simple mechanical laws in these interactions. The
DEM permits to study and understand phenomena occurring at the grain scale level
and thus allows one to study and understand the related global response of the media.
Furthermore, it enables to take into account other properties such as particle shape, size
distribution, cohesion, etc.

In this thesis we use the DEM to investigate two central problems. First, the problem
concerning the existence and uniqueness of the critical state in shear granular packing
and, second, the influence of particle shape anisotropy on their macro-mechanical re-
sponse. We start with a description of the main features of our two-dimensional polygo-
nal DEM model. The existence of the critical state on granular packing and the role of the
deformation patterns on the strain accumulation is then studied by means of numerical
simulations of biaxial test. Subsequently, the influence of anisotropic particle shape on
the overall mechanical response is investigated both through biaxial and periodic shear
cell numerical experiments. Additionally, we study the dependency of the mechanical
behavior on the evolution of inherent anisotropy regarding contact and anisotropic par-
ticle orientations. For the particular case of very slow shear processes, e.g., fault zones,
we also use isotropic and anisotropic polygonal particles to represent the material within
the shear zone. Here we find that the emergence of discrete avalanches with size span-
ning several orders of magnitude is a characteristic feature of the dynamical response
of the system. Finally, we uncover a numerical problem in the DEM related with the
calculation of the tangential force and propose a new approach to improve its numerical
accuracy. The results presented in this thesis provide better comprehension of the role of
particle shape on the macro and micro-mechanical response of granular materials, and
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highlight the need of its proper characterization.
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Zusammenfassung

Das Gebiet der Bodenmechanik beschäftigt sich mit der Klassifizierung, den Eigenschaf-
ten und der Vorhersage des mechanischen Verhaltens von Bodenkörpern. Solche Bo-
denkörper werden in der Geotechnik üblicherweise in kohäsive oder granulare Böden
unterteilt. Während kohäsive Böden im Allgemeinen aus Partikeln bestehen, die durch
lehmartige Mineralien verbunden sind, sind granulare Böden aus losen Teilchen aufge-
baut, zwischen denen nur schwache Wechselwirkungen bestehen [4]. Wir werden uns
im Folgenden mit dieser zweiten Bodenart beschäftigen.

Granulare Böden weisen unter Belastung ein komplexes mechanisches Verhalten auf.
Dieses makromechanische Ansprechverhalten resultiert aus dem diskreten Charakter
dieser Stoffe und hängt von den Körnern selbst, der Entwicklung der granularen Struk-
tur sowie einigen Phänomenen auf der Kornskala ab, wie etwa Rollen und Gleiten.
Diese globale Systemantwort beinhaltet auch die Existenz der so genannten asymptotis-
chen Spannungs-Dehnungs-Zustände, welche vom Anfangszustand des Materials un-
abhängig sind [5, 6].

Einer dieser asymptotischen Zustände, der in der Bodenmechanik betrachtet wird,
ist der so genannte kritische Zustand. Das Verständnis des kritischen Zustandes stellt
eine beträchtliche Herausforderung dar, da er eine zentrale Rolle in der konstitutiven
Modellierung einnimmt. So wird er zum Beispiel zur Definition der Versagenskriterien
und des Verhaltens vieler konstitutiver Modelle nach dem Versagen angewandt [6–11].

Die erste Beschreibung des kritischen Zustandes geht auf die Arbeit von Casagrande
im Jahr 1936 zurück [12]. Er führte Scherversuche an Sandproben durch und bemerkte,
dass das Spannungs-Dehnungs-Verhalten von Sand unter gros̈en Scherdeformationen
einen Grenzzustand erreicht, d.h. ein kritisches Volumen oder eine kritische Poren-
zahl. Dieser Grenzzustand erwies sich als unabhängig von der Anfangsdichte der Probe.
Aus̈erdem deformierte die granulare Probe im kritischen Zustand ohne weitere Volumen-
oder Spannungsänderung, Dehnung und Spannung nahmen somit einen asymptotis-
chen Wert an. Die kritische Porenzahl hängt lediglich vom Druck ab, daher kann eine
so genannte kritische Zustandslinie definiert werden, die die kritische Porenzahl und
das zugehörige kritische Spannungsverhältnis in Beziehung setzt. In den 1960er-Jahren
wurde die Beschreibung des nichtlinearen Verhaltens von Böden mit der Einführung
des triaxialen Tests durch Bishop [13] verbessert. Dies erleichterte die Entwicklung
von elasto-plastischen Bodenmodellen, wie etwa dem Cam-Clay-Modell [14], und die
Etablierung der kritischen Zustandstheorie [6]. Von experimenteller Seite wurde die Ex-
istenz und Eindeutigkeit des kritischen Zustandes unabhängig voneinander durch Cas-
tro et al [15] im Jahre 1975 und durch Verdugo et al. [16] im Jahre 1996 bestätigt. Den-
noch vertreten einige Arbeitsgruppen den Standpunkt, dass ein solcher Zustand von der
Konsolidierungsgeschichte des Sandes abhängt [17], und zweifeln seine Eindeutigkeit
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Zusammenfassung

an [18].

Ein weiterer zentraler Punkt in der Bodenmechanik ist der Einfluss der Teilchenform
auf das mechanische Verhalten granularer Böden. Die Teilchenform hat sich insbeson-
dere für Sand- und Kiesböden als eine wichtige Eigenschaft herausgestellt. Sie beein-
flusst die Festigkeit unter schwacher Belastung, die Komprimierbarkeit, Festigkeitspa-
rameter und die Anisotropie [19–21].

Während die Korngröße und deren Verteilung als wichtige Faktoren für das mecha-
nische Verhalten von Böden anerkannt sind [4, 22, 23], wurde die Rolle der anisotropen
Teilchenform bisher nicht charakterisiert. Weiterhin muss der Zusammenhang zwischen
anisotroper Teilchenform und Anisotropie studiert werden, da die Anisotropie die De-
formierbarkeit, Festigkeit und Permeabilität beeinflusst [21].

In dieser Arbeit werden zwei zentrale Probleme behandelt, die eng miteinander ver-
bunden sind. Einerseits betrachten wir das Problem der Existenz und Eindeutigkeit
des kritischen Zustandes. Andererseits studieren wir den Einfluss der Teilchenforman-
isotropie auf die makromechanische Reaktion einer gescherten granularen Packung. Hi-
erbei verwenden wir Diskrete-Elemente-Modelle (DEM) granularer Böden, wobei die
globale Reaktion stark vom diskreten Charakter des Mediums abhängt. Die DEM er-
laubt es uns Phänomene zu verstehen, die auf der Skala der einzelnen Teilchen entste-
hen. Dadurch ist ein umfangreiches Verständnis der zugehörigen globalen Reaktionen
des Mediums möglich.

In der Regel verwenden diskrete Modelle Scheiben [2, 26–28] oder Kugeln [3, 29, 30].
In unserem Fall werden die einzelnen Körner jedoch durch zufällig generierte konvexe
Polygone repräsentiert, so dass wir den Einfluss der Teilchenform studieren können.
Mit Hilfe von Polygonen können die zwei wesentlichen Skalen der Ungleichmäßigkeit
der Teilchenform, die auf der Größenordnung des Teilchendurchmessers existieren, re-

(a) (b)

Figure 0.1: Charakteristische Teilchenformen von natürlichem Material: (a) “Spheric-
ity” und “roundness” Diagramm, wie es zur Klassifizierung der Teilchen-
form verwendet wird [24]. (b) Natürlicher Quarzsand aus vier Metern Tiefe
(Hwange-Nationalpark, Zimbabwe) [25].
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produziert werden: die “Spherizität” (Formanisotropie) und die “Kantigkeit” (siehe
Abb. 0.1).

Daher erlaubt unser Partikelmodell nicht nur die Darstellung der Haupteigenschaften
einer granularen Packung, wie bspw. Elastizität, strukturelle Anisotropie, Reibung,
“stick-slip”, sondern behandelt ebenfalls den wichtigen geometrischen Einfluss der Teil-
chenform und erlaubt so eine realistischere Modellierung von Böden.

Diese Arbeit ist wie folgt aufgebaut: In Kapitel 2 führen wir die Hauptmerkmale un-
seres zweidimensionalen DEM Modells für Polygone ein. Das Verfahren zur Gener-
ierung anisotropischer Polygone und Kriterien zur Wahl des Integrationsschritts für die
numerische Simulation werden beschrieben.

In Kapitel 3 führen wir Simulationen von biaxialen Tests durch, um die Existenz des
kritischen Zustandes und die Verformungsstrukturen der Polygonpackung unter mono-
toner Belastung zu studieren. Charakteristisch für die Verformung in granularen Ma-
terialien sind die Drehung und das Rollen von Teilchen [31–33], das Abrutschen an
Kontakten [34, 35], sowie die Bildung von Scherb”andern [26, 36, 37]. Wir betrachten
kleine [38] und große Scherverformungen [39]. Für kleine Verformungen studieren wir
anfängliche Lokalisierungen der Belastung und/oder die Bildung von Scherbändern,
sowie die zugehörigen Mikrovorgänge. Wir finden einen direkten Zusammenhang zwis-
chen Belastung und der Anzahl rutschender Kontakte und Teilchenrotationen. Für große
Verformungen studieren wir die Entwicklung des kritischen Zustandes. Wir zeigen mit
Hilfe von numerischen Simulationen, dass die granularen Medien einen Grenzzustand
erreichen, in dem eine kritische Menge von Leerräumen existiert und in dem bei Verfor-
mungen Volumen und Deviatorspannung konstant sind. Die Existenz und Eindeutigkeit
des kritischen Zustandes ist in Abb. 0.2 für unterschiedliche Anfangsdichten und Belas-
tungszustände dargestellt.

Im kritischen Zustand ist die dynamische Systemantwort von Spannungsfluktuatio-
nen geprägt, die aufgrund von Reibungsinstabilitäten auftreten. Die Spannungsfluktu-
ationen, die mit Kraftketten in Verbindung gebracht werden können, sorgen dafür, dass
die Gleitbedingung an den Kontakten nicht mehr erfüllt ist, und bringen das System
temporär in einen stabilen Zustand. Ein ähnliches Verhalten wurde in Experimenten
mit Glaskugeln beobachtet, sowohl unter Scherung [40] als auch bei uniaxialer Kom-
pression [41]. Die durch abwechselndes Einrasten und Gleiten geprägte Bewegung in
granularen Packungen ist insbesondere aufgrund der Analogie zur Erdbebendynamik
interessant [42, 43].

Ferner untersuchen wir die Abhängigkeit der Systemantwort des granularen Medi-
ums von der zwischen den Partikeln wirkenden Reibungskraft. Für verschwindende
Reibungskoeffizienten zwischen den Teilchen zeigt das System einen kleinen, aber be-
deutsamen Scherwiderstand. Wir können daher sagen, dass die Reibung zwischen den
Partikeln nicht der einzige Ursprung des makroskopischen Reibungsverhaltens granu-
larer Materialien darstellt. Diese Erkenntnis deckt sich mit der Vorstellung von nicht-
lokalem Verhalten granularer Packungen, wobei das makroskopische mechanische Ver-
halten nicht nur auf Phänomene zurückgeht, die auf der Skala der Kontakte auftreten,
sondern auch auf die Anordnung auf der mesoskopischen Skala, wie zum Beispiel Struk-
turentwicklung [44] und Kraftketten [45–47].
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Figure 0.2: Kritische Zustandslinie in der Kompressionsebene: Porenzahl - Durch-
schnittsbelastung p′, (b) Belastungsebene: Deviatorspannung q - Durch-
schnittsbelastung p′ und (c) (F11 − F22) - Durchschnittsbelastung p′. System-
parameter: N = 900 Teilchen, Reibungskoeffizient µ = 0.5. Die Quadrate in
(a) verdeutlichen den Anfangszustand der Proben. In (a), (b) und (c) sind die
Werte im stationären Zustand durch Kreise gegeben, und die Fehlerbalken
entsprechen der Standardabweichung der analysierten Daten.

In Kapitel 4 simulieren wir das mechanische Verhalten von anisotropen Teilchen in
einer biaxialen Kammer und in einer periodischen Scherzelle. Wir konzentrieren uns auf
den Einfluss der Partikelformanisotropie auf die mechanische Systemantwort. Wir un-
tersuchen die Abhängigkeit des mechanischen Verhaltens von der Entwicklung inhaer-
enter Anisotropie in Bezug auf die Orientierung von Kontakten und von anisotropen
Partikeln. In biaxialen Kompressionsversuchen wird der kritische Zustand nicht erre-
icht, weil auf der mikromechanischen Ebene Struktur- und Partikelorientierungen nicht
zu einem konstanten Wert konvergieren. In der periodischen Scherzelle zeigen die Re-
sultate auf der makroskopischen Ebene, dass für Proben mit anisotropen Teilchen sowohl
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Figure 0.3: Entwicklung der Hauptrichtung von Struktur- (a), Trägheits- (b) und Span-
nungstensor (c) für isotrope Teilchen (λ = 1.0) und anisotrope Teilchen (λ =
2.3), die ursprünglich in horizontaler (H) und vertikaler (V) Richtung orien-
tiert sind.

für die Scherkraft als auch für die Porenzahl bei großen Scherdeformationen unabhängig
von der Anfangsorientierung der Teilchen derselbe kritische Wert erreicht wird [48].
Dieser stationäre Zustand ähnelt dem sogenannten kritischen Zustand in der Boden-
mechanik. Auf den in den Kapiteln 3 und 4, vorgestellten Resultaten unserer numeri-
schen Simulationen aufbauend wird die Eindeutigkeit des kritischen Zustands in der
Bodenmechanik verifiziert, und er stellt sich als unabhängig von der gewählten An-
fangsbedingung der Spannungsverteilung und Partikelformcharakteristik heraus. Auf
mikromechanischer Ebene erreichen die Komponenten des Spannungstensors, des Struk-
turtensors und des Trägheitstensors der Teilchen ebenfalls denselben stationären Zu-
stand. Im Fall isotroper Teilchen ist die Orientierung der Struktur abhängig von der
Hauptrichtung des Spannungstensors, während für anisotrope Teilchen die Strukturor-
ientierung durch die Partikelorientierung bestimmt wird, wie es in Abb. 0.3 dargestellt
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ist.
Bezüglich Deformationslokalisierung und Teilchenrotation haben wir beobachtet, dass

die Breite der Scherzone und die akkumulierte Rotation für isotrope Teilchen größer
ist als für anisotrope. Dieses Ergebnis kann durch die Hemmung der Rotation erklärt
werden, die anisotrope Teilchen aufgrund stärkerer Verzahnung untereinander erfahren,
und kann deutlich anhand der Wahrscheinlichkeitsverteilung des Rotationswinkels, um
den sich die Teilchen während der Scherung gedreht haben, beobachtet werden. Die
charakteristischen Moden, mit welchen anisotrope Teilchen Rotation akkumulieren, sind
Vielfache von π rad.

Die Anisotropie der Teichen ist durch das Aspektverhältnis λ zwischen dem größten
und kleinsten Teilchendurchmesser gegeben. Durch Variation des Aspektverhältnisses
kamen wir zu den folgenden Schlussfolgerungen über die Parameter, die die granulare
Packung im kritischen Zustand erreicht. Je größer die Anisotropie λ der Partikel,. . .

• . . . um so größer die Festigkeit des Materials im kritischen Zustand.

• . . . um so größer die Porenzahl im kritischen Zustand, und somit auch die vol-
umetrische Deformation.

• . . . um so größer die Koordinationszahl Z der Teilchen. Für λ > 2.3 sättigt der
Z-Wert und bleibt konstant.

• . . . um so größer die strukturelle Anisotropie im kritischen Zustand.

• . . . um so größer die Anisotropie der Teilchenorientierung im kritischen Zustand.

• . . . um so kleiner der mittlere akkumulierte Rotationswinkel 〈Θ〉.

• . . . um so länger die notwendige Zeit, um das mikromechanische Gleichgewicht in
der Orientierung von Struktur und Teilchen zu erreichen.

Um die Reibungsinstabilitäten, die im kritischen Zustand beobachtet wurden, genauer
zu untersuchen, benutzen wir unser Modell mit polygonen Teilchen, um den sehr lang-
samen Scherprozess, wie er zum Beispiel bei Erdbebenverwerfungen auftritt, zu simulie-
ren. Das Material in der Erdbebenstörung, der Gouge, hat starke Auswirkungen auf die
Dynamik des Erdbebens, da man vermutet, dass es die Reibungsinstabilitäten, die den
Erbebenprozess charakterisieren, bestimmt [49]. In Kapitel 5 verwenden wir isotrope
und anisotrope polygone Teilchen zur Modellierung des Gouge. Wir modellieren die
Verwerfungszonen durch Transform-St”orungen, das bedeutet, dass die Ränder der tek-
tonischen Platten parallel zur Richtung orientiert sind, in welcher sich die tektonischen
Platten bewegen [50, 51]. Diskrete Lawinen, deren Größe sich über mehrere Größenord-
nungen erstreckt, charakterisieren die dynamische Antwort des Systems. Dieses Ver-
halten deckt sich mit dem crackling noise physikalischer Systeme, welche durch diskrete
Ereignisse unterschiedlicher Größe auf äußere Störungen reagieren [52].

Die Verteilung der Größe der Lawinen in unseren numerischen Simulationen stimmt
gut mit dem Gutenberg-Richter-Gesetz, welches die Verteilung bei natürlichen Erdbeben
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Zusammenfassung

beschreibt, überein [53]. Die Verteilung gilt für sechs Größenordnungen und ist un-
abhängig von der Teilchenform (siehe Abb. 0.4). Wir stellen fest, dass die Anzahl der
Ereignisse nach einem Hauptschock mit dem Kehrwert der Zeit, also ähnlich wie beim
Gesetz von Omori [54], abnimmt. Die Wartezeiten von Nachschocksequenzen zeigen
ein Potenzverhalten (siehe Abb. 0.5). Das wichtigere Ergebnis bezüglich des Einflusses
der Form der anisotropen Teilchen auf die Systemdynamik ist aber, dass der Expo-
nent des Potenzgesetzes von der ursprünglichen Probenkonfiguration und damit von
der Teilchenformanisotropie abhängt. Anisotrope Proben mit Teilchen, die entlang der
Scherrichtung orientiert sind, zeigen eine größere zeitliche Stabilität. Diese größere
Stabilität kommt von der Hemmung von Deformationsmoden wie Rollen und Behin-
derung der Teilchenrotation. Auf makroskopischer Skala ist es daher möglich, die An-
wesenheit von anisotropen Teilchen durch die zeitliche Verteilung von Ereignissequen-
zen zu überprüfen. Außerdem haben wir die Steifigkeit und die Reibungsstärke, welche
das granulare System beim Entfestigen entwickelt, untersucht. Wir berechneten die
Wahrscheinlichkeit einer Lawine und beobachteten, dass diese exponentiell mit der Stei-
figkeit abnimmt. Der Exponent ist dabei von der Teilchenformanisotropie abhängig.
Anisotrope Proben zeigen aufgrund ihrer größeren mechanischen Stabilität einen grö-
ßeren Steifigkeitsbereich, bevor eine Lawine auftritt. Die Reibung bei anisotropen Proben
ist größer als bei isotropen; anisotrope Proben zeigen außerdem bei gleicher Reibung
eine niedrigere Entfestigungs-Wahrscheinlichkeit. Einige mikromechanische Eigenschaf-
ten, welche als Vorboten von Lawinen gesehen werden können und eventuell auch ihr
Auftreten erklären können, werden diskutiert.

In Kapitel 6 führen wir eine detaillierte Untersuchung der Grenzen für den Integra-
tionsschritt der Diskreten-Element-Methode bei der Simulation von Kollision und Sche-
rung von granularen Packungen durch. Konkret studieren wir dabei die Dynamik des
Systems während der Relaxationsphase und zeigen, dass noch nicht garantiert werden
kann, dass das System numerisch konvergiert, wenn man die obere Grenze für den In-
tegrationsschritt, wie allgemein ”ublich, durch die durchschnittliche Kontaktdauer fest-
setzt [55]. Wir finden heraus, dass der Integrationsschritt deutlich kleiner gesetzt wer-
den muss, als allgemein angenommen wird [56–58], um die Konvergenz des numeri-
schen Schemas zu gewährleisten. Wir zeigen, dass der Wert der oberen Grenze für den
Integrationsschritt sehr stark vom Ansatz, mit welchem die Tangentialkräfte berechnet
werden, von der durchschnittlichen Kontaktzeit, sowie der Anzahl der Freiheitsgrade
des Systems abhängt. Zum Schluss stellen wir einen Ansatz zur Berechnung der Tan-
gentialkräfte vor, welcher einen deutlich höheren Zeitschritt ermöglicht und dennoch
die Konvergenz des numerischen Integrationsschemas sicherstellt [59].

Im letzen Kapitel werden die Hauptergebnisse dieser Doktorarbeit zusammengefasst.
Außerdem werden offene Fragen diskutiert und ein Ausblick auf mögliche weiterführen-
de Arbeiten gegeben.

xii



Chapter 1

Introduction

1.1 Motivation

Soil mechanics deals with the classification, properties and prediction of the mechani-
cal behavior of soil bodies. Geotechnical engineers often classify such soil bodies as
either cohesive or granular soils. While cohesive soils are typically composed of parti-
cles bound together with clay minerals, granular soils are formed from loose particles
having weak inter-particle forces [4]. We will focus on this second type of soils.

Granular materials in general, and granular soils in particular, are ubiquitous in nature
and engineering applications, being a determinant factor in shaping the world we live in.
As illustrated in Fig. 1.1, they are observed in a wide variety of industrial activities such
as mining, agriculture, construction and energy production and also in natural or geo-
logical processes, namely landslide, erosion and tectonic motion [4, 60]. Further, in civil
engineering, most of the infrastructure projects such as buildings, highways, tunnels,
bridges and dams use the granular soil either as foundation to support the structures
or as construction material [23]. In this context, the understanding of the behavior of
granular soils is therefore of utmost importance.

Granular soils exhibit a complex macro-mechanical behavior during loading. This
macro-mechanical behavior is a result of the discrete character of the media and de-
pends on the grains themselves, on the evolution of the granular structure and on some
phenomena occurring at the grain scale such as rolling and sliding. This global response
also involves the existence of the so-called asymptotic stress-strain states, which are in-
dependent of the initial state of the material.

One of the asymptotic states studied in soil mechanics is the so-called critical state.
The understanding of the critical state is a major task since it plays a central role in
constitutive modeling and in engineering applications. For example, it is used to define
the failure criteria and post-failure behavior of many constitutive models [6–11].

The critical state was first described by Casagrande in 1936 [12]. From shear test on
sand specimens he established that the stress-strain behavior of sand under large shear
deformation reaches a limiting state, i.e. a critical volume or critical void ratio. This lim-
iting state was independent of the initial density of the samples. Additionally, in the
critical state the granular sample deformed without further volumetric and stress incre-
ments, namely strain and stress attained an asymptotic value. In the 60’s, the non-linear
behavior of soils was further characterized due to the development of the triaxial test
by Bishop [13]. This lead to the development of elasto-plastic soil models such as the
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(a) (b)

(c) (d)

Figure 1.1: Granular materials are present in a wide variety of industrial and natural/-
geological processes such as (a) Mining, Yanacocha project, Perú, the world’s
largest gold mine [61] (b) Construction, Corin Dam, earth and rockfill embank-
ment dam [62], (c) Landslides, la Conchita landslide in California 1995 [63],
and (d) Tectonic motion, San Andreas Fault in California, US [64].

Cam-Clay model [14] and the stablishment of the Critical State Theory [6]. In these mod-
els, the soil response was described in terms of an initial elastic behavior followed by
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yielding, in which the soil reaches an ultimate critical state of unlimited shearing with-
out changes in volume or effective stress. The critical void ratio is only dependent on
the confining pressure, and thus the so-called critical state line relating the critical void
ratio and the corresponding critical stress ratio can be defined. Experimentally, the exis-
tence and uniqueness of the critical state has been independently proven by Castro and
co-workers [15] in 1975 and by Verdugo et al. [16] in 1996.

Another central issue in soils mechanics is the influence of particle shape on the me-
chanical behavior of granular soils. Particle shape has emerged as a significant soil prop-
erty, particularly in sands and gravels, affecting small-strain stiffness, compressibility,
strength parameters and anisotropy [19–21]. However, while usually grain size and size
distribution are widely recognized as important factors for the mechanical behavior of
soils [4, 22, 23], up to now the role of anisotropic particle shape is not as well studied.
The relationship between anisotropic particle shape and anisotropy has to be evaluated,
since anisotropy affects properties such as deformation, strength and permeability [21].

Casagrande and Carrillo [65] distinguished between inherent and induced anisotropy,
as a result of the sedimentation of particles and as a product of inelastic deformation,
respectively. Oda et al. [66] and Oda and Nakayama [67] listed three sources for the in-
herent anisotropy: (i) anisotropic distribution of contacts or fabric anisotropy, also called
structural anisotropy, (ii) shape and preferred orientation of void spaces and (iii) shape of
the particles and preferred orientation of non-spherical ones. The complete alteration of
inherent anisotropy due to types (i) and (ii) during early stages of inelastic deformation
in biaxial compression tests, on two-dimensional assemblies of rods, was also observed
by Oda et al. [66]. They found, however, that the one due to type (iii) was still present
at large deformations. Therefore, it is expected that at the critical state [6, 11], associated
with large shear deformation, the persistence of inherent anisotropy is mainly due to
the orientation of non-spherical particles [68]. The induced anisotropy in flows of non-
spherical particles has been studied, both experimentally and analytically, by Ehrentraut
and Chrzanowska [69]. Experimentally, they observed ordering of the grains (rice) and
flow alignment in shear flow boundary conditions. In addition, they confirmed that
particle geometry hinders the rolling motion and enhances the sliding of the grains. Ex-
perimentally, Bowman and Soga [70] found that the stress-strain and creep response of
fine silica sand is influenced by particle elongation.

The influence of anisotropic particle shape on the mechanical behavior of soils is there-
fore an important and open problem to be addressed in both engineering applications
and the modeling of granular soils [1, 19, 21].

In the context of granular soil models, different methods have been developed in or-
der to predict and comprehend soil behavior. One of the most common approaches is
the Finite Element Method (FEM), where the medium is considered as a continuum, the
equations of continuum mechanics are discretized and boundary value problems can
be solved. This method requires as input a constitutive relation, i.e. a relation between
stress (force transmission) and strain (deformation). Many different constitutive laws
have been proposed in the last decades. There are two fundamental drawbacks with
these relations: either they yield satisfactory results under the experimental conditions
in which they were built up or they involve a large number of parameters, that either lack
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of physical meaning or are very difficult to calibrate with experimental data [1]. Some
constitutive models have attempted to relate grain characteristics to the material param-
eters of the model [71], but there is still much to do concerning the physical meaning of
the parameters and certain behaviors such as hysteresis, creep, ageing and liquefaction.

Numerical simulations using the discrete element method (DEM) have also been a
promising tool in the study of granular materials [2, 3]. In DEM the mechanical response
of the media is obtained by modeling the interactions between the individual particles as
a dynamic process and using simple mechanical laws in these interactions. Furthermore,
particle shape, size distribution, cohesion etc can be taken into account.

The DEM allows us to study and understand the phenomena occurring at the grain
scale level and therefore allows for the consequent comprehension of the related global
response of the media. Remarkable advances using DEM have been achieved in the
field of soil mechanics, e.g., the understanding of the micro-mechanism governing the
response under cyclic loading or granular ratcheting [34], and the study of particle crush-
ing and through it the potential explanation of the plastic yielding and the plastic hard-
ening phenomena [1, 72–74].

Generally, discrete models use discs [2, 26–28] or spheres [3, 29, 30]. The simplicity of
their geometry enables the reduction of the computational time by using simple inter-
action laws. They do not consider, however, the diversity of shapes of the constituent
grains in natural materials and hence none of the scales in particle shape [21, 24]. Particle
shape is classified according to three main scales, namely sphericity or platiness, round-
ness or angularity, and roughness. The first two scales manifest at the scale of the particle
diameter (see Fig. 1.2a), while roughness involves features of smaller scale [21, 75].

1.2 Scope

In this thesis we study two central problems related with each other. On one hand, we
deal with the problem of existence and uniqueness of the critical state. On the other hand
we study the influence of particle shape anisotropy in the macro-mechanical response of
sheared granular packing. To this end, we deal with DEM models of granular soils where
the global response is strongly dependent on the discrete character of the medium.

To take into account the influence of particle shape we represent grains by randomly
generated convex polygons. These reproduce the two principal scales of shape irregular-
ity present at the level of the particle diameter [19, 20, 76]: sphericity (shape anisotropy)
and roundness (angularity) as sketched in Fig. 1.2. Thus, our particle model not only en-
ables the representation of the main features observed in granular packing, such as elas-
ticity, structural anisotropy, friction, stick-slip and loss of energy during collisions, but
also considers the important geometrical effect of particle shape allowing for a more real-
istic soil representation. In particular, we study in this context the stress-strain response,
strain accumulation, and fabric evolution of the granular packing under shearing.

Concerning the critical state some researchers assert that such state depends on the
consolidation history of sand [17] and challenge its uniqueness [18]. In order to assess
the existence and uniqueness of the critical state we undertake a robust program of nu-
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(a) (b)

(d)(c)

Figure 1.2: Particle shape characteristics of granular material (a) Sphericity and round-
ness chart used in practice to evaluate particle shape characteristics [24], (b)
natural quartz sand excavated 4 meters below the ground surface, Hwange
National Park, Zimbabwe [25], (c) natural gravel on a beach in Thirasia,
Greece [77] and (d) crushed gravel with mean size two cm [78].

merical simulations performing biaxial and shear cell tests and using different initial
conditions. We also address the problem of the lack of clear information at the micro-
mechanical level. This concerns the influence of particle shape and the orientation of
anisotropic particles on the evolution of granular soils and the corresponding anisotro-
pic network of contacts towards the critical state. The role of anisotropic particle shape
on the mechanical behavior, i.e. stress-strain response and particle rotation, is also stud-
ied. Further, we investigate the deformation patterns at small and large deformation
stages of the granular packing. The characteristic modes of deformation considered are
rotation and rolling of particles [31–33], contact sliding [34, 35] and localization of strain
in narrow shear bands [26, 36, 37].

At the critical state the granular packing exhibit force fluctuations. These fluctuations
are also observed in monotonic tests on glass bead samples [40] and packing of glass
spheres [79]. Experimental biaxial tests also show evidence of dynamic instabilities at the
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critical state [80]. The force fluctuations are related to the frictional instabilities or stick-
slip motion, study of both are considerably important owing to their potential analogy
with the earthquake dynamics [42].

To further study such frictional instabilities, using our model of polygonal particles
we simulate very slow shearing processes as in the case of earthquake faults, e.g. the
San Andreas Fault presented in Fig. 1.1d. The material within the earthquake fault,
the gouge, has deep implications on the earthquake dynamics, since it is thought to con-
trol the frictional instabilities characterizing the earthquake process [49]. Since numerical
particle models of earthquake fault usually represent the gouge as being composed by
discs [42, 81] or spheres [29], the influence of particle shape on the earthquake is still an
open problem to be addressed. In this thesis, we use isotropic and anisotropic polygons
to study the influence of anisotropic particles as constituent of the gouge on the dynamic
of the granular system under slow shearing.

Finally, from the computational point of view, some additional improvements are in-
troduced into the numerical method. In DEM, depending on the case of study, e.g.
earthquake faults, very small shear rates are required to capture the dynamics of the
real system [42, 81]. In such cases the large integration steps adopted to avoid unrea-
sonable computational effort may introduce new problems such as convergence of the
numerical scheme. The upper limit for the integration step is usually defined on empir-
ical reasoning [56]. We uncover a convergence problem related to the calculation of the
tangential forces, that vanishes by using integration steps much smaller than the upper
limit typically used. We propose a new approach to calculate the tangential force that
allows the use of larger integration steps.

1.3 Overview

This thesis is organized as follows: In Chapter 2, we introduce the main features of our
two-dimensional polygonal DEM model. The procedure to generate anisotropic poly-
gons and the criteria used to select the integration step for the numerical simulation are
discussed.

In Chapter 3, we perform biaxial test simulations on isotropic granular packing to
study the existence of the critical state and the role of the deformation patterns on strain
accumulation under monotonic loading. Two different stages of the deformation are in-
vestigated, namely small [38], and large shear deformations [48]. For small deformation,
we study the first steps of strain localization and/or shear band formation as well as the
related micro-mechanisms. For large deformation, we study the evolution of the granu-
lar packing toward the so-called critical state. We show that in the numerical simulations
the granular media evolve toward a limiting state in which the system reaches a critical
void ratio and deforms with constant volume and deviatoric stress.

At the critical state, the dynamical response of the system is characterized by stress
fluctuations that appear as a consequence of frictional instabilities. The stress fluctua-
tions are related to the force chains collapses that remove the contacts from the sliding
condition and lead the system to a temporal stability. We also investigate the depen-
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dency of the overall response of the media on the interparticle friction. For zero inter-
particle friction coefficient the system presents a small but significant shear strength,
showing that the interparticle friction is not the unique cause of the macroscopic fric-
tional behavior of granular materials. This supports the idea the nonlocal behavior of
granular assemblies.

In Chapter 4, we focus on the influence of anisotropic particle shape on the overall
mechanical response. Biaxial and periodic shear cell experiments are performed. The
dependency of the mechanical behavior on the evolution of inherent anisotropy regard-
ing contact and anisotropic particle orientations is studied. We find an important influ-
ence of the particle shape anisotropy on the evolution of the stress-strain response, on
the evolution of the anisotropic contact network, on the time for the system to reach the
asymptotic state, and on the particle rotation.

In the periodic shear cell, the results at macro-mechanical level show that for large
shear deformations samples with anisotropic particles reach the same critical value for
both shear force and void ratio independent of their initial orientations [48]. At the
micro-mechanical level the components of the stress, the fabric and the inertia tensors
of the particles also attain the same stationary state. This is stated as a micromechanical
requirement for the system to attain the critical state at the macro level.

In Chapter 5, we mimic fault zones with transform boundaries, i.e. the boundaries of
the tectonic plates are parallel to the direction along which the tectonic plates move [50,
51]. Isotropic and anisotropic polygonal particles are used to represent the gouge. Dis-
crete avalanches with size spanning several orders of magnitude characterize the dy-
namical response of the system. This behavior is in agreement with the crackling noise
of physical systems, in which the response of the system to the external conditions is
given by discrete events of a variety of sizes [52].

The distribution of the magnitude of the avalanches in our numerical simulations is
in good agreement with the Gutenberg-Richter law describing the distribution of nat-
ural earthquakes [53]. We find that the number of events after a mainshock decrease
with the inverse of time similar to the Omori’s law [54]. The exponent of the decay de-
pends on the initial sample configuration and hence on the particle shape anisotropy. At
the macromechanical level, therefore, it is possible to verify the presence of anisotropic
particles studying the temporal distribution of event sequences. We also study the stiff-
ness and frictional strength that the granular system develops at failure. We calculate
the probability of occurrence of an avalanche for given values of stiffness or frictional
strength. Relevant influence of the particle shape anisotropy is observed.

In Chapter 6, we perform a detailed analysis of the limits used for the integration step
in the Discrete Element Method when collision and shearing of granular assemblies are
simulated. In particular, we study the dynamics of the system during the relaxation stage
and show that the upper limit for the integration step, usually taken from the average
duration of one contact [55], is not sufficiently small to guarantee numerical conver-
gence of the system. We find that the proper integration step to assure the convergence
of the numerical scheme has to be significantly smaller than the upper limit commonly
accepted [56–58]. We show that the upper limit for the integration step is strongly de-
pendent on the approach used to calculate the tangential forces between the particles,
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on the average duration of one contact and on the number of degrees of freedom of the
system. Finally, we propose an alternative approach to compute the tangential forces
that allows the use of considerably larger integration steps and assures the convergence
of the numerical integration scheme [59].

Finally, in Chapter 7 we present a summary of the main results of this thesis. This is
followed by remarks on the open questions and perspectives for future work.
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Chapter 2

The Model

Most of the discrete element models use discs or spheres to represent the constituents
particles of granular packing. The simplicity of their geometry reduce the computational
time of the simulations, and allows to use simple contact force laws in the calculation of
the interactions. However, these models do not take into account the diversity of shapes
of the grains in realistic granular materials, and consequently are unable to ascertain
their influence on the micro and macro-mechanical behavior of the system.

In this chapter, we present a detailed review of the two-dimensional discrete ele-
ment method that has been used to model granular materials using polygonal particles
[37, 82–84]. Polygonal particles are more realistic because they exhibit two of the three
main scales of particle shape irregularity, namely sphericity or platiness, and round-
ness or angularity [21]. The one left is the surface roughness, which involves features of
smaller scale than particle diameter [21, 75]. Therefore, this model of polygonal particles
takes into account not only important features of granular materials such as elasticity,
frictional forces, stick-slip, and loss of energy during collisions, but also the geometrical
effect of particle shape on the overall mechanical behavior allowing for a more realistic
soil representation. Due to the nature of our two dimensional analysis a suitable inter-
pretation of the results has to be done through comparisons with 3 dimensional models,
and experimental observations.

In the following sections we describe the relevant aspects about molecular dynamic
simulations, the contact laws and the related open issues, the numerical integration
scheme, the procedure for particle and sample generation, the search of neighbors, the
imposed boundary conditions, the parameters of the simulation and some additional
remarks.

2.1 Molecular dynamics simulation

In numerical simulations using the molecular dynamic (MD) technique the mechanical
response of the media is obtained by modeling the particle interactions as a dynamic pro-
cess and using simple mechanical laws in these interactions. Within the granular media
each particle is subjected to contact forces, specifically forces f c from interparticle con-
tacts and forces f b from contact with the boundaries. When these forces are known, the
evolution of the position ~ri and orientation θi of the i polygon is given by the integration
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of Newtons’s equation of motion:

mi~̈ri =
∑

c

~f c
i +

∑

cb

~f b
i (2.1a)

Iiθ̈i =
∑

c

~lci ×
~f c
i +

∑

cb

~lbi ×
~f b
i (2.1b)

where mi denotes the mass of particle i, Ii is its moment of inertia and ~lc is the branch
vector which connects the center of mass of the polygon to the contact point. The sum
in c is over all the particles in contact with polygon i, and the sum in cb is over all the
vertices of the polygon in contact with the boundary.

The force laws and definition of contact and boundary forces are introduced in Sec. 2.2
and Sec. 2.6, respectively.

2.2 Contact law

Pioneering work in the field of discrete element method applied to granular materials
was performed by Cundall in the late 70’s [2], in that work he uses disks to represent the
particles and defines the contact forces to be proportional to the relative displacement of
the particles in contact.

In the case of polygonal particles, the definition of contact forces between them is
far to be trivial. An usual approach is to assume that particles interact elastically with
each other, and they can neither be broken nor deformed, but they can overlap when
they are pressed against each other. This overlap represents the local deformation of the
grains, and thus the corresponding repulsive contact force is calculated as a function of
this overlap [37, 85]. For the calculation of the contact force an appropriate definition
of the overlapping length and the contact reference system defining the orientation of
the forces is required. It is desirable that these two quantities change continuously with
time. Time discontinuities in the force might eventually lead to numerical problems in
the integration of the equation of motions and in the convergence of the solution.

In the case of disks, the direction of the contact forces and the penetration length are
well defined. For polygonal particles, the orientation of the overlap area representing the
flattened contact surface of the particles in contact is here calculated from the intersection
points of the boundary of the overlapping polygons. In Figure 2.1 the configuration of a
particle contact is presented. Points P1 and P2 represent the intersection points between
the edges of the polygons and the segment that connects those points gives the contact

line ~S = P1P2. This vector ~S defines a coordinate system (n̂, t̂) at the contact, where t̂ =
~S/|~S| and n̂ normal to it give the direction of the tangential ft and normal fn components
of the contact force. The contact point, i.e. the point of application of the contact forces
is taken as the center of mass of the overlap area A. Since the point of application of
the force is not collinear with the centers of mass of the interacting polygons, there is
a contribution of the torque from both components of the contact force. This makes an
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Figure 2.1: Schematic representation of a particle contact, the overlapping area A is indi-
cated by the shaded zone.

important difference with respect to the interaction between disks or spheres: Polygons
can transmit torques even in the absence of frictional forces.

In most of the cases, we have only two intersection points and the direction of the

contact line ~S is therefore unique. Nevertheless, when more than two intersection points

occurred, as presented in Fig. 2.2, the uniqueness of the orientation of ~S is lost. We refer
to this situation as pathological contacts, since it does no represent a realistic contact

situation. In order to have a continuous change of ~S [82], in the case of more than two

intersection points the contact line is defined by the vector ~S =
−−→
P1P2 +

−−→
P3P4 or ~S =

−−→
P1P2 +

−−→
P3P4 +

−−→
P5P6, for four or six intersections points respectively.

The contact forces, are decomposed into their elastic and viscous contributions, namely
~f c = ~f e + ~f v. The elastic part ~f e of the contact force is simply given by the sum of its
normal and tangential components:

~f e = f e
nn̂c + f e

t t̂c (2.2)

with respect to the contact plane. Next, we explain how the normal f e
n and tangential f e

t

components are calculated.

2.2.1 Normal elastic force

Contrary to the case of spheres [86], for particles with arbitrary shape there is no analyti-
cal derivation for the force-displacement behavior of particles in contact. In the approach
we use for the calculation of the contact force the particle shape is taken into account. We
assumed that the overlap of the particles is a measure of the way particles deform and is
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P1

P2

P1
P3

P2

P4

Figure 2.2: Formation of a pathological contact, i.e a contact in which more than two
contact points are involved. Lower particle moves through the other particle
generating four intersection points.

therefore proportional to the repulsive force between them [37]. Thus, the normal elastic
force is equal to

f e
n = −kn(A/lc), (2.3)

with kn the normal stiffness, A the overlapping area and lc the characteristic length of

the contact. This characteristic length is given by lc = ci + cj , with ci =
√

Ai/π where Ai

is the area of polygon i, and similarly for particle j. Due to the reduced dimensionality
of our 2D model, the stiffness kn has units of N/m, and therefore the normalization of A
with lc is required for consistency of units.

2.2.2 Tangential elastic force

In our model, the frictional force is given by a tangential elastic force between each pair
of particles. This force is obtained using an extension of the Cundall-Stack spring [2],
as follows, the force is considered to be proportional to the elastic elongation ξ of an
imaginary tangential spring at each contact, namely

f e
t = −ktξ, (2.4)

where kt is the tangential stiffness. Through time, the elastic elongation ξ is updated as

ξ(t + ∆t) = ξ(t) + ~vc
t∆t (2.5)

where ∆t is the time step of the molecular dynamic simulation, and ~vc
t the tangential

component of the relative velocity ~vc at the contact point between the two particles.

~vc = ~vi − ~vj + ~wi ×~li − ~wj ×~lj. (2.6)
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2.2 Contact law

Here ~vi and ~vj are the linear velocities, and ~wi and ~wj are the corresponding angular
velocities. The tangential elongation ξ increases in time whenever the elastic condition

|f t
e| < µfn

e , (2.7)

is satisfied, whereas the sliding condition is enforced by keeping constant the elastic dis-
placement ξ when the Coulomb limit condition is reached, namely |f t

e| = µfn
e . This latter

condition corresponds to the inelastic regime, where the elongation takes its limiting val-
ues ξ = ±µknA/(ktlc) (see Eqs. (2.3) and (2.4)), while the former in Eq. (2.7) corresponds
to the elastic regime. Parameter µ is the inter-particle friction coefficient.

The Cundall-Strack model has been widely used in the literature, since its implemen-
tation requires practically no computational effort and has been proven to be in good
agreement with the simulation of static behavior of packings [87, 88], and to reproduce
important features of the plastic deformation of soils, such as the plastic flow-rule [89]
and stick-slip fluctuations [39, 42]. A clear drawback of this method is that it introduces a
time integration error of O(∆t2), as seen from Eq.(2.5), in contrast with the much smaller
error introduced by the numerical integration schemes used to calculate the system evo-
lution.

In recent work, McNamara et al. [90] find that the Cundall-spring produces a path-
dependent elastic potential energy in the contact, and that due to this dependence be-
haviors such the so-called granular ratcheting [34] can emerge.

In Chapter 6 of this thesis, we will discuss some other numerical problems arising
from the Cundall-Strack spring model. We will mainly deal with the divergence of the
numerical solution for shearing and relaxation of the granular packings [59]. For this sit-
uation, we introduce an alternative approach based in geometrical relations to compute
the frictional forces, that corrects properly the evolution of the system and enables the
usage of larger integration steps.

2.2.3 Damping forces

Viscous forces are introduced in order to take into account dissipation at the contact,
maintain numerical stability of the method, and obtain quick convergence to the equi-
librium configuration. These forces are calculated as

~f c
v = −mr(νn ~vc

n n̂c + νt ~vc
t t̂c) (2.8)

where mr = (1/mi + 1/mj)
−1 is the reduced mass of the two particles in contact, and νn

and νt are the damping coefficients.
Since almost any value of the damping coefficient ν might be selected. A straightfor-

ward way to choose the value of ν is to relate it to the corresponding value of contact
stiffness k through the coefficient of restitution ǫ. One can then select one value for ǫ
from the range of values of the restitution coefficient obtained experimentally on vari-
ous materials [91]. The restitution coefficient is given by the ratio between the relative
velocity after and before the collision. In particular, the normal restitution coefficient ǫn
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can be written as a function of kn and νn [55], namely

ǫn = exp (−πη/ω) = exp

(

−
π

√

4mrkn/ν2
n − 1

)

(2.9)

where ω =
√

ω2
0 − η2 is the frequency of the damped oscillator, ω0 =

√

kn/mr is the
frequency of the elastic oscillator corresponding to the pair of particles in contact, and
η = νn/(2mr) is the effective viscosity, with νn the damping coefficient in the direction
perpendicular to the contact plane. The tangential component ǫt of the restitution coeffi-
cient is defined similarly using kt and νt in Eq. (2.9). Next, we explain how the numerical
integration scheme is used to solve the equations of motion.

2.3 Numerical Integration Scheme

To solve the equations of motion we use the Gear’s predictor-corrector scheme [56]. This
scheme consist of three main stages, namely prediction, evaluation and correction.

In the prediction stage the position, velocities and higher-order time derivatives are
updated by expansions of the corresponding Taylor series using the current values of
these quantities [56, 92]. For the position ~r of the center of mass these equations read

~r(t+∆t),p = ~r(t) + ~̇r(t) ∆t + ~̈r(t)
∆t2

2!
+ ~riii

(t)

∆t3

3!
+ ~riv

(t)

∆t4

4!
+ ~rv

(t)

∆t5

5!
(2.10a)

~̇r(t+∆t),p = ~̇r(t) + ~̈r(t) ∆t + ~riii
(t)

∆t2

2!
+ ~riv

(t)

∆t3

3!
+ ~rv

(t)

∆t4

4!
(2.10b)

~̈r(t+∆t),p = ~̈r(t) + ~riii
(t) ∆t + ~riv

(t)

∆t2

2!
+ ~rv

(t)

∆t3

3!
(2.10c)

~riii
(t+∆t),p = ~riii

(t) + ~riv
(t) ∆t + ~rv

(t)

∆t2

2!
(2.10d)

~riv
(t+∆t),p = ~riv

(t) + ~rv
(t) ∆t (2.10e)

~rv
(t+∆t),p = ~rv

(t) (2.10f)

From the equations above, one extracts a predicted position ~r(t+∆t),p and acceleration

~̈r(t+∆t),p. During the evaluation stage, one uses the predicted coordinate to determine the

contact force ~f c
t+∆t at time t + ∆t. Since the method is not exact, there is a difference

between the acceleration ~̈r(t+∆t) = ~f c
t+∆t/m and the value obtained in the prediction

stage, namely

∆~̈r = ~̈r(t+∆t) − ~̈r(t+∆t),p. (2.11)

The difference in Eq. (2.11) is used in the corrector step to correct the predicted position
and time derivatives. This correction is performed using proper weights αi for each time
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2.4 Particle and sample generation

derivative [56], as follows [92]

~r(t+∆t) = ~r(t+∆t),p + α0
~̈r∆t2

2!
(2.12a)

~̇r(t+∆t) ∆t = ~̇r(t+∆t),p ∆t + α1
~̈r∆t2

2!
(2.12b)

~̈r(t+∆t)
∆t2

2!
= ~̈r(t+∆t),p

∆t2

2!
+ α2

~̈r∆t2

2!
(2.12c)

~riii
(t+∆t)

∆t3

3!
= ~riii

(t+∆t),p

∆t3

3!
+ α3

~̈r∆t2

2!
(2.12d)

~riv
(t+∆t)

∆t4

4!
= ~riv

(t+∆t),p

∆t4

4!
+ α4

~̈r∆t2

2!
(2.12e)

~rv
(t+∆t)

∆t5

5!
= ~rv

(t+∆t),p

∆t5

5!
+ α5

~̈r∆t2

2!
(2.12f)

These weights depend upon the order of the algorithm and the differential equation

being solved. In our simulations we integrate equations of the form ~̈r = f(~r, ~̇r), and use
a fifth order predictor-corrector algorithm [56]. The coefficients αi for this situation are:
α0 = 3/16, α1 = 251/360, α2 = 1, α3 = 11/18, α4 = 1/6 and α5 = 1/60.

Finally, the corrected values are used for the next integration step t + ∆t, and the
procedure starts again from these values to further integrate the system’s evolution. The
resulting numerical error for the fifth order integration scheme is proportional to (∆t)6.

While the expansions above for ~r and corresponding time derivatives describe the
dynamics of the center of mass of the particles, the same procedure is equally applied
for the rotation angles θi around the center of mass as well as for their time derivatives.

2.4 Particle and sample generation

2.4.1 Generation of polygons

The random generation of the convex polygons used in this model is carried out by
means of a special form of the Voronoi tessellation, which is a simple method to dis-
cretize a media. The special form of the Voronoi tessellation is the so-called vectorizable
random lattice and was developed by Mourkazel and Herrmann [93]. The discretization
using this method does not introduce any kind of anisotropy to the media.

The first step of the discretization is to define a reference regular square lattice with
cell size ℓ, as presented in Fig. 2.3. Next, in each cell of the reference lattice a point is
randomly set within a square of length a. This square region, where the point is set, is
centered on the reference cell. The value of a varies in the interval 0 ≤ a ≤ ℓ. The poly-
gons are then constructed by assigning to each point the part of the plane that is nearer
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 a = 0

 l

(a)

 a = 0.8

 l

 a

(b)

Figure 2.3: Construction of vectorizable random lattice. The thin line (black in color)
connecting the random points represents the random lattice. The thick lines
(red lines in color) are the edges of the polygons obtained from the Voronoi
tessellation. Two values of a are used, 0.0 (reference lattice) and 0.8 (random
lattice).

to it than to any other point. In Fig. 2.3, the vectorizable random lattice is represented by
the black line connecting the random points and the edges of the polygons are plotted
as red lines. By using different seeds for the random generation of the points, we end up
with different Voronoi tessellations and thus different initial sample configurations.

The degree of randomness of the tessellation is controlled by the parameter a, where
the upper limit a = ℓ yields the maximal randomness and the lower limit a = 0 the
original reference lattice (Fig. 2.3). Furthermore, the closer the parameter a is to ℓ the
smaller the corresponding anisotropy. In this case, anisotropy refers to the distribution
of the orientation of the edges of the polygons. In particular, for a = ℓ this distribution is
isotropic. The outcome of the Voronoi tessellation using the vectorizable random lattice
for different values of a is depicted in Fig. 2.4. For further details about the Voronoi
construction see [93–95].

For molecular dynamics, the vectorizable random lattice has also the computational
advantage that the potential number of neighbors of each cell is limited to 20, while in the
case of the standard or Poissonian Voronoi tessellations the possible number of neigh-
bors is not bounded [93]. The fact of having a bounded number of potential neighbors
enables to fix the list for the calculation of particles interactions leading to a reduction of
the computer time of the simulation [37, 82].

Concerning the geometrical properties of the Voronoi tessellation, one can see in Fig. 2.5
that the distribution of the area of particles is approximately symmetric around ℓ2. The
larger the parameter a the wider the distribution of areas. We use five different values
of a = ℓ, 0.75ℓ, 0.5ℓ, 0.25ℓ and 1.0 × 10−6ℓ. The corresponding standard deviations are
0.25, 0.19, 0.067 and 2.8 × 10−7ℓ. The average number of edges of the Voronoi polygons
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a = 0.25

a = 0.75 a = 1.0

Figure 2.4: Outcome of the Voronoi construction using different values of the parameter
a. Periodic boundary conditions are used.

depends just weakly on a as illustrated in Fig. 2.6. This average number of edges for
any random tessellation has been shown analytically [95] and using numerical simula-
tions [93] to be 6. Nevertheless, one can observe that the larger the value of a the more
diverse the number of edges and therefore the less the angularity of the particles, as can
be seen in Fig. 2.4. Systematic study of the influence of particle angularity, i.e. the in-
fluence of the number of edges on the mechanical behavior of granular assemblies was
already performed by Mirghasemi et al. [20]. In this work, we use a = ℓ that gives
Voronoi constructions with the wider distribution of areas. Since the polygons fill com-
pletely the plane, in order to create porous material an additional procedure has to be
performed. It is explained in the next section.

2.4.2 Generation of samples

In this Section, we will explain how using the outcome of the Voronoi tessellation sam-
ples with different porosities and with anisotropic, i.e. elongated particles, are con-
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Figure 2.5: Probability distribution function of polygon areas of the Voronoi construc-
tion. Different values of parameter a are used. The wider distribution corre-
sponds to a = ℓ. Every Voronoi construction consists of 104 polygons.

structed. The porosity of the samples is characterized by the void ratio e = Vv/Vs, with
Vv the volume of voids and Vs the volume of solid grains. The shape of the anisotropic
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Figure 2.6: Distribution of number of edges of the polygons of the Voronoi constructions
for different values of parameter a. Every Voronoi construction consists of 104

polygons.
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particles is described by the aspect ratio λ, between the length of the longest and shortest
axis of the particles.

First, in order to obtained different porosities the initial perfectly packed Voronoi poly-
gons are moved apart to obtain a very loose state. This is accomplished by multiplying
the coordinates of the polygons by a constant larger than one. Then, we use rigid walls as
boundaries to compress the granular material. The sample is first compacted by apply-
ing a centripetal gravitational field to the particles and on the boundary walls, oriented
to the center of mass of the assembly. After that, the sample is compressed isotropically
using the four rigid walls until the desired confining pressure is reached. At this stage,
the system is free to relax to its steady state. In order to generate dense samples, the
interparticle friction is set to zero during the construction process. The loose samples are
created taking damping coefficients 100 times larger than those used in the test stage.

Second, by stretching or contracting the reference square lattice used for the Voronoi
construction in Sec. 2.4.1 particles with different aspect ratios λ are obtained. The dis-

Figure 2.7: Distortion of the regular reference square lattice λ = 1 in order to generate
samples with anisotropic particles λ > 1.0. Labels H (horizontal) and V (ver-
tical) indicate the axis along which particles are initially stretched.
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tortion of the square lattice is performed along the horizontal (H) or vertical (V) axis.
In Fig. 2.7, the initial isotropic configuration λ = 1, and two distorted configurations are
presented. The average elongation of the grains is given by the ratio between the stretch-
ing/contraction factors used to distort the lattice. In particular, the anisotropic samples
presented in Fig. 2.7 have an aspect ratio λ = 2.3. The maximum value of λ used in this
thesis is 4, chosen in order to avoid particles with very sharp angles that could have
an unrealistic overlap. To generate porous samples with anisotropic particles the same
procedure as explained above is used.

2.5 Neighbor search

The efficiency of the granular dynamics simulation is mainly determined by the method
of contact detection. If the system consist of n particles, the required calculation opera-
tions for contact detection in each time step is O(n2) without any optimized algorithm.
Special neighbor search algorithms such as Verlet Lists and Link Cell Algorithms [3, 56]
have been proposed to reduce the computational effort.

Our method combines these two algorithms to determine the list of particles in poten-
tial contact using O(n) calculations. The Verlet List contains the list of pair particles (i, j)
which are relative close to each other. We then attach to each particle a halo of radius R,
where R is the minimum radius of a sphere containing the particle. We call two particles
neighbors if their halos touch or overlap.

At the same time, we use a Link Cell algorithm to allows a rapid calculation of this
Verlet List: First, the space occupied by the particles is divided in cells of side D, where
D is equal to the size ℓ of the reference square lattice used for the Voronoi construction
(see Fig. 2.3). Then the Link Cell list is defined as the list of particles hosted in each cell.
In the case of anisotropic particles, the link cells are also distorted similar to the case of
the reference square lattice. Consequently, the candidates of neighbors for each particle
are searched for isotropic particles only in the cell occupied by this particle, and in the
5 × 5 cluster around it excluding the corners. This search is based on the propability of
potential neighbors of each cell on a vectorizable random lattice [93]. For anisotropic
polygons, the search is increase to the 7 × 7 cluster around the host cell due to the fact
that elongated shape increase the probability of finding additional neighbors.

2.6 Boundary conditions

2.6.1 Rigid walls

Walls are often used as boundaries to compact and load granular assemblies [34, 35, 96].
These walls can be either strain or stress controlled, i.e the velocity or the force applied on
them is specified. The displacement of the walls and the total force on them can be used
to determine the global stress and strain of the assembly. Boundary forces are applied
on each grain in contact with these walls. The walls are frictionless, so they transmit
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2.6 Boundary conditions

only normal forces to the polygons in contact with them. When one of the vertices of a
polygon penetrates one of the walls, a force, proportional to the penetration length δ, is

applied on the polygon. This elastic boundary force ~f b
n is oriented in normal direction n̂

to the wall:

~f b
n = −knδn̂ (2.13)

Viscous forces ~f b
v in wall-polygons interactions are also considered: ~f b

v = −miνn~v
c
n,

where mi is the mass of the particle in contact with the boundary wall, νn the damp-
ing coefficient in normal direction, and ~vc

n is the normal relative velocity of the vertex
with respect to the wall. The boundary force is calculated for all the cases of interaction
between walls and polygons in the same way.

2.6.2 Periodic boundaries

The periodic boundary technique is a very useful tool in granular dynamics simulations.
Its main feature is the ability to remove the surface effects, which are presented in any
finite sample. Therefore, it is a clever way to make a simulation consisting of only a few
hundred particles behave as if it were infinite in size [56].

We use periodic boundaries to simulate extended shear zones. In this scenario, the
periodic condition is imposed along the horizontal direction of our two-dimensional
sample and is combined with fixed boundaries in vertical direction. This configuration is
presented in Fig. 2.8. The top and bottom layers of the sample either undergo a constant

Figure 2.8: Sketch of the periodic boundary condition imposed in horizontal direction of
the granular sample in order to mimic a shear zone. Light particles are the
image used to implement the periodic boundary conditions. The black dash-
line defines the space domain of the simulation. Dark layer of particles (blue
in color) have fixed boundary conditions.
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vertical force or are constrained to move in vertical direction. The periodic boundary
condition is introduce as follows: particles are contained in a space domain of length L.
When a particle leaves the left (right) side of this domain, it reenters from the opposite
site. In each time step, particles in the left (right) side of the domain can interact with
the particles in the right (left) side. This is implemented by wrapping the link cell in
Section 2.5 as a doughnut, so that particles in the left (right) cells of the link cell can
be neighbor of the particles in the right (left) ones. If a pair of particles are neighbors
through the periodic boundary condition, their interaction is calculated in three steps:
(1) shift the left (right) particle by L; (2) calculate the contact forces; and (3) shift the
particle back.

2.7 Determination of the parameters

The whole set of parameters used in the molecular dynamics simulations are presented
in Table 2.1. A suitable closed set of material parameters for this model is to chose the
values for the ratios kt/kn and ǫt/ǫn, together with the value of the normal stiffness kn and
the interparticle friction µ. Since these parameters determine the mechanical response
of the system, they should be adjusted to reproduce in reasonable agreement the main
characteristics of realistic materials depending on the specific case under study [83, 84,
97].

The size of the Voronoi cells is defined in terms of ℓ as explained in Section 2.4.1. The
value used in our simulations is 1 cm. The aspect ratio λ characterizes the anisotropy of
particle shape. The density of the particle is taken 1 gr/cm3, considering particles to be
rods with a unit length of 1 cm in three dimensions.

Another important choice is the selection of the time step of the numerical simulation.
It has to be done in order to maintain the stability of the numerical solution and improve
the effectiveness of the computational time. The time step is usually determined in terms
of the characteristic period of oscillation, specifically

ts = 2π

√

〈m〉

kn

, (2.14)

where 〈m〉 is the smallest particle mass in the system. For a fifth order predictor-corrector
integration scheme, it is usually accepted that a proper integration step should be in the
range ∆t < ts/10 [56].

Alternatively, instead of considering a threshold referred to averages over the particles
the integration step is extracted from local contact events [55, 57, 58]. Here, one usually
considers only each pair of particles and defines the duration of a contact as

tc =
π

√

ω2
0 − η2

. (2.15)

Typically tc ≃ ts/2, and therefore in such cases, one also considers an admissible range
of proper integration steps as ∆t < tc/5 [55, 87].
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Symbol Parameter
kn normal contact stiffness
kt tangential contact stiffness
µ friction coefficient
ǫn normal coefficient of restitution
ǫt tangential coefficient of restitution
νn normal coefficient of viscosity
νt tangential coefficient of viscosity
ρ density of the grains
ℓ size of the cells of the Voronoi generation
λ aspect ratio
∆t time step for the MD simulation

Table 2.1: Parameters of the molecular dynamic simulation.

While performing shear and relaxation tests on granular packings, we find that the
usual above thresholds for ∆t are far from being conservative concerning the conver-
gence of the solution of the numerical scheme. This non-convergence is directly related
with problems arising from the calculation of the tangential contact forces explained in
Sec. 2.2.2. Further discussion about the proper threshold to define the time step of the
molecular dynamic simulations is hold in Chapter 6 of this thesis.

2.8 Additional definitions and remarks

In the next chapters of this thesis, the evolution of the local stress tensor, the fabric tensor
and the inertia tensor of the isotropic and anisotropic samples will be used to follow the
micro-mechanical evolution of the system. These key concepts will be required for the
description of the media and are now introduced.

The fabric tensor F of second order characterizes the anisotropy of the contact network
within the granular sample. The tensor F takes into account the distribution of the ori-
entations of the contacts between particles, i.e. the geometrical structure of the medium
[66]. For a single particle p its components F p

ij are obtained from

F p
ij =

Cp
∑

c=1

lci l
c
j (2.16)

where the dyadic product of the vector ~lc is summed over all the contacts Cp of particle
p. The trace of the fabric tensor F p

ii gives the number of contacts Cp of particle p. It is
also possible to define a normalized fabric tensor F p

ij/Cp, whose trace is unity. Finally,
the mean fabric tensor for an assembly of particles is defined as:
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〈Fij〉 =
1

Np

Np
∑

p=1

F p
ij (2.17)

where the particle fabric tensor F p
ij is summed over the total number of particles Np

within a representative volume element (RVE). The trace of this tensor is the local mean
coordination number Cm, and therefore the normalized mean fabric tensor can also be
defined as 〈Fij〉/Cm.

The inertia tensor is calculated for each particle as follows:

Ip
ij =

∫

ρ(δij

∑

k

x2
k − xixj)dA (2.18)

where ρ is the density of the particles, δij is the Kronecker delta-symbol, k runs in our

two-dimensional case from 1 to 2, dA is the differential area element, x =
√

x2
1 + x2

2 is the
shortest distance from the rotation axis to dA, and i, j = 1, 2.

The mean inertia tensor follows from (2.18):

〈Iij〉 =
1

Np

Np
∑

p=1

Ip
ij (2.19)

where the particle inertia tensor Ip
ij is summed over the total number of particles Np in

the RVE.
The stress tensor for each particle is defined in terms of the contact force ~f c between

the grains (acting at the contact point c), and the branch vector~lc belonging to the contact
point [98], namely

σp
ij =

1

Vp

Cp
∑

c=1

lcif
c
j (2.20)

where Vp is the volume of the particle p. In the same way, the global stress tensor of the
assembly is calculated as follows:

σij =
1

V

Nc
∑

c=1

lcif
c
j (2.21)

where V is the volume of the RVE, and the summatory extends over all the contacts Nc

in the RVE.
We will also compute the principal directions (major M and minor m) of the mean

fabric F, inertia I and stress σ tensors. These principal directions are defined from their
angle with the horizontal axis x of the absolute reference frame. We denote θF the angle
corresponding to the major principal direction of the fabric tensor, θI the angle corre-
sponding to the major principal direction of the inertia tensor and θσ the one of the stress
tensor.
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We are also interested in the individual orientation of non-isotropic particles. We sym-
bolized by θp the angle formed by the major principal direction of the inertia tensor Ip

M

of the particle p and the horizontal axis x. Notice that, θp gives the preferred orientation
for each particle of the assembly.

In Fig. 2.9, a sketch of a particle and its surrounding neighbors in order to illustrate
the calculation of the fabric, inertia and stress tensors is presented. The particle’s contact

network is plotted in Fig. 2.9a. Here the red lines represent the branch vectors ~lc. The
principal axis of the tensors are depicted in Fig. 2.9b. In this particular case, the princi-
pal axis of the stress (red lines) and fabric (dashed blue lines) tensors are aligned. The
principal axis of the inertia tensor are in green.

Figure 2.9: Illustration of the contact network and the fabric tensor, inertia tensor and
stress tensor of a particle. (a) dashed lines are the branch vectors lc, the width
of the lines is proportional to the magnitude of the contact force, (b) Principal
axis of F (dashed dark lines, blue in color), θI (solid dark lines, black in color)
and θσ (solid light lines, green in color).
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Chapter 3

Critical state, strain localization and stress
fluctuations

The stress-strain behavior of dense and loose sand under shearing is described by Casa-
grande in 1936 [12]. He concludes that sand for large shear deformations independent
of the initial density state reaches a limiting state (critical void radio) in which samples
undergo unlimited deformation without further volumetric and stress increments. He
also concludes that the critical void ratio is only dependent on the confining pressure,
and thus determines the so-called critical state line relating the critical void ratio ec and
the effective normal stress σ′ as applied on the shear box test.

The existence and uniqueness of this critical state is a major feature in soil mechan-
ics since it is used to define post-failure behavior of many constitutive models describ-
ing granular materials. These models correspond not only to the family of elasto-plastic
models [6, 11] but also to more recent alternative approaches like hypoplastic models [7–
10]. The existence of a unique critical state has been experimentally proven to be inde-
pendent of sample preparation and test conditions [15, 16]. Nevertheless, since there are
some experimental difficulties to characterize the pre-and-post peak mechanical behav-
ior of dense samples arising from the strain localization [11, 99]. There are some groups
of researchers that claimed that the uniqueness of this state is still an open issue [18], and
depends on the consolidation history of sand specimens [17].

In this chapter, we carry out biaxial test simulations of polygonal packing of particles,
as a simple model of granular material as presented in Chapter 2. The existence of the
critical state and the deformation patterns of the material under monotonic loading are
investigated. Characteristic modes of deformation in granular material are rotation and
rolling of particles [31–33], contact sliding [34, 35] and localization of strain in narrow
shear bands [26, 36, 37]. Hence, we consider two different stages of the deformation of
the granular media: (i) small deformation in order to study the first steps of strain local-
ization and/or shear band formation and related micro-mechanisms [38], and (ii) large
shear deformations in order to study the evolution of the granular packing toward the
so-called critical state [39]. In the case (i), we find a strong correlation between con-
tact sliding, grain rotation and strain accumulation. In the latter (ii), we show that the
MD simulations of biaxial test reproduces the main features of the critical state in soil
mechanics, namely, the granular media evolve toward a stationary state in which the
system reaches a constant void ratio and deforms with constant volume and deviatoric
stress, and that for different initial stress states the corresponding stationary values col-
lapse onto a unique critical state line. Furthermore, at this stationary state, the dynamical
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Chapter 3 Critical state, strain localization and stress fluctuations

response is characterized by fluctuations of stress and abrupt collapse of the number of
sliding contacts. These stress fluctuations appear as a consequence of frictional insta-
bilities. Experimentally, stress fluctuations have been observed in sheared glass bead
samples [40], and packings of glass spheres under uniaxial compression [41] and ax-
isymmetric stress condition [79]. Experimental biaxial tests performed on sand show
evidence of dynamic instabilities at the critical state [80].

We also investigate the dependency of the overall response of the media on the inter-
particle friction and the system size. The results of stages (i) and (ii) of deformation are
presented in Sec. 3.2 and 3.3, respectively.

3.1 Biaxial test simulations

In the field of soil mechanics, the occurrence and evolution of deformation patterns in
granular materials is investigated systematically by means of laboratory tests [22]. In
these experiments, a certain stress state is imposed on the sample by means of different
boundary conditions, namely rigid plates and flexible membranes. The more commonly
used experimental setup, is the axisymmetric triaxial test in which a flexible membrane
maintains the sample together while imposing a hydrostatic pressure on the lateral di-
rection, whereas two hard plates at the top and the bottom impose a certain axial strain
or stress. However, to study the rheological behavior of granular materials the plane
strain experiment is a very convenient test since it allows to determine the strain field
at any stage of deformation [36, 99–101]. In this case, the sample is encased in a flexi-
ble membrane and confined between to parallel glass plates and two loading plattens,
imposing plane strain conditions.

In our MD simulations the experimental setup, a two dimensional biaxial chamber
with rigid walls see Fig. 3.1, mimics the strain plain test. Two types of experiments are
performend: stress and strain controlled. The first one is used to explore the early stages
of deformation, while the second one is employed to examine the steady state of the
material since it allows one to observe both the hardening and softening behavior after
peak of dense media [99].

In the tests the axial and lateral directions are indicated as 1 and 2, respectively. That
is σ1 and ε1 are the axial stress and strain, and σ2 and ε2 are the lateral components. The
strains are defined as follows:

ε1 =
L0

1 − L1(t)

L0
1

, (3.1)

ε2 =
L0

2 − L2(t)

L0
2

, (3.2)

where L1(t) and L2(t) are the dimensions of the system at the time t, and L0
1 and L0

2 the
dimensions at the beginning of the test. Stresses have the same sign convention used in
soil mechanics: compressive normal stresses are positive and tensile normal stresses are
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3.1 Biaxial test simulations

Figure 3.1: Biaxial cell. The stress state is imposed in the sample through four mobile
walls. The lateral stress σ2 is kept constant, while we increase the vertical
stress σ1 in a either stress controlled way, Eq. 3.4, or in a strain controlled
manner ε̇1 = const.

negative. The deviatoric strain, γ, is defined in terms of the axial and lateral strains:

γ = ǫ1 − ǫ2. (3.3)

In both tests, the pressure in lateral walls σ2 is kept constant and equal to the initial
isotropic confining pressure p0. In the stress controlled test the axial stress σ1 is slowly
increased following the law:

σ2 = p0, σ1(t) = p0 [1 + ∆σ · f(t)] . (3.4)

Different functions f(t) can be implemented. We have selected a very slowly varying
function, given by:

f(t) = 0.5 ×

(

1 − cos

(

2πt

ta

))

, (3.5)

where the period ta considered is ta/
√

kn/〈m〉 = 107 , being 〈m〉 the average mass of the
particles in the system. The lateral walls can move, so that some strain accumulation is
expected in the system.

In the strain controlled test, the horizontal walls (axial direction) are simply moved at
constant rate ε̇1 inducing deviatoric stress.

The material parameters of the simulations are kn = 1.6 · 108 N/m, ǫn = 0.8, and the
ratios kt/kn = 0.33 and ǫt/ǫn = 1.1. The relatively low dissipation obtained with ǫn = 0.8
allows us to reduce viscous effects during loading.
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Chapter 3 Critical state, strain localization and stress fluctuations

3.2 Small deformation stage

The main purpose of this section is the investigation and characterization of different
factors influencing the first stage of deformation on granular packings, i.e. long before
the material has either reached its peak strength or the steady state. This requires us to
stay in the range of very small deformations [102]. We are interested in the existence
of strain localization, and the idea is specifically to examine how the systems starts to
deform in a biaxial test as the stress increases. The influence of the number of particles is
investigated, for it is expected to be relevant in the formation of a shear band [37]. We use
dense samples, different system size N , namely 400, 625, 900, 1600 and 3600 particles,
and different interparticle friction coefficient µ.

According to previous work by Aström et al. [26], the succession of sliding and rota-
tions of the particles in their shear experiments are related to the formation of some bear-
ings in the shear band. Following these ideas, it is especially interesting for our purposes
to monitor the evolution of the number of sliding contacts Ns and the mean rotation of
the grains as the strain accumulates.

The time evolution of the relative number of sliding contacts ns = Ns/Nc being Nc the
total number of contacts is shown in Figure 3.2. Here, three different system sizes are
studied. In all the shown cases, the same kind of behavior is observed: The number of
sliding contacts increases in time, but this evolution is interrupted from time to time by
some events, in which the number of sliding contacts decays abruptly. The recurrence
of this phenomenon has been checked for different time steps of the simulation and also
for different functions f(t) (as described in Eq. 3.5). In some of these drop-offs, all the
contacts stop sliding, whereas in others the number of sliding contacts is considerably
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0.0e+00 4.0e-03 8.0e-03 1.2e-02

n
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t/ta

N=400
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Figure 3.2: Results of the simulation of a system of polygons with µ = 0.25 and different
number of particles 400, 900 and 1600. The relative number of sliding contacts
ns is plotted against time.
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3.2 Small deformation stage
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Figure 3.3: Evolution of the relative number of sliding contacts ns and the mean angle
〈Θ〉 through which the particles have rotated. The simulation details are µ =
0.25 and N = 400.

reduced, but remains bigger than zero. In more detail, the sequence is the following:
At the beginning, the number of sliding contacts grows steadily as the stress increases.
Above a certain value, there is a sudden decrease on ns. After this change, the number
of sliding contacts remains low for a while before starting again to increase in time. In
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Figure 3.4: Correlation between the behavior of ns and the strain accumulation. The in-
set shows in detail that also smaller drop-offs are related to a change in the
evolution of γ. The simulation details are µ = 0.25 and N = 400.
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Chapter 3 Critical state, strain localization and stress fluctuations

this new stage, the number of sliding contacts can grow beyond the value previous to
the collapse. Observe that the frequency with which these abrupt changes in ns occur
increases as the experiment continues. Note also that the time at which the first event
occurs is later for bigger systems. It is also observed that the cases in which there is a
partial decay of ns, the value of sliding contacts remains low for a shorter period of time
than in the drop-offs where ns decays to zero.

Figure 3.3 shows the relationship between sliding and the rotations for the system
size N = 400 presented in Fig. 3.2. During the experiment, each grain rotates a certain
angle θi(t). We have calculated the mean angle rotated by the grains at a certain time
〈Θ(t)〉. This average rotation is plotted on the secondary y axes of Figure 3.3, while on
the primary axes we show the time evolution of the relative number of sliding contacts
at the same point of the experiment. The strong changes in ns described in the previous
paragraphs correlate very well with a strong increase of the rotations of the system.
Figure 3.3 clearly indicates a strong correlation between the collapse on ns sliding, and
the rotation of the grains. One can also observe that there is no preferential direction of
rotation.
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Figure 3.5: The kinetic energy of the grains is plotted here in two snap-shots of the sim-
ulation, just before (left) and right after a collapse (right).The gray scale is
proportional to the kinetic energy of the grains in the sample. The scales in
the left and right graphs are different, but in both of them the darker grains
move slower. Some localization of the kinetic energy can be identified before
the collapse, whereas after the jump in the strain, the shear band has disap-
peared and the grains move faster following walls displacement (the average
kinetic energy after collapse increases about one order of magnitude). The
results correspond to the simulation of a system with N = 3600 polygons and
µ = 0.1.
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3.2 Small deformation stage

In Figure 3.4 we want to stress the relationship between the behavior of the sliding
contacts and the strain accumulation γ. We observe a direct relationship between the
increase of γ and the decay in ns, which is more evident for the strongest decays, but is
also observed in the smaller collapses (see the inset of Fig. 3.4). Between collapses, as ns

is increasing, γ grows almost linearly with the stress.

The results shown in Figures 3.3 and 3.4 indicate the following picture of what is hap-
pening in the system. As the stress slowly increases, the system does not change ap-
preciably its spatial configuration. At this point there is not creation or destruction of
contacts. The changes of strain occur in the existing contacts: some of them start to slide,
while the contacts that are already sliding continue sliding. This situation correspond to
a steady increase of the strain γ. It is important to remember that our boundary condi-
tions are fully mobile hard walls. The small change in the strain is due to tiny changes in
the position of these walls, caused by the sliding of the system. This small deformation-
rate stage leads at some point to a rearrangement of the system which suddenly causes a
rapid movement of the walls (namely, the sudden jumps of γ). In this new situation, the
system undergoes, from one time to the next, a stress relaxation in which the grains can
move and rotate, and the contacts are removed from the sliding condition. In the new
configuration, the process starts again, the existing contacts start sliding and the system

Figure 3.6: Histogram of the frequency of occurrence of the collapses, measured through
the waiting time for the drop-offs in the relative number of sliding contacts.
Each of the histograms corresponds to a different µ. The simulations corre-
spond to a system size N = 625 particles.
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Chapter 3 Critical state, strain localization and stress fluctuations

accounts for small deformations due to this sliding. This will lead to a new configura-
tional change, and the process will begin again. The system gets more dense after each
of this collapses, which agrees well with the observed fact that the maximum value that
the number of sliding contacts before a new drop-off increases event by event.

Concerning strain localization, in none of our experiments (with systems up to 3600
polygons) a clear and lasting shear band was observed. There are, however, some stages
of the test in which a shear band seems to appear, see Figure 3.5, but it is very unstable
and it quickly disappears as soon as one of the drop-offs on ns occur.

Finally, we address the influence of the interparticle friction µ on the frequency of
abrupt changes of ns. Thus, we measure the waiting times between every consecutive
decay of ns and based on these results we calculate the histograms of the frequency
of occurrence of the collapses. The histogram is presented in Figure 3.6, here one can
see the existence of a characteristic frequency for each friction coefficient. This is more
clearly observed in the more frictional samples, since the distribution function of the
frequencies narrows as friction grows. At the same time, the mode of the distribution
moves towards the origin i.e. the events become less frequent. Figure 3.7 shows the
characteristic frequency of collapse occurrence for different friction coefficients. It clearly
decreases as the friction coefficient grows up to a certain value around µ = 0.6. Above
this friction, the most probable frequency seems to be independent of µ.
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Figure 3.7: Dependence of the characteristic frequency of occurrence of the drop-offs
on ns with friction. The simulations correspond to a system size N = 625
particles.
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3.3 Large deformation stage - critical state

3.3 Large deformation stage - critical state

3.3.1 Critical state

In order to assess the existence of the critical state on granular packings, we first explore
the macro-mechanical evolution of granular samples under large shear deformations.
The experimental procedure is explained in Sec. 3.1. The experiments are performed
over different initial conditions, namely, (i) three different samples each one correspond-
ing to a different seed used in the random generation of polygons and therefore with
differences in particle’s distribution, Sec. 2.4.1 and (ii) different initial density states. We
characterize the density of the samples by the void ratio e, as defined in Sec. 2.4.2. The
samples we use in this analysis are constructed with an initial isotropic confining pres-
sure p0 = 64 kN/m, have system size N = 900 particles, and the interparticle friction
coefficient is µ = 0.5. The corresponding initial void ratios of the dense and loose sam-
ples are presented in Table 3.1. Figure 3.8 presents the sample configuration at the end
of the construction process, for both dense and loose media.

Table 3.1: Initial void ratio of the samples used to evaluate the critical state.

Sample Dense state Loose state
1 0.145 0.270
2 0.144 0.266
3 0.146 0.278

In Figure 3.9(a) the evolution of sin φ = (σ1 − σ2)/(σ1 + σ2) with axial strain ε1 for the
dense and loose samples is presented. In general, the dense samples exhibit a higher
initial stiffness than the loose ones. After the peak in the dense media, which is about

(a) (b)

Figure 3.8: Sample configuration at the end of the construction process: (a) dense and (b)
loose media.
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Figure 3.9: Evolution of (a) the deviator stress and (b) void ratio of the samples used to
asses the existence of the critical state. Simulation parameters, p0 = 64 kN/m,
N = 900 particles and µ = 0.5.

5% axial strain, a strain-softening behavior is observed. The loose media exhibit more
frequent and bigger variations in the stress behavior. Additionally, a peak strength is
not observed. Although an increase of fluctuations of the stress are observed for both
systems at large deformations, it presents a tendency to stabilize around a value that

one could consider as the steady state of the material (d ˙sinφ/dt = 0). The evolution of
the void ratio with axial strain is illustrated in Figure 3.9(b). Initially, the dense samples
contract and later the void ratio increases (dilatancy). For large axial strain values the
void ratio reaches a constant value. Comparing the evolution of dense samples in Figure
3.9(a) and (b) we notice that the maximum rate of dilatancy agrees with the peak strength
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Figure 3.10: Evolution of (a) the deviatoric component F11 − F22 and (b) the trace F11 +
F22 (coordination number) of the fabric tensor of the samples. Simulation
parameters, p0 = 64 kN/m, N = 900 particles and µ = 0.5.

(≈ 5% axial strain) which is expected on soils. It is especially observed in samples 1 and
2. The loose samples reduce their void ratio during the test (Fig. 3.9(b)), and it tends to
a constant ratio near to 20% axial strain. The void ratio in both dense and loose samples
varies until it achieves a constant value between 0.23 and 0.25. This stationary value
of e is slightly different for each sample, since the parameters e and φ at this stationary
state depend on the granulometric properties of the material [22, 71]. In this stage of
large deformations, the granular medium is deformed at constant volume and with the
same approximate value of deviator stress, which corresponds to the critical state of the
material and it is independent of the initial sample density [6]. All these features repro-
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Chapter 3 Critical state, strain localization and stress fluctuations

duce the asymptotic behavior of soils obtained in laboratory experiments [11]. Thus, the
existence of the critical state is validated in our numerical simulations.

Another issue we address is the evolution of the structural anisotropy or anisotropy
of the contact network of the granular packing [66, 67]. It is characterized using the
deviatoric component of the fabric tensor F defined in Sec. 2.8, and takes into account
the orientational distribution of contact normal vectors ~n. In Figure 3.10a the evolution
of the deviatoric component F11 − F22 of the fabric tensor with ε1 for the three refer-
ence samples is presented. One can notice that the contact network start from a rather
initial isotropic configuration F11 − F22 ≈ 0, and that as soon as the shear proccess
begins anisotropy is developed. This anisotropy is created due to creation and reori-
entation of contacts and force chains along the direction of loading. For dense sam-
ples, the anisotropy increases until the granular system develops its peak strength i.e.
the maximum anisotropy coincides with the maximum strength (≈ 5 % axial strain ε1).
On the other hand, the anisotropy in loose samples simply increases until it saturates
at a constant value between the statistical fluctuations. In the strain-softening regime
the anisotropy of dense samples decreases until it converges to the same value that
the loose samples have reached. Hereafter, the media deforms at a critical anisotropy.
This has been previously observed in numerical simulations of biaxial tests with the
DEM [76, 103, 104].

The creation and destruction of contacts can be studied by following the coordination
number Z, which is defined as the average of the number of contacts per particle on
the assembly. As defined in Sec. 2.8, the trace of F gives the coordination number. In
Figure 3.10b the evolution of the coordination number of the samples is presented. At
low axial strain values, the dense system contracts and as a consequence a small incre-
ment of Z is observed. This is followed by a decrease of the Z value when the system
start to dilate. This decrease is associated with the the breaking of interlocking between
particles and the related formation and collapse of force chains along the direction of
loading. As a result, each particle begins to lose contacts. This is macro-mechanically
observed by the trend of dense samples to increase their volume. In contrast, the loose
granular sample tends to a denser structure, and therefore new contacts are generated.
Both samples around 8% axial strain reach a similar coordination number Z close to 3.6.
This critical coordination number is the first signal that the granular packing is evolving
towards the critical state, and at the same time it enables the contact network to reach
an steady structure. Thus, the micro-mechanical requirements for the granular media to
reach the critical state at the macro-mechanical level are given. At the critical coordina-
tion number the media is highly susceptible to collapse, and as consequence fluctuations
mainly on the stress Fig. 3.9a are observed. These fluctuation are studied in Sec. 3.3.4.

We want also to evaluate the uniqueness of this stationary state, specifically, that there
is a unique void ratio for each state of effective stress at the critical state. Hence, we
perform biaxial experiments on one of the samples above mentioned and use different
initial confining pressures p0, namely, 16 kN/m, 64 kN/m, 128 kN/m, 160 kN/m, 256
kN/m and 320 kN/m. We remain in the low stress level, where dense samples still ex-
pand and exhibit a peak on the stress behavior [11]. High stress levels are not considered
since crushing of particles is the expected to be the primary mechanism of deformation
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Figure 3.11: Critical state line in the (a) compression plane void ratio e - mean stress p′

and (b) and stress plane q - p′. System parameters, N = 900 particles and
µ = 0.5. In (a) the squares indicate the initial state of the samples. In (a) and
(b) the circles are the values that samples reach at the stationary state, and
the error bars correspond to 1 standard deviation of the analyzed data.

and our model does not take this feature into account.

In Figure 3.11a, we plot in the compression plane, void ratio e - mean stress p′ (p′ =
(σ1 + σ2)/2), the initial states of the samples (blue squares) and the values of void ratio
that the loose and dense samples attain at large deformation (red circles). One can see
that the same limit state is reached for all the samples defining a unique steady state line.
This line can be fitted by a function of the form,

e(eref , n) = eref exp(−n (p′/p′ref )), (3.6)
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where eref and p′ref are the void ratio and the mean stress at the critical state correspond-
ing to the reference initial confining pressure p0,ref = 16 kN/m, and n is a constant. The
same collapse of the stresses at the critical state (red circles) onto a steady state line is
observed in Fig. 3.11b, in which the stress plain q − p′, being q = (σ1 − σ2) is depicted.
The stress ratio q/p′ at the critical state defines the strength parameter M , which for our
simulations is related to the critical state friction angle φcs as,

M =
qcs

p′cs
= 2 sinφcs . (3.7)

The range of variation of the friction angle at the critical state 22◦ ≤ φcs ≤ 27◦ found
in our simulations (Sec. 3.3.3), is compared to the limits usually obtained for sand and
gravel in three dimensional experiments in realistic soils 26◦ to 36◦ [16, 22]. This is ex-
plained in terms of the higher coordination number of systems in 3D [30], and the higher
the coordination number the higher the strength of the material as presented in Figs. 3.9a
and 3.10c.

The previous simulation results support the idea of uniqueness of the critical state [6,
11], in which a critical or steady state line links the critical states describing combinations
of effective stresses and void ratio e : q : p′ at which indefinite shearing occurs. This is
also in very good agreement with the experimental results of Verdugo et al. [16].

Finally, we evaluate the critical anisotropy for different stress sates, and we find that a
critical state line for anisotropy can also be defined as presented in Fig. 3.12. The relation
between structural anisotropy and mean stress p′ is best fitted by a linear function. Fur-
ther analysis concerning induced anisotropy in sheared granular media is carried out in
Chapter 4 of this thesis.
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parameters N = 900 particles and µ = 0.5.
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3.3.2 Shear bands

Strain localization has been experimentally studied by several researchers in the last
two decades, e.g. Vardoulakis [105], Desrues [36] and others. Using the discrete ele-
ment method Cundall [106], and Bardet and Proubet [107] have also studied this phe-
nomenon. In this section a brief analysis of strain localization is performed by studying
the displacement of the individual particles. In Figures 3.13 the displacement vectors of
the particles of a dense assembly, with p0 = 160 kN/m, N = 400 particles and µ = 0.5,
are presented. At the beginning of the test, the displacements are very small and one can
observe approximately a symmetrical deformation around the center of the sample (Fig.
3.13(a)). As the axial strain increases and before the peak strength is reached a slight
tendency to strain localization is observed. After having overcome the peak strength,
the particle displacements seem to define independent bodies with different displace-
ment directions (a clearer strain localization). This localization persists as the loading
increases, and becomes clearer around 8.9 % axial strain (Fig. 3.13(b)), where two ”shear
bands” are observed. After peak, these shear bands are not constant in time. In fact,
there are stages in which clear shear bands are observed, but they typically disappear,
leading to a stress falloff. These falloffs, as we will see in Section 3.3.4, are related to force

(a) (b)

(c)

Figure 3.13: Displacement of particle centers within a dense sample at three axial strains
values (a) 1.2 %, (b) 8.9% and (c) 20% of total.
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Chapter 3 Critical state, strain localization and stress fluctuations

chains collapse and therefore to rearrangements of the media that hinder the persistence
of the shear bands. The particle displacements of Figures 3.13(a) and (b) are taken from
two consecutive time intervals, which correspond to an increment of 0.1 % of axial strain.
Figure 3.13(c) presents the displacement at 20 % axial strain measured from the particle
initial position. Here three bodies with different direction of displacement, and the areas
(shear bands) defined between them are visible.

Concerning shear band orientation, experimental data from biaxial tests on sand in-
dicate that this orientation varies between the Mohr-Coulomb solution θC = 45◦ + φ/2,
where φ is the angle of friction of the material, and the Roscoe Solution θR = 45◦ +
Ψ/2 [108], where Ψ is the angle of dilatancy. The dilatancy angle is defined as Ψ =
arcsin(dǫV /dγ), where dǫV and dǫγ are the increments of volumetric and deviatoric strains
at failure [109]. We calculate the inclination angle of the shear bands in Figure 3.13(c),
and it varies approximately between 52◦ and 58◦. In this case, for φmicro = 28.8◦, we can
obtained from Fig. 3.15 the values of φcs ≈ 26◦ and Ψ ≈ 0◦ at the critical state. In this
way, the angles found in our simulation are within the limits defined by the predictions
of the Mohr-Coulomb solution θC ≈ 58◦ and Roscoe Solution θR ≈ 45◦.

Although the particle displacements of loose samples are not shown, their evolution
reflects the frequent force chains collapses and consequent rearrangement of the particles
within the sample. This is observed on the large displacements of the particles which are
associated with the drops of the stress-strain behavior. Strain localization is not clear in
loose media.

3.3.3 Macroscopic friction

An approach to connect the Coulomb friction at the grain level to the macro-mechanical
friction is to construct the Mohr-Coulomb failure surface of the granular sample. This
failure surface can be obtained from the envelope of the Mohr circles at the peak stress
value from biaxial tests [108]. The tests were carried out on dense samples, at three con-
fining pressures: 80, 160 and 320 kN/m. Different methods are used to describe the
failure surface of granular soils. In the following analysis, as used in traditional soil
mechanics, we assumed that the failure surface is linear. Figure 3.14 shows the failure
envelope of a granular sample with interparticle friction coefficient µ = 0.55 that corre-
sponds to an interparticle friction angle φmicro of 28.8◦ (µ = tan φ). The envelope is plotted
as a tangent straight line to the Mohr circles, and the angle of friction of the bulk material
is approximately 41◦. In our simulations, the macroscopic angle of friction was found to
be independent of system sizes varying from 100 to 3600 particles. Simulations of much
larger number of particles were not performed, since they are limited by the architecture
of the program, which requires static storage allocation for all variables.

If we compare this result with the one obtained by Bardet using DEM with disks [31],
we can then observe the important influence of particle angularity on the friction angle
φpeak of the medium. For instance, using very similar values of φmicro, 28.8◦ for poly-
gons and 26.5◦ for disks, the obtained values of φpeak are 41◦ and 22◦ respectively. The
ratio φpeak/φmicro is then equal to 1.42 for polygons and 0.83 for disks. Furthermore, as
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Figure 3.14: Mohr-Coulomb failure envelope constructed from biaxial test and Mohr cir-
cles. Interparticle friction angle φmicro = 28.8◦, and N = 400 particles.

mentioned in the previous Section, different macro-mechanical angles are correlated to
different orientation of the shear band, and therefore different localization patterns are
expected. In the case of disks, if particle rotation is constrained, as in Ref. [31], a value of
φpeak = 41◦ is obtained. In such case, although φpeak is equal to the value for polygons, the
sample dilatancy is almost completely hindered and therefore the stress-strain behavior
of the sample is highly affected. For example, no correlation between peak strength and
maximum rate of dilatancy is observed. All these observations confirm the important
role of particle shape, related to angularity, on the global behavior of granular media.

In order to study the effect of the interparticle friction φmicro on the macro-mechanical
friction angle φmacro, different interparticle friction coefficients and five different samples
with system size N = 400 were used in the simulations. Additional to the friction angle
at the peak stress φpeak, the friction angle at the critical state φcs was also calculated. Fig-
ure 3.15 shows for the five samples the values of φpeak and φcs obtained from variations
of φmicro. It is observed that at very low values of φmicro the macro-mechanical angles
are quite similar. For values of interparticle friction angle larger than 15◦ the granular
samples develop a clear peak strength φpeak (value different from φcs), while the φcs value
remains approximately constant. The last agrees with the experimental results obtained
by Skinner [110], except for the results from micro-mechanical angle close to zero. These
results suggest that, except at small values of φmicro where other mechanisms different
from friction play the important role, the friction angle mobilized at the critical state φcs

is independent of the interparticle friction coefficient. This particular feature has been
also observed in numerical simulations with circular particles [42]. The non-dependence
of macroscopic friction on contact friction is attributed to the spontaneous formation of
rotational patterns, such as the vorticity field shown in the Part (b) of Figure 3.13, and
clusters of particles with intense rolling. Those deformation modes have shown to re-
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Figure 3.15: Evolution of the macro-mechanical friction angle at peak strength φpeak and
at the critical state φcs. The dashed line is a power law approximation φpeak =
5.5 · φ0.53

micro + 6. System size N = 400 particles.

duce considerably the bulk friction with respect to the expected value of the simple shear
deformation [42].

Note that setting φmicro to zero, a value of φmacro close to 6.0◦ is obtained. Although this
value of φmacro is calculated from the average of the deviator stress, the frictionless gran-
ular media offers a resistance to shear. Similar results have been found experimentally
by Skinner [110], in theoretical work by Cambou [111], and more recently in DEM using
disks by Kruyt [112]. This support the idea that interparticle friction is not the unique
cause of the macroscopic frictional behavior of granular materials, in fact, it might be cer-
tainly a consequence of the nonlocal behavior of granular assemblies where the contact
scale is not the basic constitutive element.

3.3.4 Stress fluctuations

According to the Critical State Soil Mechanics, large shear deformations drive the gran-
ular specimen to limiting state as presented in Sec. 3.3.1. This state is characterized by
an isochoric deformation, where the stress ratio and the frictional dissipation stay con-
stant [11]. This is not exactly that our simulations show. Indeed, we find that samples
with different densities reach the same critical state, where the density and the stress ra-
tio stay approximately constant, except for some fluctuations. In this Section we inves-
tigate the onset of such instabilities exploring the time evolution of the microstructural
arrangement of the granular sample by following the evolution the fraction of sliding
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given by N(fn) ∼ exp(−x1.6) [82]. This is different from the distribution
N(fn) ∼ exp(−x) of circular particles [27].

contacts ns and the force chains.

In Figure 3.16 the direct relation between stress drops and collapse of force chains is
presented. We selected one of the several stress drops as depicted in Figure 3.16(a). Then
we plot the contact forces of the particles just before the stress drop Fig. 3.16(b) and right
after it Fig. 3.16(c). Comparing these two force networks, one can see that some of the
principal force chains after the stress drop have collapsed and therefore disappeared.
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Figure 3.17: Evolution of stress-strain and the fraction of sliding contacts with axial strain
(a) dense, (b) loose

This collapse drives the system to an internal rearrangement, in which particles undergo
big relative displacements. The last is confirmed by the study of the displacement field
of the individual particles as performed in Sec. 3.3.2, where big displacements of the
particles are associated with abrupt reductions of the stress. Between two collapses the
force chains build up leading to an increase of the macroscopic friction coefficient.

The microstructure of these collapses can be also visualized in the population of the
sliding contacts. Figure 3.17 shows the fraction of sliding contacts ns for dense and loose
sample. The sliding condition is given by the Coulomb’s condition, F c

t = µ ·F c
n. Initially,

the dense medium has more sliding contacts when it contracts. Later when the sample
begins to expand the number decreases. In general, the evolution of the sliding contacts
for both systems during loading, consists of stages where their number increases, and
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short time ”failures” where the fraction of sliding contacts jumps down.
Figure 3.17 also compares the stress-strain evolution to the fraction of sliding con-

tacts ns. We observe more initial stability, with low frequency of jumps in the stress, in
the dense sample. This stability is related to the average coordination number of the
medium (Sec. 3.3.1), and the bigger this value the bigger the resulting stability of the
granular skeleton. Although the jumps observed in the stress-strain behavior are less
frequent than ones in the sliding contacts (see Fig. 3.17), each stress jump is associated
with an abrupt reduction of the number of sliding contacts. Each stress drop matches
with a collapse of the fraction of sliding contacts.

These jumps in the stress deviator are present in realistic experiments of granular ma-
terial, but on a smaller scale [40, 41, 79]. In our simulations the magnitude of these
fluctuations can be partially attributed to the small size of the sample. One may ask the
question if these fluctuations disappear as the size of the sample increases. Simulations
results presented in Sec. 3.2 show that these fluctuations barely decrease as the number
of particles of the specimen increases [38]. The distribution of energy released of these
fluctuations in shear cell experiments follows approximately a power law [37]. The anal-
ogy of this statistics with the Gutenberg-Ritcher law will be introduced in Chapter 5 of
this thesis.

3.4 Concluding remarks

In order to investigate the characteristic modes of deformation and the stationary state
that granular packings attain under monotonic load, we perform specific test for the
small and large deformation stages. We summarize the results of this chapter as follows:

• For the small deformation stage stress-controlled quasi-static loading tests on gran-
ular polygonal packings have been performed. A direct relationship between the
way in which strain is accumulated and the behavior of the sliding contacts has
been found. As the stress imposed on the sample increases, the strain and the
number of sliding contacts gradually increases. It can be then observed a local-
ization of the deformation on an incipient shear band (Figure 3.5). At some point,
the strain accumulation shows some discontinuous jumps in which the number of
sliding contacts in the sample decays almost to zero. These jumps are related to
force chain collapses as presented in Sec. 3.3.4, and therefore to a rearrangement
of the granular packing. In this stage, there is a stress relaxation, and the grains
can move more freely and contacts are removed from the sliding condition. These
drop-offs of the sliding contacts seem to be independent of system size and appear
with a characteristic frequency strongly dependent on friction.

• The existence and uniqueness of the steady state that granular materials reach un-
der larger shear deformations have been assessed for different initial conditions.
The results show that at large strains the samples reach the critical state indepen-
dent on their initial density, and they deform at constant void ratio, shear stress,
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fabric anisotropy and mechanical coordination number. The last one has been
found to be the first variable to attain a critical value making possible for the rest
of micro-and-macro-mechanical variables the convergence to the critical state. The
uniqueness of the critical state is validated for our simulations, when it is found
that the critical states related to different stress states collapse onto only one critical
state line. We have also proven that for a wide range of contact friction coefficients,
axial loading leads to the same critical state. These results are valid for particles
with regular shape, in the next chapter we will study the influence of the anisotro-
pic shape of the particles on the previous remarks.

• In the critical state the system approaches and retreats an unstable behavior leading
to strong fluctuations of stress. The stress drops were correlated to the fraction of
sliding contacts and the stability yielded by the coordination number. We found
that the granular sample at critical state develops force chains highly susceptible to
collapse, driven to strong stress fluctuations. Stress collapses remove the contacts
from the sliding condition, and therefore lead to a temporal stability in the granular
sample.

• Biaxial experiments on granular packings with interparticle friction coefficient equal
to zero yield a small but still important resistance to shear. This fact implies that
interparticle friction is not the unique cause of the macroscopic frictional behavior
of granular materials, and is therefore in agreement with the idea of the nonlo-
cal behavior of granular assemblies where the macro-mechanical behavior stems
not only from phenomena occurring at the contact scale, but also from mesoscale
arrangements such as fabric evolution [44] and force chains [45–47].
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Chapter 4

Influence of particle shape and induced
anisotropy

There is still no clear information at the micro and macro-mechanical level about the
influence of anisotropic particle shape on the evolution of granular materials and the
corresponding anisotropic network of contacts towards the critical state reached at the
global level. Furthermore, the comprehension of the related micro-mechanisms are very
important in geotechnical engineering and physics in order to get a better understanding
of the mechanical response of granular materials.

It is known, that the observed macro-mechanical response is a result of particle-level
mechanisms, i.e, rolling [31–33] and contact sliding [34, 35], and of mesoscale arrange-
ments such as force chains [44, 46] and fabric anisotropy [66, 113, 114]. For such mecha-
nisms, particle shape is expected to play an important role [19, 21, 33, 48, 103, 115]. The
relevance of anisotropic shape stems from the stronger interlocking between particles
and the associated hindering of particle rotation.

In this chapter, we study the influence of anisotropic particle shape on the global
mechanical behavior of granular media and its evolution toward the critical state. We
perform molecular dynamics simulations of biaxial compression and of periodic shear
cells. We focus on the influence of particle shape anisotropy on the overall plastic re-
sponse. Further, the dependency of the mechanical behavior on the evolution of inherent
anisotropy, specially contact and non-spherical particle orientations, is studied. Results
are analyzed from the macro and micro-mechanical point of view.

In our MD simulations of shear cell tests, the results at macro-mechanical level show
that for large shear deformation samples with anisotropic particles reach the same sta-
tionary state independent of the initial particle orientations [48]. For isotropic particles
the direction of the principal axis of the fabric tensor at the critical state is aligned with
the principal axis of the stress tensor, while for elongated particles the fabric orienta-
tion is strongly dependent on the orientation of the particles. Results of the isotropic
compression of the samples and the biaxial test are presented in Sections 4.1 and 4.2,
respectively. In Section 4.3 results of the shear cell tests and the mechanical parame-
ters at the critical state are discussed. Finally, in Section 4.4 the concluding remarks are
presented.
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4.1 Packing density and initial anisotropy during isotropic

compresion

In this section we study the influence of particle shape anisotropy on the maximum and
minimum values of density obtained through isotropic compression and on the initial
anisotropy. To construct the granular samples, the reference regular square lattice used
to generate the isotropic polygons is distorted in vertical or horizontal direction to obtain
the anisotropic particles. Then, particles are moved apart to attain a very loose state. In
this loose state, we use rigid walls as boundaries to compress the system till the desired
confining pressure is reached. Further details of the construction process are presented
in Sec. 2.4. Axial (vertical) and lateral (horizontal) directions are indicated as 1 and 2,
respectively (see Fig. 3.1).

We use an initial isotropic confining pressure p0 = 16 kN/m, and a system size N =
900 particles. The material parameters of the simulations are kn = 1.6 ·108 N/m, ǫn = 0.8,
kt/kn = 0.33, ǫt/ǫn = 1.1, and the interparticle friction coefficient µ = 0.5. We consider
two different types of convex polygons as illustrated in Fig. 4.1. Polygons depicted in
Fig. 4.1(a) with an almost isotropic shape, from now on, will be called ’isotropic’ parti-
cles, and polygons in Fig. 4.1(b) will be referred as ’elongated’ or ’anisotropic’ particles.
Samples with anisotropic particles are labeled V or H, depending on the direction (ver-
tical or horizontal) along which were initially stretched. The shape of the anisotropic
particles is described by the aspect ratio λ, between the length of the longest and short-
est axis of the particles.

In Figure 4.2a the minimum and maximum values of the void ratio, emin and emax,
characterizing the density of the isotropic (λ = 1) and elongated (λ > 1) particles are
presented. Being the void ratio e = Vv/Vs, with Vv the volume of voids and Vs the volume

(a) (b)

Figure 4.1: Two types of particles used in the numerical simulations: (a) isotropic (λ =
1.0) and (b) elongated polygons (λ > 1.0). Points are the center of mass of
the polygons. In this particular case, elongated polygons have aspect ratio
λ = 2.3
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Figure 4.2: Influence of particle shape on (a) the limit void ratios emix and emax and (b)
the coordination number of the granular samples obtained through isotropic
compression. Isotropic (λ = 1) and anisotropic samples (λ > 1) are used.
Anisotropic samples H and V are presented.

of solid grains. One can notice that the value of void ratio e increases with the anisotropy
of particle shape λ. The difference between the limit values of the void ratio emix and
emax also increases with λ. The behavior of both density states can be well fitted by a
linear expression as shown in Fig. 4.2a. Similar experimental results have been found
previously on realistic granular materials [19, 116]. This is a natural consequence of the
particle shape anisotropy, which hinders particle rotation and thus the possibility for the
granular system to reach denser states. Elongated particles also enables the existence of
big gaps and open voids between particles [19].

The mean number of contacts per particle of the assembly, also called coordination
number, is presented in Fig 4.2b. The coordination number Z increases with λ due to
the larger relative plane surface of anisotropic particles that enables a larger number of
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Figure 4.3: Influence of particle shape on the fabric anisotropy and particle orientation
of dense and loose samples after the isotropic compression. We present in (a)
the deviatoric fabric F11 − F22 and in (b) the deviatoric component of inertia
tensor I11 − I22. The initial elongation of the particles along the vertical 11 or
horizontal 22 direction are indicated with labels V and H, respectively.

contacts. Around a value of λ = 3 the coordination number saturates to a constan value.
The direction along which the anisotropic particles are stretched during the construction
process has no influence in the final density state and coordination number as observed
in Fig. 4.2.

The situation is different when we look at the anisotropy of the contact network and
the orientation of elongated particles. The contact network is described by the mean
fabric tensor F and the orientation of the particles by the mean inertia tensor I. The
deviatoric component of F and I characterizes the anisotropy of the fabric and the ori-
entation of anisotropic particles, respectively. In Figure 4.3, the deviatoric component
F11 − F22 of the fabric tensor F and the deviatoric component I11 − I22 of inertia tensor
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I are presented. We can observe in Fig. 4.3a, that starting from a value close to zero for
isotropic particles (λ = 1) the anisotropy of the fabric increases with λ. The preferential
orientation of the contacts between the particles is determined by the direction in which
the particles are stretched before the compression. That is to say, vertical samples V with
particles initially distorted in axial direction develop most of the contacts along the axial
axis 11. This is similar in the case of horizontal samples H where the preferred orienta-
tion is the lateral axis 22. The preferential orientation of the particles is also determined
by the initial direction along which anisotropic particles are elongated, see Fig. 4.3b. In
conclusion, the parameter controlling the final mean orientation of the particles as well
as the fabric of the assembly is the direction along the particles are initially distorted.
These observations are independent of the final density state of the sample. A good cor-
relation between particle orientation and the direction in which contacts are generated
is also observed [48].

4.2 Biaxial test simulations

In this section, we evaluate the influence of particle shape anisotropy on the evolution
of granular packings toward the critical state. At the critical state granular materials un-
dergo unlimited shear deformation at constant volume and stress ratio [11]. The same
procedure as the one used in Chapter 3 for isotropic particles (monotonic biaxial com-
pression) is employed. The effect of the orientation of the initial fabric, i.e., contact net-
work and orientation of anisotropic particles, with respect to the direction of loading is
examined. The experimental procedure is the same of the strain controlled test presented
in Section 3.3. Particles are contained by rigid wall boundaries, and the deviatoric stress
is induced moving the horizontal walls (axial direction) at a constant rate ε̇1 while the
lateral stress σ2 is kept constant at 16 kN/m. Since our model does not take into account
the crushing of particles , we retain low stress levels. For this stress condition dense
samples still expand and exhibit a peak on the stress behavior [11]. The material param-
eters of the simulations are the same of the previous section. Two aspect ratio are used,
isotropic samples (λ = 1) and anisotropic ones (λ = 2.3). The longest axis of the particles
for sample V is parallel to the direction of loading, and for H samples is perpendicular
to it.

In Figure 4.4 the macro-mechanical evolution of the systems is presented. Fig. 4.4a
shows the evolution of sin φ = (σ1 − σ2)/(σ1 + σ2) with the axial strain ε1. As already
presented in Chapter 3, dense samples exhibit a higher initial stiffness and also a peak
strength. After this peak a strain-softening behavior is observed. The loose media do not
exhibit a peak. At large deformation, samples with the same λ value and the same par-
ticle orientation seem to reach a stationary value of stress within statistical fluctuations.

Figure 4.4b illustrates the evolution of the void ratio e with the axial strain. Initially,
dense samples contract and later expand. For large axial strain values dense and loose
samples with the same aspect ratio and initial orientation reach a similar void ratio. In
the case of isotropic samples, once they have reached the same value of void ratio they

53



Chapter 4 Influence of particle shape and induced anisotropy

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ε
1

(σ
1 −

 σ
2)/

(σ
1 +

 σ
2)

 

 

λ = 1.0
λ = 2.3 H
λ = 2.3 V

Dense

Loose

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

ε
1

V
oi

d 
ra

tio

 

 

λ = 1.0
λ = 2.3 H
λ = 2.3 V

Dense

Loose

Non−stationary value

Critical state

Dilatancy

(b)

Figure 4.4: Influence of particle shape on the evolution of (a) the deviator stress and (b)
the void ratio of the samples under biaxial compression. Isotropic λ = 1 and
anisotropic samples λ = 2.3 are used.

deform at constant e and constant shear stress. This is the critical state of the material,
which is independent of the initial density state [6, 11] (see also Chapter 3). On the
other hand, although the anisotropic samples reach similar value of void ratio they con-
tinue dilating and no stationary value of e is reached. We conclude that such anisotropic
samples do not attain the critical state under biaxial compression. This result has been
previously observed in numerical simulations with DEM [76].

The non-convergence of anisotropic samples to the critical state can be micromechani-
cally explained by looking at the evolution of the coordination number, of the deviatoric
component F11 −F22 of the fabric tensor, and of the deviatoric component I11 − I22 of the
inertia tensor. In Chapter 3, a critical value of the coordination number Z was found to
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Figure 4.5: Influence of particle shape on the evolution of (a) the coordination number
and (b) the deviatoric fabric F11 − F22 of the granular samples under biaxial
compression. Isotropic (λ = 1) and anisotropic samples (λ = 2.3) are used.

be the first signal when the systems with isotropic particles approached the stationary
state. On the contrary, anisotropic samples do not reach a steady value of the coordina-
tion number, as shown in Fig. 4.5(a). There, we can see that anisotropic samples have not
arrived to a steady value of coordination number. The structural anisotropy is presented
in Fig. 4.5(b). While the isotropic samples reach a critical value of anisotropy, the con-
tact network of anisotropic samples is still changing. The non-stationary state of these
variables is directly related to the evolution of the particle orientation. In Figure 4.6 the
evolution of I11−I22 is presented. We can observe that elongated particles are reoriented
during the shear process without converging to a steady state. Thus, the contact network
for anisotropic particles does not reach a stationary state either. This micro-mechanical
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of inertia tensor I11 − I22 of the granular samples under biaxial compression.
Isotropic (λ = 1) and anisotropic samples (λ = 2.3) are used.

evidence, concerning the non-stationary state of the fabric and particle orientation, does
not allow the systems to reach the critical state.

Next, we only discuss mechanical properties related to the peak strength φpeak on
dense packings since anisotropic samples do not attain a stationary state. We analyze
the influence of particle shape, initial particle orientation and fabric anisotropy on the
mechanical behavior before peak. From Figure 4.4, we see that the anisotropic sample
H develops a higher peak strength than sample V. This can be explained in terms of the
stability of the packing, i.e., particles oriented perpendicular to the direction of loading
(sample H) exhibit the most stable configuration and therefore the higher peak strength.
On the contrary, sample V presents an unstable configuration that deforms towards a
more stable structure. In this new configuration the particles are oriented perpendicular
to the loading direction. This becomes clear if we look at the evolution of the major prin-
cipal direction θI of the inertia tensor and the major principal direction θF of the fabric
tensor presented in Fig. 4.7. These principal directions are measured with the horizon-
tal axis x. We can see that for sample H, θI remains constant at ≈ 180◦, since it is the
most stable configuration to loading. Moreover, θF follows approximately the particle
orientation θI . In the case of samples V, θI is reoriented toward the horizontal direction.
The fabric orientation θF is determined by the particle orientation. Hence, as soon as
particles are reoriented, the preferential orientation of the contact network θF follows θI

(Fig 4.7b). The fabric in isotropic particles is always oriented in direction of loading 90◦.
Ii is known that an important amount of the energy necessary to shear dense granular

media is used in dilation [19, 117]. In this process the breakage of interlocking between
particles is necessary to reduce the coordination number. It is therefore expected that
the difference on the peak strength is related to the dilatancy rate of the samples. In
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Figure 4.7: Evolution of the major principal direction (a) θI of the inertia tensor and (b)
θF of the fabric tensor for isotropic particles (λ = 1.0), and elongated particles
(λ = 2.3). Particles initially oriented in horizontal direction are labeled H and
in vertical direction V.

Figure 4.4b, one can see that sample H with higher peak strength has a larger dilatancy
angle Ψ than sample V. This difference on the dilatancy rate is also reflected in the coor-
dination number of the samples. In Figure 4.5(a), we see that despite the same initial co-
ordination number the sample V (with smaller dilatancy rate) deforms during the shear
process with larger coordination number. This is due to the less breakage of contacts. All
these facts confirm the close relation between peak strength, dilatancy rate and coordina-
tion number of the samples. Similar experimental results concerning peak strength and
dilatancy rate have been observed on natural sands under triaxial compression [113].

To compare the strength that the isotropic and the anisotropic samples mobilize at
peak, one has to consider the influence of the stress-induced fabric anisotropy. This is
a determinant factor on the overall strength of granular packings [66, 114]. One can ex-
pect that the larger the induced fabric anisotropy the larger the strength. The evolution
of the fabric anisotropy of the dense granular samples is as follows (see Fig. 4.5). Ini-
tially, the deviatoric fabric F11 −F22 evolves in the direction of loading. This evolution is
independent of the initial anisotropy. In particular, for samples H the initial anisotropy
is partially erased and reoriented in the loading direction. The anisotropy reaches its
peak at similar axial strain value to the one at which the material develops its maximum
strength. Hereafter, the fabric anisotropy decreases due to collapses of force chains dur-
ing the softening regime [118]. The total induced fabric anisotropy at peak strength is
the difference between the value at peak and the initial one.

In Figure 4.8, the peak strength and the induced fabric anisotropy for different as-
pect ratio of the particles are presented. We can see that anisotropic samples H develop
higher φpeak than isotropic samples due to their stable structure, irrespective of the in-
duced anisotropy. On the contrary, the unstable configuration of samples V develops
lower or similar strength. In general, anisotropic samples before reaching the peak un-
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Figure 4.8: Influence of particle shape on (a) peak strength sin φpeak and (b) induced fabric
anisotropy at peak under biaxial compression. Isotropic (λ = 1) and anisotro-
pic samples (λ > 1) are used. Anisotropic samples H and V are presented.

dergo smaller fabric changes than isotropic samples due to the stronger interlocking and
preferential orientation of particles. The same is observed when comparing samples H
to samples V.

Finally, we plot in Fig. 4.9 the difference on peak strength ∆ sin φpeak and the corre-
sponding difference of the induced fabric anisotropy for samples with the same aspect
ratio λ. We can observe that a good correlation between ∆ sin φpeak and ∆ induced fab-
ric anisotropy is present. This correlation seems to be independent of the aspect ratio,
but still a deviation is observed. This deviation is expected, since additional factors re-
sponsible for the shear strength such the development of internal forces and its relation
to the fabric are not being considered. Further investigations regarding the relationship
between fabric, internal forces, and shear strength can be found in Ref. [30, 114, 119, 120].
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Figure 4.9: Relationship between the difference of induced fabric anisotropy and the dif-
ference of peak strength ∆ sin φpeak for samples with the same aspect ratio λ.

4.3 Shear Cell test - Critical state

In this section, we study the existence of the critical state for samples consisting of ani-
sotropic particles and the corresponding global mechanical behavior. The evolution of
micro-mechanical variables such as the fabric tensor, the stress tensor and the inertia
tensor are considered. In Section 4.3.1 the experimental setup is presented. In Sec-
tions 4.3.2, 4.3.3, 4.3.4 the results concerning mechanical behavior, evolution of micro-
mechanical variables and particle rotation are discussed. In these sections, two aspect
ratio of the particles are investigated, isotropic (λ = 1.0) and anisotropic (λ = 2.3). In
Section 4.3.5, we present a summary of the influence of the aspect ratio on the micro and
macro-mechanical parameters obtained at the critical state.

4.3.1 Numerical experiment

A configuration of the shear cell used in our simulations is depicted in Figure 4.10. The
shear cell contains 1500 particles, being 50 particle diameters wide and 30 diameters
high. The mean diameter of the particles is 1 cm. Periodic boundary conditions are
imposed in horizontal direction. The top and bottom have fixed boundary conditions.
A constant confining stress p0 = 16 kN/m is imposed between the bottom and the top
horizontal walls. The top and bottom layers of particles are moved in opposite direction
with a constant shear rate γ̇. The particles in these layers are not allowed to rotate or
move against each other. The top boundary is free to move in vertical direction in order
to permit a volumetric change of the sample, while the bottom is kept fixed.

In all simulations the mechanical parameters are the same given in Section 4.1. Ad-
ditionally, a background damping coefficient νb = 12 s−1 was used. This produces a
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Figure 4.10: Sketch of the shear cell. A normal force is applied between top and bottom
wall. A constant shear rate γ̇ is used to shear the sample. Light particles
(green in color) correspond to the image used to implement the periodic
boundary conditions.

background damping force, which is introduced in order to model the friction between
the particles and the bottom (or top) of the shear cell used on the two-dimensional ex-
periments performed by Veje et. al [121], and Howell et al. [122]. In order to evaluate the
influence of νb on the mechanical behavior of the medium, we performed simulations
with no and different values of it. We found that the damping νb in the range used here
has neither effect on the evolution of the internal variables nor the global mechanical
response of the medium.

The horizontal and vertical directions are indicated as x and y, respectively. In order
to study the evolution of the packing we use the strain variable γ, which is defined as
follows γ = Dx/ho, where Dx is the horizontal displacement of the boundary particles
and ho is the initial height of the sample. The void ratio e of the sample is related to the
volumetric deformation, e = VT /VS − 1, where VT is the total volume of the sample and
VS the volume occupied by all the particles.

4.3.2 Global mechanical behavior - effect of initial configuration

4.3.2.1 Statistically different samples

Samples corresponding to different seeds for the random number generation of the
Voronoi tesellation are used to evaluate the global mechanical response of the granu-
lar packing. This is done in order to assess whether different initial configurations of
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Figure 4.11: Evolution of (a) shear force and (b) void ratio for different samples with the
same mechanical parameters. Isotropic (λ = 1.0) and elongated particles (λ
= 2.3) are represented by light and dark lines, respectively.

particles reach the same steady state. Our results correspond to a shear rate γ̇ = 0.35
s−1, and to elongated polygons initially oriented perpendicular to shear direction. In
Figure 4.11 the evolution of the resultant shear force and the void ratio is presented for
the different configurations. In Figure 4.11(a), the shear force Fs is normalized by the
normal force Fn applied to the system. Initially, the ratio Fs/Fn has a strong increment
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Figure 4.12: Evolution of the coordination number for different samples with the same
mechanical parameters. Isotropic particles λ = 1.0 (light lines) and elongated
ones λ = 2.3 (dark lines).

related to the breaking of the interlocking of the particles. After this stage, a saturation
towards a nearly constant value of the Fs/Fn ratio necessary to shear the granular media
is observed. This behavior is identical for all the samples. For small values of strain, the
evolution of the void ratio (Figure 4.11b) also presents a high initial increase saturating
later at a constant value. This saturation occurs slower than for Fs/Fn. Samples with
elongated particles saturate at a higher value of Fs/Fn and also higher void ratio, as a
consequence of the stronger interlocking due to the particle shape. One can therefore
conclude that elongated grains are more sensitive to volumetric changes and develop a
higher shear strength. This result had been in fact previously observed [76, 103]. We
consider this saturation of the Fs/Fn value and void ratio e as the steady state of the
sheared material.

The evolution of the coordination number for isotropic and elongated particles is de-
picted in Figure 4.12. Note that, despite reaching a higher void ratio, samples with elon-
gated particles saturate at larger value of coordination number compared to isotropic
particles. This can be understood in terms of a geometrical effect, a consequence of the
flat shape and/or larger relative plane surface in the λ = 2.3 case, which allows for a
higher number of contacts per particle.

4.3.2.2 Different initial particle orientations

We study in this section the influence of the anisotropy on the macroscopic behavior of
granular media due to the initial orientation of elongated particles. Three different initial
configurations are obtained for the samples used in this analysis:

1. On average the grains are oriented parallel to the shear direction (this will be called
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”horizontal” sample - H).

2. On average the grains are oriented perpendicular to the shear direction (we will
call this the ”vertical” sample - V).

3. Grains (H or V) are randomly rotated before isotropic compression (which we call
the ”random” samples - HR or VR).

Configurations number 1 and 2 correspond to samples with different initial orientation
of the particles. Configuration number 3 is equal to configurations 1 and 2, but with an
additional induced random rotation to the particles before the compression (between 0
and 2π rad). In all three cases the samples wind up having a slight deviation from the
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Figure 4.13: Evolution of (a) shear force and (b) void ratio for samples with different
initial particle orientation, λ = 2.3. Samples labelled H and V have particles
oriented in horizontal and vertical direction, respectively. R corresponds to
an initial random rotation of the particles.
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originally induced anisotropy due to the shape of the shear cell (rectangular), the rigid
walls used for the compression, and the particle interactions during the construction
process.

In Figure 4.13, the evolution of Fs/Fn and the void ratio e for samples with particles
initially oriented in horizontal and vertical direction, and an additional random rotation
is presented. Results correspond to a shear rate γ̇ = 1.4 s−1. We notice that Fs/Fn and the
void ratio e evolve toward the same saturation value when they reach the steady state
independently of the initial anisotropy due to contact and particle orientations. This
independence of the initial anisotropy will be explored by studying the evolution of the
internal variables in Sec. 4.3.3.
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Figure 4.14: Polar distribution of branch vectors in the initial configuration (a,b,c) and
the steady state (d,e,f), for isotropic particles λ = 1.0 (a,d), and elongated
particles (λ = 2.3) initially oriented in horizontal direction (b,e) and in ver-
tical direction (c,f). The principal directions of the mean fabric tensor (FM

and Fm), and the reference axes x and y are plotted with solid and dashed
lines, respectively. The radius of the dashed circle corresponds to the max-
imum value of the distribution. The values here represented correspond to
the steady state (γ = 30), when these magnitudes remain approximately
constant.
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4.3.3 Evolution of internal variables

The evolution of the local stress, the fabric and the inertia tensors of the isotropic and
anisotropic samples is studied in this section.

In Figure 4.14(a-c), we show the orientational distribution of the branch vectors and
the principal directions of the mean fabric tensor (FM and Fm) for the initial configu-
ration of the samples. Observe that, in the case of isotropic polygons (Fig. 4.14(a)),
the distribution presents no preferred direction within the statistical fluctuations. For
elongated polygons (Fig. 4.14(b-c)), however, one can observe that the major principal
component of the fabric tensor F is oriented towards the direction in which the polygons
were initially stretched.

The anisotropic distribution of the contact orientations is more pronounced in case (b)
than in case (c); this is most probably due to the shape of the shear cell (which indeed is
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Figure 4.15: Polar distribution of particle orientations θp, initial configuration (a,b) and
in the steady state (c,d) for elongated particles (λ = 2.3) initially oriented
in horizontal direction (a,c) and in vertical direction (b,d). The principal
directions of the global inertia tensor (IM and Im), and the reference axes x
and y are plotted with solid and dashed lines, respectively. The radius of the
dashed circle corresponds to the maximum value of the distribution. The
values here represented correspond to the steady state (γ = 30), when these
magnitudes remain approximately constant.
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wider than higher) and the compression process using rigid walls. The angular distribu-
tion of the contacts in the steady state (γ = 30) is depicted in Figure 4.14(d-f). We notice
that the distribution of contact orientations for elongated particles (Fig. 4.14(e-f)) is very
similar independent of their initial orientation, while for isotropic particles (Fig. 4.14(d))
it is clearly different. The major principal direction of the fabric tensor follows this same
trend.

In Figure 4.15, the polar distribution of θp for elongated particles, and the principal
directions of the mean inertia tensor (IM and Im) in the beginning and in the stationary
state are presented. We observe that, similar to the case of contact orientations, they
evolve towards the same global orientation independently of the initial particle direc-
tions.
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Figure 4.16: Evolution of the deviatoric component of the fabric (a) and the inertia tensor
(b) for isotropic particles λ = 1.0, and elongated particles (λ = 2.3) initially
oriented in horizontal direction (H) and in vertical direction (V).
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In order to study the evolution of the fabric and inertia tensors we monitor their devi-
atoric component Fyy − Fxx, and the quotient Fxx / Fyy during the simulation. One can
observe in Figure 4.16, where the evolution of the deviatoric component of Fij and Iij is
shown, that the deviatoric reaches a stationary value for both types of particles, and that
the induced anisotropy is much higher for elongated particles than for isotropic ones.
The same result is observed for the quotient of the principal components of the tensors
(Figure 4.17). This stationary value of the deviatoric component and the quotient is di-
rectly related to the steady state at the macro-mechanical level, and seems to be a micro-
mechanical requirement for the global steady state. This assumption is supported by
simulations of biaxial tests reported by Nouguier-Lehon et al. [76], where samples with
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Figure 4.17: Evolution of the quotient of the principal components of the fabric (a) and
the inertia (b) tensors for isotropic particles λ = 1.0, and elongated particles
(λ = 2.3) initially oriented in horizontal direction (H) and in vertical direction
(V).
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elongated particles do not reach neither a stationary value for the components of the
fabric and the orientation tensors nor the so-called critical state at the macro-mechanical
level, but samples that reach the stationary state for the components of the tensors do so
at the global level.

Furthermore, for samples with elongated polygons the deviatoric part of the Fij and
Iij tensors, and the ratio of their principal components reach approximately the same sta-
tionary value independent of the initial particle orientations. This means that the initial
inherent anisotropy (fabric and particle orientation) is completely erased and reoriented
in direction of the induced shear during the experiment. The evolution of the major
principal direction of the fabric θF , the inertia θI and the stress tensors θσ are shown in
Figure 4.18. In the case of the inertia tensor, the major principal direction θI is reoriented
for all samples towards an angle close to 160◦. For the stress tensor, θσ (≈ 45◦) is the
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Figure 4.18: Evolution of the major principal direction of the fabric (a), the inertia (b), and
the stress (c) tensors for isotropic particles λ = 1.0, and elongated particles (λ
= 2.3) initially oriented in horizontal direction (H) and in vertical direction
(V).
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same for both particles independent of the particle shape. This orientation of the stress
comes from the direction of the force chains carrying the largest stresses (Fig. 4.19(c-d)).
On the other hand, the major principal direction of the fabric tensor θF is completely
different for isotropic and elongated polygons. In the case of elongated polygons, the
fabric orientation is close to the inertia tensor. For isotropic particles, the difference θF -
θσ is about 5◦. The directions of fabric and stress are therefore practically aligned in our
simulations, similarly to what Thornton and Zhnag [123] found in simple shear test sim-
ulations. Lätzel et al. [124], however, did not find any alignment of the direction of the
tensors in simulations of a Couette shear-cell. This different result reinforces the impor-
tance of the boundary conditions (geometry of the tests) in the internal structure of the
system.

To clarify further the result of different orientation of the fabric for isotropic and ani-

Figure 4.19: Force chains (light lines, thickness proportional to magnitude) and principal
axes of the fabric tensor (black lines), for initial configuration (a,b) and the
steady state (c,d), for isotropic λ = 1.0 (a,c) and elongated particles λ = 2.3
(b,d).
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sotropic particles, the contact forces larger than the mean value and the principal axes of
the fabric tensor of the corresponding particles are plotted in Figure 4.19. This is done
for both types of polygons, and for the initial configuration and a snapshot in the steady
state. In Figure 4.19(a), where the initial configuration of isotropic particles is shown,
one can observe that the major principal axis of the fabric tensor of each particle F p

M is
oriented independently of the orientation of the force chains. In the system with elon-
gated particles, however, F p

M is slightly oriented in the largest dimension of the particles
(major principal axis of the tensor of inertia of each particle ipM ).

In the stationary state, we notice that in the system with isotropic particles F p
M approx-

imately follows the direction of the force chains that carry the larger forces. In the one
with elongated particles, on the contrary, F p

M is oriented in the direction of the largest
dimension of the particles ipM . The orientation of the elongated particles within the main
force chains is associated to the stability of the packing. That is to say; forces are trans-
mitted in direction of the minor principal axis of the inertia tensor of each particle ipm,
and therefore the contact points lie on flat surfaces which give a more stable configura-
tion to the system. We conclude then that the orientation of the contacts in the steady
state, in the case of non-spherical particles is governed by the particle orientation, and
for isotropic particles by the direction of the major principal stress. This is also observed
in Figure 4.18, where in the steady state for isotropic particles θF is almost the same as
θσ, and for elongated particles θF is nearly θI .

Although the results presented in this section correspond to dense samples and one
value of confining pressure, they are valid for different initial density states and stress
levels as presented in Chapter 3, Sec. 3.3.1. In that chapter, we find in our simulations
that the granular packings converge to the same critical state line independent of initial
density state and stress level. These results validate in our MD simulations the existence
of the so-called critical state in soil mechanics irrespective of any initial condition and
particle shape characteristics.

4.3.4 Shear localization and particle rotation

In order to study strain localization and particle rotation, the shear cell is divided into
horizontal layers, i.e parallel to the shear direction. For a clearer presentation of the re-
sults, we normalize the vertical dimensions with the height of the system h. The origin
corresponds to the bottom and 1 to the top of the sample. We use in our analysis the
rotation that particles accumulate during every unit increment (∆γunit) of the strain vari-
able γ in the steady state (in our experiment we take γinitial = 10 and γfinal = 35, i.e. in
total 25 ∆γunit). Then, we average this accumulated particle rotation for each layer of the
system, and for all the considered strain increments.

In Figure 4.20, the average accumulated rotation in the steady state for each layer and
a shear rate γ̇ = 1.4 s−1 for isotropic and elongated particles is shown. We observe a
clear localization of rotations, having a peak close to the center and decreasing toward
the boundaries. This distribution resembles the movement of two rigid bodies against
each other on a shear band. We calculated the variance of the data in order to quantify
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Figure 4.20: Average accumulated rotation of the particles during the steady state within
horizontal layers as a function of relative depth. Isotropic particles λ =
1.0 (full dots), elongated particles λ = 2.3 V (open squares) and λ = 2.3 H
(asterisks).
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71



Chapter 4 Influence of particle shape and induced anisotropy

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2Π rad

P
 (

2Π
 r

ad
)

λ = 2.3 H
λ = 2.3 V
λ = 1.0

Figure 4.22: Probability distribution function of accumulated rotation since the begin-
ning of the simulation until γ = 35, for isotropic particles (λ = 1.0, light line),
and elongated particles (λ = 2.3) initially oriented in horizontal direction
(black line), and in vertical direction (black-dashed line).

the localization of rotation. We obtained for the case of anisotropic particles 0.024 and
0.0303 (samples 2.3H and 2.3V, respectively), and 0.052 for isotropic ones. We were also
interested in the width of the shear zone, which we define here as the width of the dis-
tribution with particle rotation larger than 80 % of the maximum rotation. We found in
this analysis two important differences between the two types of particles considered:

• The accumulation of rotation is stronger for isotropic than for elongated particles.
In this particular case the rotation of elongated polygons is only the 65 % of the
isotropic ones. This is also stressed by the variance of the data.

• The width of the localization zone is smaller for elongated particles (around 0.45
times the system height h for elongated and 0.55 times h for isotropic particles).

These differences in accumulated rotation and relative width between isotropic and
elongated particles can be explained by the frustration of movement and rotation that
elongated particles experience due to the stronger interlocking among them. In this
way, the localization zone (rotation zone) for elongated polygons becomes thinner than
for isotropic ones. In Figure 4.21 the mean accumulated rotation since the beginning
of the simulation for isotropic and elongated particles is depicted. Notice that the mean
rotation is almost twice for isotropic than for elongated particles at the end of the simula-
tion. We also calculate the probability distribution function of particle rotation, which is
shown in Figure 4.22 for both isotropic and elongated particles and γ = 35. For isotropic
particles a more uniform distribution is observed, and the maximum value is close to
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4.3 Shear Cell test - Critical state

four complete rotations (a complete rotation 2π rad). For elongated particles the proba-
bility distribution function presents several peaks every half of rotation (π rad). This fact
indicates the strong frustration of rotation that such particles undergo during shearing,
and that the typical mode of accumulating rotation is then every half complete rotation.

4.3.5 Influence of anisotropic particle shape on the critical state

parameters and particle rotation

In this section, we study the influence of anisotropic shape on the parameters that the
granular packings attain at the critical state. We consider dense samples with elongated
particles initially oriented in the vertical direction and with the aspect ratios λ = 1.0, 1.5,
2.3, 3.0 and 4.0. The confining pressure p0 is kept constant at 16 kN/m, and the shear
rate γ̇ = 1.4 s−1. The material parameters of the simulations are the same of the previous
sections.

In Figure 4.23 we present the average values of the macro and micro-mechanical pa-
rameters for the different aspect ratio at the critical state. We consider the ratio between
the shear and normal force Fs/Fn, the void ratio e, the coordination number Z, the de-
viatoric component Fyy − Fxx of the fabric tensor F, the deviatoric component Iyy − Ixx

of the inertia tensor I, and the mean accumulated rotation of the particles 〈Θ〉. The
data correspond to the average of the variables once the critical state has been reached.
The standard deviation is also presented. Furthermore, the evolution of the deviatoric
components Fyy − Fxx and Iyy − Ixx with shear strain γ is shown in Fig. 4.24. From
Figures 4.23 and 4.24 we conclude the following:

• The larger the anisotropy of particle shape λ, the larger the strength of the material
at the critical state (Fig. 4.23a).

• The larger the anisotropy of particle shape λ, the larger the void ratio at the critical
state and, therefore, the larger the volumetric deformation (Fig. 4.23b).

• For λ ≤ 2.3 the larger the anisotropy of particle shape λ, the larger the coordination
number Z of the particles. For λ > 2.3 the Z value saturates and remains constant
(Fig. 4.23c).

• The larger the anisotropy of particle shape λ, the larger the fabric anisotropy at the
critical state (Fig. 4.23d).

• The larger the anisotropy of particle shape λ, the larger the anisotropy related to
particle orientation at the critical state (Fig. 4.23e).

• The larger the anisotropy of particle shape λ, the smaller the accumulated mean
particle rotation angle 〈Θ〉 (Fig. 4.23f).

• The larger the anisotropy of particle shape λ, the longer the time to reach micro-
mechanical equilibrium in fabric and particle orientation (Fig. 4.24).
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Figure 4.23: Effect of particle shape on the critical state values attained by the granular
packings on shear cell tests, (a) ratio shear - normal force Fs/Fn, (b) Void
ratio, (c) coordination number Z, (d) deviatoric fabric Fyy−Fxx, (e) deviatoric
inertia Iyy − Ixx and, (f) mean accumulated rotation 〈Θ〉 of the particles since
the beginning of the simulation till a shear strain γ = 30. The following
aspect ratio λ are used: 1.0, 1.5, 2.3, 3.0 and 4.0. The shear rate γ̇ = 1.4 s−1.
The error bars correspond to 1 standard deviation of the analyzed data.
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The above statements concerning the influence of anisotropic particle shape on the
macro-mechanical behavior of granular packings, namely larger mobilized shear strength
and more sensitivity to volumetric changes (dilatancy) with the increment of the aspect
ratio λ, are explained in terms of the bigger interlocking among particles and the strong
frustration of rotation that such particles undergo during shearing. Particle rotation is
further hindered by the larger coordination number that anisotropic particles develop
due to the larger relative flat surface. The last contribution to the macro-mechanical
observations is the larger structural anisotropy (fabric) attained by the anisotropic sys-
tems at the critical state. This fabric anisotropy is directly related to the orientation of
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Figure 4.24: Evolution of the deviatoric component of the (a) fabric tensor F and (b) iner-
tia tensor I for isotropic particles (λ = 1.0), and elongated particles (λ > 1.0).
Samples with anisotropic particles are initially oriented in vertical direction
(V).
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anisotropic particles as presented in the previous sections.

4.4 Concluding remarks

In this chapter, we investigate the influence of particle shape on the final configuration
of granular packings after isotropic compression, and specially on the mechanical be-
havior of sheared granular media. Our results show the significant influence of particle
anisotropy on both the macro and micro-mechanical behavior of the granular samples.

Concerning the density and coordination number of the packing after the isotropic
compression, we found that the value of void ratio e increases with the anisotropy of
particle shape λ. The difference between the limit values of the void ratio emix and emax

also increases with λ. This volumetric behavior is well fitted by a linear expression, simi-
lar to previous experimental results [19]. The coordination number also increases with λ,
but it saturates to a constant value for λ > 3. For anisotropic particles the direction along
which they are initially stretched, has no influence in the final density state and coordi-
nation number. Regarding the anisotropy of the fabric and orientation of non-spherical
particles, we found that the parameter controlling the final mean orientation of the par-
ticles as well as the fabric of the assembly is the direction along the anisotropic particles
are initially distorted. These observations are independent of the final density state of
the sample. A good correlation between particle orientation and the direction in which
contacts are generated is observed.

During biaxial compression, we observed that contrary to isotropic particles, the ani-
sotropic samples continued dilating and do not reach a stationary value of void ratio e
and therefore do not attain the critical state. We explain this macro-mechanical evidence,
by looking at the micro-mechanical evolution of the systems. For instance, the coordina-
tion number Z which is found to be the first signal when the isotropic systems approach
the stationary state, in the case of anisotropic particles it does not converge to a station-
ary value. Following the evolution of anisotropic particles orientations, we find that
these particles are reoriented during the shear process without attaining a steady state.
Thus, the contact network for anisotropic particles does not reach a stationary state ei-
ther. These micro-mechanical facts, concerning the non-stationary state of the fabric and
particle orientation, do not permit the systems to reach the critical state.

Since anisotropic samples do not attain a stationary state, we analyze the mechani-
cal properties related to the peak strength of dense samples. We find that anisotropic
samples with a stable configuration relative to the direction of loading, i.e., particles
oriented perpendicular to it, developed a higher shear strength φpeak than isotropic sam-
ples irrespective of the induced fabric anisotropy. Anisotropic samples with unstable
structure deform towards a more stable configuration and develop similar strength to
the one of isotropic samples. In general, anisotropic samples before reaching the peak
undergo smaller fabric changes than isotropic samples due to the stronger interlocking
and preferential orientation of particles. The peak strength of the samples is related to
the dilatancy rate and to the breakage of interlocking between the particles to reduce the
coordination number. A very good relationship between peak strength, dilatancy rate
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and coordination number is observed.
In the shear cell tests, we found that for samples with isotropic and elongated particles

the shear force and volumetric strain saturate at constant values reaching a steady state.
These values in the case of elongated particles are higher than for isotropic particles due
to the stronger interlocking between anisotropic particles. Furthermore, samples with
anisotropic particles reach the same saturation value in the steady state independently
of the initial orientation of the particles. This is related to the removal and reorientation
of the initial inherent anisotropy (fabric and particle orientations) in the direction of the
induced shear. The previous conclusion was confirmed by studying the evolution of the
fabric and the inertia tensors.

The deviatoric part and the quotient of the principal components of the fabric tensor F

and the inertia inertia I, for both types of particles, reach a stationary value independent
of their initial one. This is directly related to the steady state at the macro-mechanical
level. The principal directions of F and I present the following behavior: in the initial
state of the samples, isotropic polygons exhibit no preferred direction of contacts, how-
ever, in the case of elongated polygons the major principal component of F is oriented
along the direction of the major principal component of I. In the steady state, and for
isotropic particles the major principal component FM is reoriented in the direction of
the major component of the stress tensor σ, but for elongated particles FM evolve fol-
lowing the induced orientation that particles undergo during shearing. The direction
of the major component of σ is the same for both particle shapes. Independently of the
initial orientation, samples with elongated particles reach the same contact θF and par-
ticle θI global orientation in the steady state. One can then conclude that a stationary
value of the principal components and principal directions of the fabric and inertia ten-
sors is a micro-mechanical requirement for the existence of the global steady state of the
medium. We also concluded that for isotropic particles the contact orientation in the
global stationary state is governed by the direction of the major principal component of
the stress tensor, and for elongated particles mainly by the major principal component
of the inertia tensor (particle orientation).

At the particle level, these results are clearly understood by studying the inertia tensor
and the fabric tensor of the particles within the force chains carrying the larger forces.
We find that the orientation of elongated particles is associated to the stability of the
packing, i.e. forces are transmitted through contacts parallel to the shortest dimension
of the particles ipm.

Concerning strain localization and particle rotation we observe that the width of the
shear zone and the accumulated rotation is larger for isotropic particles than for elon-
gated particles. This result can be explained by the frustration of rotation that elongated
particles experience due to the stronger interlocking among them, and it is clearly ob-
served in the probability distribution function of the angle that particles have rotated
during shear. The typical mode of accumulating rotation for elongated particles is every
π rad.

Based on the results of our MD simulations presented in Chapters 3 and 4, the exis-
tence and uniqueness of the critical state in soil mechanics is validated, and it is found to
be independent of any stress-density initial condition and of any particle shape charac-
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teristics. Finally, by varying the aspect ratio λ of the particles, we can state the following
conclusions regarding the micro and macro-mechanical parameter that granular pack-
ings attain at the critical state. The larger the anisotropy of the particles λ:

• The larger the strength of the material at the critical state.

• The larger the void ratio at the critical state and, therefore, the larger the volumetric
deformation.

• The larger the coordination number Z of the particles. For λ > 2.3 the Z value
saturates and remains constant.

• The larger the fabric anisotropy at the critical state.

• The larger the anisotropy related to particle orientation at the critical state.

• The smaller the accumulated mean particle rotation angle 〈Θ〉.

• The longer the time to reach micro-mechanical equilibrium in fabric and particle
orientation.
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Chapter 5

Avalanches in periodic shear cells

Natural earthquakes are one of the most catastrophic events in nature [50, 125] with deep
social implications, in terms of human casualties and economic loss [125]. Considerable
efforts have been made to understand the earthquake dynamics and the underlaying
mechanisms prior to the occurrence of the events [126–129]. In particular, the study of
earthquake faults-both experimentally [130–132] and through particle based numerical
models [37, 42, 43, 81]-have received special attention.

In most of the existing numerical models of earthquake fault the gouge is represented
by discs [42, 81] or spheres [29]. The dynamics of such material within the fault is
thought to control the stick-slip instability that characterizes earthquake process. An un-
derstanding of its properties is, therefore, vital to understand earthquake dynamics [49].
For instance, the existence of the gouge within the fault has been proposed to explain the
low dissipation on shear zones and this explained the heat flow paradox [133]. In this
case, the reduction of the macroscopic friction and consequently, the heat generation is
attributed to the deformational patterns such as rolling of particles [42, 81]. In laboratory
experiments by Maron [130], the influence of particle characteristics has also been stud-
ied. They found that frictional strength and stability of the granular shear zone is influ-
enced by particle shape, size distribution and their evolution through particle crushing.
Modeling of fault gouges, therefore, must include different grain characteristics.

In this chapter, we use our model of polygonal particles [39, 48] to mimic the rela-
tive movement of two tectonic plates with transform boundaries, i.e. the boundaries are
parallel to the direction along which the tectonic plates move [50, 51]. Although similar
to the work performed by Tillemans et al. [37], our model considers anisotropic parti-
cle shape. The response of the system is characterized by discrete events or avalanches
whose size covers many orders of magnitude, similar to the so-called crackling noise
of physical systems [52]. We find that the magnitude of the avalanches is independent
of particle shape and in good agreement with the Gutenberg-Richter law describing the
distribution of magnitudes for natural earthquakes [53]. We also obtain a power law
behavior for the waiting times of aftershocks sequences similar to the Omori’s law [54]
that states that the rate of events after the main shock decrease with the inverse of time.
We obtain an exponent for the time decay that is dependent on the initial sample con-
figuration and therefore on the particle shape. From this result, we will conclude that
by studying the avalanche sequences it is possible to identify at the macro-mechanical
level the presence of anisotropic particles within the gouge. Further, we argue that the
existence of this anisotropic gouge in fault zones might also explain the variation of
the decay of the aftershock sequences observed in nature. For a given stiffness value
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and mobilized frictional strength, we also computed the conditional probability for an
avalanche to occur, and found that it decreases logarithmically with the stiffness. This
logarithmic decay depends on particle shape. Concerning frictional strength, anisotro-
pic samples are able to mobilize higher strength than the isotropic samples. For a given
value of mobilized strength anisotropic samples also exhibit lower probability of failure.
Finally, we propose some microstructure features that could be related and can poten-
tially explain the occurrence of avalanches.

This chapter is organized as follows. In Section 5.1, we present the basic fundamentals
of plate tectonics. The details of the movement of tectonic plates in our simulations
are described in Sec. 5.2. In Sec. 5.3 we characterize and study the system response.
In Secs. 5.4 and 5.5 we address the influence of particle anisotropy on the frequency
distribution of avalanches and on the width of the time interval where aftershocks occur.
The weakening and stability of the system is investigated in Sec. 5.6, and in Sec. 5.7 the
main conclusions and perspectives for avalanche precursors are discussed.

5.1 Plate tectonics

The relative motion of tectonic plates is directly related to the occurrence of natural
earthquakes [50, 51, 134]. The tectonic plate theory [135] was scientifically accepted dur-
ing late 1960’s, and could explain many geological processes, such as volcanic activity,
mountain-building, among others [51]. The outer shell of the earth-the lithosphere-is
broke up into the tectonic plates. The lithosphere lies above the asthenosphere. Al-
though the asthenosphere is rigid, it can flow on geological time scales because of the
high temperature of the layer. The forces driving the tectonic motion are then due to: (i)
sinking of tectonic plates into subduction zones due to the higher density of the litho-
sphere compared to the asthenosphere, and (ii) convection currents moving the litho-
sphere [50, 51, 134].

The relative motion of the tectonic plates produces stress accumulation at their bound-
aries, in such a way that it is released afterwards in strain generating displacements on
the surface. From the distribution of the tectonic plates and the records of earthquakes
epicenters between 1963-1998 [137], we observe that the location of the epicenters clearly
define the boundary of the tectonic plates (see Fig. 5.1).

Depending on the relative motion of the tectonic plates, there are three possible bound-
aries: (i) extensional or divergent, (ii) compressional or convergent (subduction zone)
and (iii) transform boundaries. They are sketched in Fig. 5.2. In the transform bound-
aries, tectonic plates move in the opposite directions shearing the material within the
boundary. Because of the simplicity of the transform boundary, we are able to mimic
its behavior in our MD simulations. One of the most well known examples of this type
of boundary is the San Andres Fault in California where the Pacific plate and the North
American plate are moving in opposite directions. In this particular case, the relative mo-
tion of the plates is about 40 mm/year, and thus the strain accumulation rate is around
3 · 10−7 per year [139].
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Figure 5.1: Earth’s tectonic plates according to plate tectonics theory [51] (picture taken
from NASA’s observatorium [136]) and preliminary earthquake epicenters
from 1963-1998, NASA records [137].

5.2 Generation of samples and numerical experiment

In this chapter we use samples with isotropic and anisotropic particles to study the in-
fluence of particle shape on the mechanical behavior of packing sheared by a very low
shear rate. The random generation of the particles is done by means of a Voronoi tes-
sellation as explained in Sec. 2.4. The polygons are nearly isotropic and are obtained
from a regular square lattice. By distorting the square lattice in the horizontal and verti-
cal directions, we end up with anisotropic or elongated particles. The ratio between the
stretching and contracting factors gives us the average aspect ratio λ of the polygons,
that is used to characterize the anisotropic shape of the particles.

In Figure 5.3 the different initial configurations are shown. The isotropic configuration
is depicted in Fig. 5.3a, and the anisotropic ones in Fig. 5.3b for particles stretched in the
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Figure 5.2: Types of plate boundaries: extensional or spreading, compression or colli-
sional and transform boundaries. Picture taken from Nevada seismological
laboratory [138].

same direction of shearing (horizontal direction, sample H) and in Fig. 5.3c for particles
stretched perpendicular to shear direction (vertical direction, sample V). The shape of
the anisotropic particles is characterized by λ the aspect ratio between the length of the
longest and the shortest axis of the particles.

Figure 5.3: Samples for the numerical simulations: isotropic polygons (λ = 1.0) (a), and
elongated polygons (λ = 2.3) stretched in horizontal direction H (b) and in
vertical direction V (c).
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Figure 5.4: Sketch of the shear cell. The system is not allowed to dilate (hconst fixed). The
sample is sheared using a constant shear rate γ̇. Dark particles (blue in color)
induce shear to the sample.

We use samples of two different sizes, with 256 (16 × 16) and 1024 (32 × 32) particles.
Periodic boundary conditions are imposed in horizontal direction. The top and bottom
have fixed boundary conditions. The volumetric strain of the media is suppressed (posi-
tion of walls fixed, no dilation). The top and bottom layers of the particles are moved in
opposite directions so as to impose a constant shear rate γ̇. The particles in these layers
are not allowed to rotate or move against each other. In Fig. 5.4 a setup of the shear cell
is presented for the anisotropic sample λ = 2.3H . The strain variable γ is defined as:

γ = Dx/hconst, (5.1)

where Dx is the horizontal displacement of the boundary particles and hconst is the height
of the sample. The horizontal and vertical directions are indicated as x and y, respec-
tively. In our simple model, polygons represent rocks between two tectonic plates i.e.
the gouge. The top and bottom boundary particles represent the tectonic plates. We
start from a perfectly packed configuration in order to represent the initial state of the
material that is supposed to be intact prior the shear process.

As described in the previous section, the value of the strain rate is of the order of
10−7 per year (≈ 10−14 s−1). For our numerical simulation, this value of shearing is
computationally too expensive. For instance, for ∆t = 1s, 1012 iterations are needed to
induce a shear strain of 1%. Using a system of 16x16 particles, 1012 iterations would
require roughly 1000 years of CPU time in a standard P-IV PC. To overcome this, we
choose a suitable shear rate at which the motion of the system is intermittent, i.e. in
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some stages the system is locked and deform steadily accruing elastic strain and in others
stages the stored energy at the contacts is suddenly released. We monitor the evolution
of the system using its kinetic energy as shown in Fig. 5.5. Another important issue is
to obtain events spanning several orders of magnitude to study their distribution. We
test shear rates in the range 101 − 10−7 s−1. The value of shear rate found suitable for the
above purpose is of the order of 10−5 s−1.

To perform the MD simulations using the selected shear rate, we adjust the parameters
of the model in order to obtain a time step ∆t requiring a reasonable CPU time. We use
the following parameter values: normal stiffness kn = 400 N/m, ǫn = 0.9875, µ = 0.5,
kt/kn = 1/3, νt/νn = kt/kn, and ǫt/ǫn = 1.0053. We select a time step ∆t of 0.005 s.
We use three different interparticle friction coefficients µ = 0.0, 0.5, 5.0 and shear rate
γ̇ = 1.25 · 10−5 s−1.

5.3 System response: monitoring avalanches

The motion of the particles in the interior of the sample is not continuous, but has a
“stick-slip character”. During slip a sudden rearrangement of the medium arises as a
consequence of the large relative displacements of the particles. We monitor this rear-
rangement of the system through its kinetic energy Ek. As shown in Fig. 5.5, the system
can be in two different states. In the ”stationary state”, Ek is approximately equal and
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Figure 5.5: The average kinetic energy in logarithmic scale versus the shear strain γ. The
stationary value E0

k of the kinetic energy is obtained from the velocity profile
of the particles at the steady state. The released energy of the avalanches are
calculated using Eq. 5.2.
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less than a low value E0
k , shown by the horizontal line in Fig. 5.5. This value E0

k is asso-
ciated with the accumulation of elastic strain under the imposed shear. The low energy
state E0

k is punctuated by a series of events where kinetic energy rises several orders
of magnitude above E0

k . These are the avalanches. An avalanche begins when Ek rises
above E0

k , and all subsequent values of Ek greater than E0
k are considered to be part of

the same avalanche.
The total released energy Er of one avalanche is the sum over the total number N of

consecutive values of Ek above the stationary state, namely

Er =
N
∑

j=1

Ej
k. (5.2)

In this ’stationary state’ the system is deforming steadily and accumulating energy at
the particles contacts. This state can be characterized by the value E0

k obtained from the
average velocity profile of the particles at this stage.

In the case of infinitely rigid particles, subtracting the ’stationary value’ E0
k from the

kinetic energy of the system, one would obtain a zero value of Ek between successive
avalanches. Contrary to this previous scenario, our system is composed of soft elas-
tic particles. Therefore, the energy introduced into the system through shearing is not
only stored as elastic energy at the contacts but also transformed into translational and
rotational movement of the elastic particles. If we subtract the ’stationary value’ of ki-
netic energy from the Ek signal, we automatically obtain a non-zero value between the
events. This non-zero value is a numerical artifact stemming from the calculation of the
tangential contact forces, the soft elastic nature of the polygons, and the periodic bound-
ary conditions that might trap some of the energy released during the avalanches. As
presented in Chapter 6, this numerical noise related to the numerical convergence of the
integration method would disappear using a more efficient algorithm and/or reducing
the time step of the simulations [59], and also improving the boundary conditions as dis-
cussed in Section 5.7. This numerical noise, however, does not affect the results of this
chapter.

The force needed to sustain the constant motion of the top and bottom layers can be
measured in the simulation. In the following, Fs is the shear (horizontal) force applied to
each wall, and Fn is the normal force. Figure 5.6 shows the occurrence of one avalanches
and the associated strain accumulation for a system with 32 × 32 particles. We can see
that the abrupt increment of kinetic energy of the system (Fig. 5.6a), matches with the
fall-off of the strength of the material Fs/Fn (Fig. 5.6b).

Figures 5.6c and 5.6d illustrate two different representations of the same sample snap-
shot, immediately before the avalanche. Figure 5.6c shows the sample configuration and
the rotation that the particles undergo for a shear band located at the center of the sam-
ple. The colors of the particles are given by their accumulated rotation: the lighter the
color the bigger the accumulated rotation. Figure 5.6d shows the elastic strain at the
contacts, which are represented by dark dots (red in color) with a diameter proportional
to its strain value. Here, one can see that there is a strong localization of elastic strain
along the shear band. This strain localization weakens the system and drives it to failure,
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Figure 5.6: Accumulation of elastic strain and overcome of the strength of the material
Fs/Fn prior to the occurrence of an avalanche. In (a) the kinetic energy of the
system and (b) the ratio Fs/Fn showing the developed strength are presented,
with circles indicating the strain value at which the snapshot in (c) and (d) are
taken. (c) The configuration and accumulated particle rotation just before the
avalanche. (d) The elastic strain at the contacts before the avalanche, where
the diameter of the dark dots (red in color) is proportional to the value of the
elastic strain. System size: 32 × 32 particles.

since it promotes the occurrence of the Coulomb limit condition related to the number
of sliding contacts. In other words, the weakening of the system is due to both the strain
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localization and the increase of the ratio of sliding contacts.

During the avalanche the system suffers a complete rearrangement in which the old
sliding contacts are removed from the sliding condition and new contacts are generated.
This rearrangement marks the beginning of a new stage of elastic strain accumulation
that drives the system to the next avalanche.
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Figure 5.7: Log-log plot of the number of avalanches versus their released energy Er for
(a) different configurations of isotropic particles and (b) for different λ values.
Here µ = 0.5 and the system has 16 × 16 particles. Logarithmic binning is
used.
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5.4 The Gutenberg-Richter law in anisotropic granular

media

The distribution of earthquake magnitude is described by the Gutenberg-Richter law
[53]. This law states that the number n of earthquakes of magnitude greater than M is
proportional to n ∼ 10−bM . Typically, the value of b is equal to 1 at most places, but may
vary between 0.8 and 1.5 [140]. As we will see, the exponent b will be an invariant prop-
erty describing the occurrence of avalanches associated with sudden rearrangements of
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Figure 5.8: The distribution D(Er) of the released energy Er when (a) varying interpar-
ticle friction coefficient µ with fixed λ = 1 and (b) when varying λ with fixed
µ = 0. The system has 16 × 16 particles and logarithmic binning is used.
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granular media under very slow shear.
To this end, we study the possible influence of the formation and evolution of the

shear band on the distribution D(Er) of the released energy Er during an earthquake.
Since the magnitude of an earthquake is defined as the logarithm of the released energy,
apart proper constants one finds n ∼ E−c

r being the exponent c approximately equal to
0.67 [134].

In Figure 5.7a we show the distribution D(Er) for three different initial configurations
of isotropic samples, corresponding to different seeds for the Voronoi Tessellation. All
the distributions collapse and show a power law behavior over almost six orders of mag-
nitude with an exponent of c = 0.87 for the fitted straight line. Although the exponent
c slightly deviates from the expected value of 0.67, the power law behavior is in good
agreement with the Gutenberg-Richter law.

In Fig. 5.7b, the distributions for both isotropic and anisotropic particles are shown.
Similarly, for all samples, the data sets are well fitted by a power law with an exponent
c ranging from 0.82 to 0.89, indicating a weak influence of the particle shape on the
distribution of the released energy. The power law holds over six orders of magnitude.

Similar exponents (0.80 < c < 0.95) are obtained for other system sizes in both isotropic
and anisotropic cases and for the case when one considers the distribution for individual
particles. From such results, one concludes that independent of the anisotropy there is a
scale invariance of the system response according to the Gutenberg-Richter law.

We also study the influence of the friction coefficient µ. In Fig. 5.8a the distributions for
the isotropic samples with different friction coefficients are plotted. The effect of friction
in both cases is to slightly increase the exponent c, which holds for nearly seven orders
of magnitude. The distributions for isotropic and anisotropic samples with µ = 0 are
presented in Fig. 5.8b where no influence of particle shape is observed.

5.5 Waiting times

Earthquakes usually occur as part of a sequence of events, in which the largest event
is called the mainshock and the events prior and after the mainshock are foreshocks
and aftershocks respectively [134]. The empirical Omori’s law states that the number of
aftershocks n(t) reduces with the inverse of the time following,

n(t) =
c

(1 + t)p
(5.3)

where c is an empirical constant and p is usually close to 1 but can vary between 0.7 −
1.5 [134]. Before performing the calculation of waiting times of aftershocks in the system
evolution, we have to define what we consider as a mainshock. We first select a time
interval t, and calculate the magnitude Mi (i = 1, .., Nt) of the total number of events Nt

within that interval. Then, we take the first event of the series as a mainshock and com-
pare its magnitude M1 with the next events. All the consecutive events with magnitude
Mi having one order of magnitude smaller than the one of the mainshock are considered
aftershocks and their waiting times are calculated. A new event is considered mainshock
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Chapter 5 Avalanches in periodic shear cells

only when it is larger than 1/10 of the magnitude of the current mainshock. When this
happens the sequence of the previous mainshock is considered to be finished and a new
sequence is calculated.

In Figure 5.9 the distribution of waiting times for isotropic and anisotropic systems
with a size 16 × 16 particles are shown. All the numerical results can be fitted using the
expression in Eq. (5.3). Thus, the temporal distribution of aftershocks in our model is
also in agreement with the observations in nature. We obtain the following values for
the exponent p: 1.57 for the isotropic sample λ = 1.0, 1.61 for the anisotropic sample
λ = 2.3 V, and 0.83 for the anisotropic sample λ = 2.3 H. The decay for λ = 1.0 and
λ = 2.3 V is faster than the decay in the sample λ = 2.3 H. This difference in the p value
is directly related to the initial configuration of the samples.

Using this influence of the initial configuration of anisotropic samples on the stability
of the system, we will next explain how to detect at the macro-mechanical level the
presence of anisotropic particles within the gouge.

The anisotropic sample λ = 2.3 H with particles oriented parallel to the shear direction
exhibits a more stable configuration. In this sample, the induced torque on the particles
is minimized and the main deformation modes, sliding and rolling of the particles, are
highly constraint for the fixed boundary conditions and no dilation in vertical direction.
The hindrance of the deformation modes produces a larger temporal stability and also
a larger mechanical stability. The larger temporal stability makes the occurrence of the
events less frequent in time, i.e. slower decay of the waiting times. The larger mecha-
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Figure 5.9: Distribution n(t) of waiting times for the sequence of aftershocks in the nu-
merical simulation. Isotropic sample λ = 1.0 and anisotropic samples λ = 2.3
are presented.
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nical stability results in a smaller probability of failure for a given value of stiffness as
presented in Sec. 5.6. On the contrary, the configuration of anisotropic samples λ = 2.3
V, with particles oriented perpendicular to the shear direction, maximizes the induced
torque on the particles and results in a less stable configuration. This configuration yields
smaller temporal and mechanical stability. The smaller temporal stability is observed in
the decay of the waiting times, that is slightly faster than the one of the isotropic sample.
The smaller mechanical stability of sample λ = 2.3 V is manifested in the larger proba-
bility of failure for a given value of stiffness compared to the other samples, see Sec. 5.6.
Therefore, by looking at the decay rate of the aftershock sequences one might be able to
explain the variation of the decay p in realistic earthquake sequences, and attribute its
variation to the existence of anisotropic gouge in the fault zone.

It is important to say that for a more realistic representation of the earthquake process
the crushing of particles should be taken into account. The absence of particle crushing
will be discussed in Section 5.7.

5.6 Weakening and stability of the system

In this section we study the relationship between the occurrence of avalanches and the
weakening of the system. The weakening process results from the release of energy due
to previous accumulation of strain at the contact level and contacts reaching the sliding
condition. In Figure 5.10 we show the relative number of sliding contacts ns, the stored
energy at the contacts Estored and the total kinetic energy Ek for a system size of 16 x 16
particles. The relative number of sliding contacts is given by Ns/Nc, the ratio of sliding
contacts to the total number of contacts. The stored elastic energy at the contacts Estored is
calculated as 1/2 (knδ

2 + ktξ
2). Here, kn and kt are the stiffnesses of the elastic springs in

normal and tangential direction, and δ and ξ the corresponding elongation respectively.
One can see in Fig. 5.10 that between the events, the relative number of sliding contacts
increase with the shear strain, making the system weaker and indicating that the system
is constantly accruing elastic energy at the contacts Estored. The weakening of the system
persists until failure, where the kinetic energy increases by several orders of magnitude.
At this stage, the structure of the system is rearranged, the stored energy at the contacts
is released (drops of Estored), and the contacts are removed from the sliding condition.
All the events in the kinetic energy are associated with both drops in the ratio ns and
drops in the stored energy.

At the macromechanical level the weakening of the system is observed by looking
at the evolution of the shear stress with the shear strain (Fig. 5.11). After each stress
drop the system experienced a rearrangement that removes the contacts from the sliding
condition. This new configuration produces a temporal stability, in which the strength
builds up. At this stage the system sticks and the accumulation of strain takes place. The
stiffness of the system i.e. slope of the stress-strain curve ∆τ/∆γ (Fig. 5.11) decreases
with the strain accumulation and the increment of ns. In this softening regime the system
approaches failure and when the strength of the material is overcome, the system slips.
One can observe clearly that the stick-slip behavior is associated with the permanent
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Figure 5.10: Evolution of the relative number ns of sliding contacts, the energy stored at
the contacts and the total kinetic energy Ek as a function of the shear strain
γ, for an isotropic sample (λ = 1).

rearrangement of the media.
We want to define the conditional probability P (AE|∆τ/∆γ) for the occurrence of an

avalanche event AE given a value of stiffness ∆τ/∆γ. Since we only have access to
P (∆τ/∆γ|AE) from the analysis of the data, we use the Bayes theorem from probabil-
ity theory [141]. This theorem relates the conditional probability distribution P (A|B) or
P (B|A) of two stochastic events or random variables A and B to their marginal proba-
bility distributions P (A) and P (B). Thus, we get

P (AE|∆τ/∆γ) =
P (∆τ/∆γ|AE)P (AE)

P (∆τ/∆γ)
(5.4)

For the case of the occurrence of one avalanche AE for given a stiffness value ∆τ/∆γ,
we select a time interval t = 5 · 106 to analyze the evolution of the stress-strain behavior
of the system. First, we discretize the time interval in time increments of dt = dγ/γ̇.
Since the shear rate γ̇ = 1.25 · 10−5 s−1 and dγ = 0.0016, the time increment dt = 128
s is also constant in our simulation. We select the same dt for both isotropic and ani-
sotropic systems. The conditional probability P (∆τ/∆γ|AE) of having a stiffness value
∆τ/∆γ at the occurrence of an avalanche AE is obtained by identifying the time t before
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Figure 5.11: Shear force vs shear strain. The stick-slip character of the system response is
observed.

an avalanche and calculating the stiffness value ∆τ/∆γ for the time interval t − dt to t.
This process is performed for all the events AE within the time interval. The probability
P (AE) is calculated as the total number of avalanches divided by the total number of
time increments dt. Finally, P (∆τ/∆γ) is the probability distribution of ∆τ/∆γ. Having
P (∆τ/∆γ|AE), P (AE) and P (∆τ/∆γ) we use Eq. (5.4) to obtain the conditional proba-
bility P (AE|∆τ/∆γ) for the occurrence of an avalanche AE when the system has a given
stiffness value ∆τ/∆γ. In Figure 5.12, the conditional probabilities P (AE|∆τ/∆γ) and
P (∆τ/∆γ|AE) for the isotropic system λ = 1.0 and the anisotropic system λ = 2.3 are
shown. We make the following observations:

• For all the samples, the conditional probability P (AE|∆τ/∆γ) decreases logarith-
mically with the stiffness value ∆τ/∆γ. The stiffer the system, the smaller is the
probability of failure (see Fig 5.12a), yielding P (AE|∆τ/∆γ) ∼ q log(∆τ/∆γ).

• Anisotropic samples compared to the isotropic ones explore a different range of
stiffness at failure due to the larger rotational frustration that the elongated parti-
cles undergo, see Fig. 5.12a and 5.12b. This is specially observed for sample λ = 2.3
H, with particles oriented along the shear direction, that explores weaker states due
to a more stable structure consequence of its initial configuration.

• The coefficients of the tail of the distributions are q = −42.1 for λ = 1.0, q = −28.6
for λ = 2.3 V and q = −30.78 for λ = 2.3 H (see Fig. 5.12a). Thus, anisotropic sam-
ples exhibit a different behavior compared to the isotropic samples. In particular,
sample λ = 2.3 H presents a larger stability having a smaller P (AE|∆τ/∆γ) than
the other samples. On the contrary, sample λ = 2.3 V shows a higher P (AE|∆τ/∆γ)
due to the unstable configuration of particles oriented perpendicular to the shear.
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Figure 5.12: Conditional probability distributions (a) P (AE|∆τ/∆γ) of the occurrence of
an avalanche AE given a stiffness ∆τ/∆γ and (b) P (∆τ/∆γ|AE) of having
a stiffness ∆τ/∆γ at the occurrence of an avalanche. System size 16 × 16.
Isotropic λ = 1.0 and anisotropic samples λ = 2.3 are presented. Labels H
and V correspond to horizontal and vertical samples.

Next, we calculate the conditional probability P (AE|Fs/Fn) of occurrence of an ava-
lanche AE given a value of force ratio Fs/Fn, where Fs is the shear force and Fn is the
normal force at the boundaries. The same procedure as explained before is followed.
Having P (Fs/Fn|AE), P (AE) and P (Fs/Fn) and using Eq. (5.4) we obtain the conditional
probability P (AE|Fs/Fn). In Figure 5.13, the conditional probabilities P (AE|Fs/Fn) and
P (Fs/Fn|AE) for the isotropic system λ = 1.0 and the anisotropic system λ = 2.3 are
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Figure 5.13: Conditional probability distributions (a) P (AE|Fs/Fn) of the occurrence of
an avalanche AE given a frictional strength Fs/Fn and (b) P (Fs/Fn|AE) of
having a frictional strength Fs/Fn at the occurrence of an avalanche. Sys-
tem size 16 × 16. Isotropic λ = 1.0 and anisotropic samples λ = 2.3 are
presented. Labels H and V correspond to horizontal and vertical samples.
The P (Fs/Fn|AE) follows a normal distribution, except for sample λ = 2.3
V. Solid lines represent the normal distribution of the data.

shown. We make the following comments:

• The conditional probability P (AE|Fs/Fn) increases approximately linearly with
Fs/Fn. Higher the mobilized strength Fs/Fn higher is the probability of failure
(see Fig. 5.13).
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• In general, the anisotropic samples λ = 2.3 are able to mobilize higher frictional
strength than the isotropic sample λ = 1.0, see Fig. 5.13.

• For the same force ratio Fs/Fn the anisotropic samples λ = 2.3 presents a lower
probability P (AE|Fs/Fn) than isotropic samples λ = 1.0, see Fig. 5.13. This is cer-
tainly due to the influence of particle shape anisotropy on the global strength of
the material, as presented already in Chapter 4.

• The probability distribution P (Fs/Fn|AE) of having a force ratio Fs/Fn at the oc-
currence of an avalanche AE follows a normal distribution, except for the sample
λ = 2.3 H. The mean of P (Fs/Fn|AE) for the anisotropic samples ≈ 0.48 is larger
than the mean of the isotropic sample 0.39. The influence of the initial configu-
ration on the P (Fs/Fn|AE) of the anisotropic samples is observed in the standart
deviation of the data. Sample λ = 2.3 H has a standard deviation equal to 0.04 and
sample λ = 2.3 V equal to 0.063. The standard deviation of the isotropic sample is
0.05.

From these results, the influence of particle shape and the initial configuration of the
sample on the conditional probabilities P (AE|∆τ/∆γ) and P (AE|Fs/Fn) is confirmed.
Regarding stability in terms of stiffness at failure, anisotropic samples can explore a
wider range of stiffnesses than isotropic samples. The initial configuration also plays
an important role in terms of stability. The anisotropic sample λ = 2.3 H due to its more
stable configuration with respect to shearing presents lower probability of failure than
the isotropic sample λ = 1.0 and the anisotropic one λ = 2.3 V.

Concerning frictional strength, the probability of an avalanche to occur increases with
the force ratio Fs/Fn. Samples with anisotropic particles λ = 2.3 mobilized higher force
ratio Fs/Fn than the isotropic sample λ = 1.0. Anisotropic samples also exhibit lower
probability of failure for the same value of Fs/Fn than the isotropic one. The distribu-
tion of force ratio Fs/Fn at the occurrence of an avalanche is also highly dependent on
the particle shape. All these features highlight the importance of particle shape on the
mechanical behavior of granular systems.

In Figure 5.14 the sliding contact ratio ns and the stiffness at failure of the system are
presented. The stiffness is also compared to the released energy during the avalanches.
Although no clear correlation between the parameters can be observed, the maximum
value of stiffness that the system can present is bounded by the value of ns. Larger ns

implies smaller stiffness (Fig. 5.14a). In Fig. 5.14b a poor correlation between stiffness
and the magnitude of the events can be observed. From these observations, it is clear
that the accumulation of strain at the contacts is not the only important agent in the
weakening process and for the stability of the system. Therefore, additional ingredients
have to be taken into account for a more exhaustive analysis as discussed in Section 5.7.
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Figure 5.14: Relationship between (a) sliding contact ratio ns vs. stiffness at failure, (b)
released energy during the avalanche Er vs stiffness at failure. Data corre-
spond to an isotropic sample with size 16 × 16 particles.

5.7 Concluding remarks

In this chapter we used shear cells with periodic boundary conditions to mimic the
behavior of tectonic faults with transform boundaries. The influence of particle shape
anisotropy as constituent of the gouge within the fault is studied and found to play an
important role in some mechanical features.

We found that the dynamics of the granular system is characterized by discrete ava-
lanches spanning several order of magnitude similar to crackling noise [52, 129]. The
granular packing driven by external forces accumulates elastic energy until the strength
of the material is overcome, then the energy is suddenly released generating an avalan-
che. After the avalanche, the structure of the system is reorganized and a new stage of
accumulation of energy starts. We calculated the probability distribution of the energy
released in avalanches, and found it to be in good agreement with the Gutenberg-Richter
law for samples with different particle anisotropy and different system sizes. Conse-
quently the exponent of the released energy distribution can be seen as an invariant
property of such systems.

We also studied the temporal distribution of event sequences after a mainshock. We
found that the number of aftershocks decrease with the inverse of time in agreement
with the empirical relation given by the Omori’s law [54]. We could fit the sequences of
waiting times of the aftershocks with the empirical expression and obtained exponents
in good agreement with the range expected in real observations 0.7 < p < 1.5. The
anisotropic sample λ = 2.3 H compared to both the isotropic sample λ = 1.0 and the
anisotropic sample λ = 2.3 V exhibits a larger temporal stability making the temporal
occurrence of the avalanches longer on time. This is due to the larger frustration of
rotation that the anisotropic samples λ = 2.3 suffer due to its initial configuration. This
larger temporal stability at the macro-mechanical level is therefore an indication of the

97



Chapter 5 Avalanches in periodic shear cells

existence of anisotropic material within the shear zone. This could potentially explain
the variation of the decay p observed in realistic earthquake sequences.

The dynamics of the system was also related to the stick-slip process [40, 142]. The
system sticks between consecutive events, accrues elastic energy, and become weaker
because of the increment of the sliding contacts ns when the strength is overcome and
then the system slips. We characterized the weakening of the system with the stiffness
∆τ/∆γ. We calculated the conditional probability P (AE|∆τ/∆γ) of occurrence of an
avalanche event AE given a stiffness value ∆τ/∆γ. We found that P (AE|∆τ/∆γ) de-
creases logarithmically with the stiffness and that the decay rate depends on particle
shape. The frictional strength of the samples was characterized by the force ratio Fs/Fn.
We also calculated the conditional probability P (AE|Fs/Fn) of occurrence of an avalan-
che event AE given a force ratio Fs/Fn.

The results concerning the conditional probabilities P (AE|∆τ/∆γ) and P (AE|Fs/Fn)
stressed the influence of particle shape and the initial configuration of the sample on the
mechanical behavior of the system. Regarding stability in terms of stiffness at failure,
anisotropic samples can explore a wider range of stiffnesses than the isotropic sample.
This is due to the larger kinematic constraint that anisotropic particles undergo during
shear. The initial configuration plays a role in terms of stability since anisotropic sample
λ = 2.3 H due to its more stable configuration with respect to shearing presents lower
probability of failure than the isotropic sample λ = 1.0 and the anisotropic sample λ =
2.3 V.

Concerning frictional strength, the probability of an avalanche to occur increases with
the force ratio Fs/Fn. Samples with anisotropic particles λ = 2.3 mobilized higher force
ratio Fs/Fn than the isotropic sample λ = 1.0. Anisotropic samples also exhibit lower
probability of failure for the same value of Fs/Fn than the isotropic one. The distribu-
tion of force ratio Fs/Fn at the occurrence of an avalanche is also highly dependent on
the particle shape. All these features highlight the importance of particle shape on the
mechanical behavior of granular systems.

In previous works concerning the avalanches in granular piles [28, 143], some avalan-
che precursors related to the onset of fluidized regions of sliding contacts were found.
These fluidized regions were located in the weak network of contacts. This weak net-
work comprises contacts transmitting forces smaller than the average force and therefore
has a minimal contribution to the stress state [27, 144]. The interplay prior to a granu-
lar avalanche between the fluidize regions and the strong contact network, carrying the
forces larger than the average, is investigated in Ref. [143]. It is concluded that, while
the strong contact network (skeleton of the granular structure [46, 143, 144]) is respon-
sible for the strength and stability of the packing, the weak contact network plays an
important role in the destabilization proccess. Although the previous results correspond
to the transition from static equilibrium to a dynamic flow, an analysis comprising a
proper characterization of the geometrical properties of the contact network and force
chains [47], its evolution, and the interplay of the destabilization agents as the sliding
contacts and the building and collapse of force chains will help to get a better under-
standing of the stick-slip fluctuations in sheared granular media and thus the existence
of precursors of avalanches in fault gouges. Precursors are expected to be related to
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sharp changes in the micro-structure of the granular packing [145].
Although the results from our numerical model show good agreement with the pro-

cesses observed in nature, we are aware of the challenges to have a more realistic simu-
lation of fault zones [146]. The following features should be considered in future work:

• Development of transparent (or absorbing) boundary condition since the acous-
tic emission after an avalanche are trapped due to the periodic boundary condi-
tions. In nature the seismic waves generated during earthquakes are free to travel
through the globe.

• Grain fragmentation should be implemented, since natural earthquakes result from
the combined effect of frictional instabilities and rock fragmentation.

• Generalization of the model to a three dimensional system, using polyhedra to
represent the rock.
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Chapter 6

Numerical Improvement of the Discrete Element
Method

One of the standard approaches to model the dynamics of granular media is to use the
Discrete Element Method (DEM) [2, 3, 48, 58, 106, 147, 148]. However, some problems
may arise due to the need to perform numerical simulations within reasonable compu-
tational time, without compromising the overall convergence of the numerical scheme.
In particular, this is true for very slow shearing when simulating earthquake faults as
presented in Chapter 5 and in Ref. [42, 81]. In such cases, large integration steps have to
be adopted to capture the dynamics of the real system. Usually, one assumes an upper
limit for the admissible length of the integration step based on empirical reasoning [56].

In this chapter we present a detailed analysis of the bounds on the integration step
in DEM for simulating collisions and shearing of granular assemblies. We show that
in the numerical scheme, the upper limit for the integration step, usually taken either
from the characteristic period of oscillation of the system ts [56, 58] or from the average
time tc of one contact [149], is in fact not sufficiently small to guarantee numerical con-
vergence of the system during relaxation. This upper limit strongly depends on (i) the
accuracy of the approach used to calculate frictional forces between particles, (ii) on the
corresponding duration of the contact, and (iii) on the number of degrees of freedom of
the particles. Further, we address the specific case of slow shearing, for which the above
limit is too small to allow for reasonable computation time. To overcome this shortcom-
ing, we propose an alternative approach that corrects the frictional contact forces when
large integration steps are taken. In this way, we enable the use of considerably larger
integration steps, assuring at the same time the convergence of the integration scheme.

In Section 6.1 we present the relevant details of the DEM concerning our present anal-
ysis. Sections 6.2 and 6.3 describe the dependence of the system response on the inte-
gration step and the improved algorithm, respectively. Discussions and conclusions are
given in Sec. 6.4.

6.1 The model

In this section we briefly describe the main features of the DEM, as they were already
thoroughly introduced in Chapter 2. We consider a two-dimensional system of parti-
cles, each one having two linear and one rotational degree of freedom. The evolution of

the system, particle position ~ri and particle orientation ~θi, is given by the integration of
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Chapter 6 Numerical Improvement of the Discrete Element Method

Newton’s equations of motion, Eqs. 2.1a and 2.1b.
All the dynamics is deduced from the contact forces acting on the particles. The con-

tact forces ~f c are decomposed into their elastic and viscous contributions, ~f e and ~f v

respectively, yielding ~f c = ~f e + ~f v. The viscous force ~f v is important to take into account
dissipation at the contact and to maintain the numerical stability of the method. This

force is calculated as ~f v = −mrν~vc, where mr is the reduced mass of the two particles in
contact, ν is the damping coefficient and ~vc is the relative velocity at the contact.

The elastic part of the contact force ~f e is given by the sum of the normal and the
tangential components, with respect to the contact plane between the particles, namely
~f e = f e

nn̂c + f e
t t̂c. The normal component reads f e

n = −knA/lc, with kn the normal stiff-
ness, A the overlap area between the particles and lc the characteristic length of the con-
tact. The tangential component is implemented using an extension of the Cundall-Strack
spring [2]. Here, the tangential force is proportional to the elastic elongation ξ of an
imaginary spring at the contact. This tangential force reads f e

t = −ktξ, where kt is the
tangential stiffness. The elastic elongation ξ is updated according to Eq. (2.5),

ξ(t + ∆t) = ξ(t) + ~vc
t∆t, (2.5)

where ∆t is the time step of the DEM simulation, and ~vc
t is the tangential component

of the relative velocity ~vc at the contact point. The tangential elastic elongation ξ may
increase during the time that the elastic condition |f e

t | < µf e
n is satisfied. The sliding con-

dition is enforced keeping constant the elastic displacement ξ when the Coulomb limit
condition |f e

t | = µf e
n is reached. Hereafter, the tangential force is carefully studied since

its calculation includes the integration step of the numerical simulation and therefore
depends on it.

In DEM, one of the numerical integration schemes used to calculate the evolution of
the system is the Gear’s predictor-corrector scheme as presented in Chapter 2. In our

simulations we integrate equations of the form ~̈r = f(~r, ~̇r), using a fifth order predictor-
corrector algorithm that has a numerical error proportional to (∆t)6 for each integration
step [56]. However, as will be seen in Sec. 6.2, (∆t)6 is not the numerical error of the full
integration scheme, since the Equation (2.5) used to calculate the frictional force has an
error of order (∆t)2.

For a certain value of normal contact stiffness kn, almost any value for the normal
damping coefficient νn might be selected. Their relation defines the restitution coeffi-
cient ǫ obtained experimentally for various materials [91]. The normal and tangential
restitution coefficients ǫn and ǫt are given by the ratio between the relative velocities af-
ter and before a collision, see Eq. (2.9). Therefore, a suitable closed set of parameters for
this model are the ratios kt/kn and ǫt/ǫn (or νt/νn), together with the normal stiffness kn

and the interparticle friction µ.
The entire algorithm relies on a proper choice of the integration step ∆t, which should

neither be too large to avoid divergence of the integration nor too small avoiding un-
reasonably long computational time. The determination of the optimal integration step
varies from case to case and there are two main criteria to estimate an upper bound for
admissible integration steps.
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6.2 The choice of the integration step

The first criterion is to use the characteristic period of oscillation ts [56], defined from
Eq. (2.14). For a fifth order predictor-corrector integration scheme, it is usually accepted
that a safe integration step should be below a threshold of ∆t < ts/10 [56].

The second criterion is to extract the threshold from local contact events [58, 149, 150],
namely from the characteristic duration of a contact tc given by Eq. (2.15),

tc =
π

√

ω2
0 − η2

, (2.15)

where ω0 is the frequency of the elastic oscillator corresponding to the pair of particles
in contact and η the effective viscosity. Typically, tc ≃ ts/2 and therefore one considers
an admissible integration step as ∆t < tc/5 [87, 150]. In the next section we will study in
detail the integration scheme for different values of the model parameters. For a more
detailed description of the model see Chapter 2.

6.2 The choice of the integration step

We simulate the relative motion of two plates shearing against each other as performed
in Chapter 5. We consider a system of 256 particles as illustrated in Fig. 6.1, where both
top and bottom boundaries move in opposite directions with a constant shear rate γ̇.
Here, the top and bottom layer of the sample have fixed boundary conditions, while

V
x
  / 2

V
x
  / 2

h
const

Figure 6.1: Sketch of the system of 256 particles under shearing of top and bottom bound-
aries (dark particles, blue in color). Horizontally, periodic boundary condi-
tions are considered and a constant low shear rate is chosen (see text).
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Chapter 6 Numerical Improvement of the Discrete Element Method

horizontally we consider periodic boundary conditions. The volumetric strain is sup-
pressed, i.e., the vertical position of the walls is fixed and there is no dilation. More-
over, the particles of the fixed boundary are not allowed to rotate or move against each
other. We select a shear rate γ̇ = 1.25 · 10−5s−1, and use the following parameter values
kn = 400 N/m, ǫn = 0.9875, and µ = 0.5. The relation kt/kn is chosen such that kt < kn,
similarly to previous studies [2, 34, 150], namely kt/kn = 1/3. Further, for simplicity we
consider νt/νn = kt/kn, which when substituted in Eq. (2.9) yields ǫt/ǫn = 1.0053.

By integrating such a system of particles using the scheme described in Chapter 2, one
can easily compute the kinetic energy Ek of a given particle i,

Ek(i) =
1

2

(

mi~̇r
2
i + Ii~ω

2
i

)

, (6.1)
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Figure 6.2: Dependence of the numerical scheme on the integration step ∆t and the fric-
tion coefficient µ, by plotting the kinetic energy Ek as a function of time, for
(a) ∆t = 10−3 s and µ = 0 (no friction), (b) ∆t = 10−3 s and µ = 0.5, (c)
∆t = 5 × 10−3 s and µ = 0, and (d) ∆t = 5 × 10−3 s and µ = 0.5. In (e) we
show the difference between the values of Ek obtained with the two values
of ∆t. Here, kn = 400 N/m and the parametric relation in (2.15) are used (see
text).
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6.2 The choice of the integration step

where velocity ~̇r is computed from the predictor-corrector algorithm, Ii is the moment
of inertia of the polygon and ~ωi is the angular velocity.

In Fig. 6.2 we show the evolution of the kinetic energy for two different ∆t = 0.001 s
and 0.005 s. As we can see, frictionless particles (Fig. 6.2a and 6.2c) have an Ek that
does not change for different integration steps, while for µ = 0.5 (Fig. 6.2b and 6.2d) the
evolution of Ek strongly depends on ∆t. In Fig. 6.2e we plot the cumulative difference
∆Ek between the values of Ek obtained for each integration step. Here, we can see that
in the absence of friction ∆Ek is significantly lower than if friction is present.

The two time steps used in Fig. 6.2 can be written as ∆t = 13/500tc and 13/2500tc.
Thus, we conclude that the expected upper limit ∼ tc/10 is still too large to guarantee
convergence of the integration scheme if friction is considered.

Next, we perform a careful analysis to obtain a proper integration step as function
of the parameters of our model. For that, we consider the simple situation of two cir-
cular particles and study the kinetic energy of one of them under external forcing, as
sketched in Fig. 6.3. We start with two touching discs, i and j, where one of them, say

i, remains fixed, while the other is subject to a force ~f perpendicular to its surface (no
external torque is induced) along the x-axis. As a result of this external force, the disc j
undergoes translation and rotation. The resulting contact forces acting in opposite direc-
tion to the external force are obtained from the corresponding elastic springs computed
as described in Chapter 2. This results in an oscillation of disc j till relaxation (dashed
circle in Fig. 6.3) with a final center of mass displacement of ∆R and a rotation around

r∆θ f

Y

X

a

a

r

rj

i

∆

Rij

i

j

Figure 6.3: Sketch of the stress controlled test of two particles (discs). The particle lo-
cated at ~ri remains fixed, while the particle at ~rj is initially touching particle

i. The vector ~Rij connecting the center of mass of particles i and j is initially
oriented at 45o with respect to the x-axis. After applying the constant force
~f to disc j, the system relaxes to a new position (dashed circumference). Be-
tween its initial and final position particle j undergoes a displacement ∆r and
a rotation ∆θ (see text).
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Figure 6.4: The relaxation of the system of two discs sketched in Fig. 6.3. Here we plot the
kinetic energy Ek as a function of time t (in units of tc) for different integration
increments ∆t and using a stiffness kn = 4×108 N/m and a friction coefficient
µ = 500. The large value for µ is chosen such that the system remains in the
elastic regime. As we can see, the relaxation time tR converges to a constant
value when ∆t is sufficiently small (see text). This discrepancy between the
values of tR when different integration steps are used does not occur in the
absence of friction (µ = 0), as illustrated in the inset. The slope of the straight
lines is −1/tR (see Eq. (6.2)).

the center of mass of ∆θ. Since ~f is kept constant, the procedure is stress controlled.
In Fig. 6.4 we plot the kinetic energy as a function of time, from the beginning until

relaxation, for the two particle system. Different integration steps, namely ∆t = 10−1, 2×
10−1, 10−2, 10−3 and 10−4 s in units of tc are used. As we see, the kinetic energy decays
exponentially,

Ek(t) = E
(0)
k exp

(

− t
tR(∆t)

)

, (6.2)

where tR is a relaxation time whose value clearly depends on the integration step ∆t. As
illustrated in the inset of Fig. 6.4, this change in tR is not observed when friction is absent
(µ = 0), since no tangential forces are considered (f t

e = 0).
Next, we show that this dependence of tR on ∆t vanishes for

∆t ≤ Tt(kn, µ) tc, (6.3)

where Tt(kn, µ) is a specific function that is determined below. Notice that the only
free parameters on which Tt may depend are the interparticle friction µ and the nor-
mal stiffness kn, since we consider a fixed restitution coefficient in the normal direction,
ǫn = 0.9875 and fixed relations kt/kn = 1/3 and ǫt/ǫn = 1.0053.
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Figure 6.5: The relaxation time tR (in units of tc) as a function of (a) the integration step
∆t and (b) the normalized integration step ∆t/tc, where the contact time tc is
defined in Eq. (2.15). Here, the friction coefficient is kept fixed at µ = 500 and
different stiffnesses kn (in units of N/m) are considered. The quotient ∆t/tc
collapses all the curves for different kn. We find tc ∼ k

−1/2
n as illustrated in the

inset (see Eq. (2.15)). As a final result one finds a constant Tt = 10−3 (dashed
vertical line). For other values of the friction coefficient µ we observe similar
results.

Figure 6.5a shows the relaxation time tR of the kinetic energy of the two-particle sys-
tem for different values of stiffnesses, namely for kn = 1, 50, 200, 104 and 108 N/m. For
all kn values, one can see that with decreasing ∆t the relaxation time tR increases until it
converges to a maximum. The stabilization of tR occurs when ∆t is small compared to
the natural period 1/ω0 of the system. We define Tt as the largest value of ∆t for which
we have this maximal relaxation time.

As shown in Fig. 6.5b, all curves in 6.5a can be collapsed by using the normalized
integration step ∆t/tc. From Eq. (2.15) we calculate the contact times corresponding to
these kn values as tc = 1.969, 0.278, 0.139, 9.8× 10−2 and 9.8× 10−5 s, respectively. In fact,

as shown in the inset of Fig. 6.5b the relaxation time scales with the stiffness as tc ∼ k
−1/2
n

(see Eq. (2.15)).

From Fig. 6.5 one can conclude that the relaxation time converges when the integration
step obeys Eq. (6.3) with Tt = 10−3 (dashed vertical line in Fig. 6.5b). We simulate the
system also for µ = 0.005, 0.005, 0.05, 0.5, 5, 50 and 500 and similar results are obtained.

In Fig. 6.5 both translation and rotation of the particles are considered. This is of cru-
cial interest for instance to simulate rolling [42, 151]. Suppressing rotation can also be
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Figure 6.6: The relaxation time tR (in units of tc) of the kinetic energy as a function of the
normalized integration step ∆t/tc, when rotation is suppressed. (a) µ = 500
and different values of kn and for (b) kn = 4 × 108 and different values of µ.
The dashed horizontal line µ = 0 in (b) indicates the relaxation time of the
kinetic energy in the absence of friction (see text).

of interest, e.g., when simulating fault gouges. In such a case, by hindering the rota-
tion of particles, one can mimic young faults where a strong interlocking between the
constituent rocks is expected [42].

To study this scenario, we present in Fig. 6.6a the relaxation time for the same parame-
ter values as in Fig. 6.5, now disabling rotation. Here, we obtain a constant Tt = 10−4 also,
independent of kn, one order of magnitude smaller than the previous value in Fig. 6.5. In
other words, when rotation is suppressed, one must consider integration steps typically
one order of magnitude smaller than in the case when the discs are able to rotate. This
can be explained as follows.

When suppressing rotation, one restricts the system to have a single degree of free-
dom. All energy stored in the rotational degree of freedom through the integration of
the equations of motion is suppressed. This effectively acts like an increase of the fric-
tion coefficient, making the system more sensitive to the integration step, i.e., yielding a
smaller bound Tt. By comparing Fig. 6.6a with Fig. 6.5a, one can see that the relaxation
time tR is smaller when rotation is suppressed.

From the bounds on the integration steps obtained above, one realizes that, in general,
the correct integration step must be significantly smaller than the one usually assumed.

While Fig. 6.6a clearly shows that tR does not depend on the stiffness kn, from Fig. 6.6b
one sees that the same is not true for the friction coefficient µ. Indeed, from Fig. 6.7 we
see that there is a change of the relaxation time around µ = 1. Here, the values corre-
spond to a normalized integration step ∆t/tc = 10−5 for which tR has already converged.
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Figure 6.7: The relaxation time tR (in units of tc) as a function of the friction coefficient µ
when rotation is suppressed. Here kn = 4× 108 N/m which corresponds to a
contact time tc = 9.8×10−5 s. The normalized integration step is ∆t/tc = 10−5.

This might be explained by considering the fact that for large values of µ the contact is
essentially non-sliding, which induces a faster relaxation than for smaller µ values.

It is important to stress that all the results above were taken within the elastic regime,
since the dependence on ∆t does not occur when the Coulomb condition is fulfilled
(inelastic regime). This fact indicates that the improvements in the algorithm should be
implemented when computing the elastic component of the tangential contact force, in
Eq. (2.5), as explained in the next section.

6.3 Improved approach to integrate the tangential contact

force

In this section we will describe a technique to overcome the need of very small integra-
tion steps. As shown previously, when using Cundall’s spring [106], the relaxation time
of the two particles only converges when ∆t is a small fraction Tt of the contact time tc.
This is due to the fact that the elastic elongation is assumed to be linear in ∆t, i.e., the
finite difference scheme in Eq. (2.5) is of very low order, (∆t)2, compromising the conver-
gence of the numerical scheme that is of order (∆t)6. Therefore, the most plausible way
to improve our algorithm is by choosing a different expression to compute the elastic
tangential elongation ξ without using Eq. (2.5).

We will introduce an expression for ξ that contains only the quantities computed in the
predictor step. In this way we guarantee that ξ has errors of the order of (∆t)6, instead
of (∆t)2, as it is the case of Eq. (2.5). Let us illustrate our approach on the simple system
of two discs considered in the previous section (see Fig. 6.3).

On one side, if rotation is not allowed, the elastic elongation ξ depends only on the
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relative position of the two particles. In this case we substitute Eq. (2.5) by the expression

ξ
(tr)
j (t + ∆t) = ξ

(tr)
j (t) +

ai

ai + aj

(~Rp
ij(t + ∆t) − ~Rp

ij(t)) · t̂
c, (6.4)

where ai and aj are the radii of the discs i and j respectively, ~Rij is the vector connecting
both centers of mass and pointing in the direction i → j (see Fig. 6.3). Index p indicates
quantities derived from the coordinates computed at the predictor step.

On the other side, if ~Rij is kept constant and only rotation is allowed, particle j will
have an elongation ξ that depends only on its rotation between time (t) and (t + ∆t):

ξ
(rot)
j (t + ∆t) = ξ

(rot)
j (t) + (θp

j (t + ∆t) − θp
j (t))aj, (6.5)

where θp(t) and θp(t + ∆t) are the angles of some reference point on particle j at time (t)
and (t + ∆t) respectively.

When both translation and rotation of particle j occur, the elongation is the superpo-

sition of both contributions, yielding ξj = ξ
(tr)
j + ξ

(rot)
j .

Figure 6.8 shows the relaxation time tR as a function of the integration step for the
three situations above, namely when only rotation is considered, when only translation
is considered, and when both rotation and translation are allowed. As we see for all
these cases, the relaxation time is independent on the integration step. This is due to
the fact that all quantities in the expression for ξ above are computed at the predictor
step which has an error of the order of (∆t)6, i.e., the error (∆t)2 introduced in Eq. (2.5)
is now eliminated. Therefore, with the expressions in Eqs. (6.4) and (6.5) one can use
significantly larger integration steps than with the original Cundall spring.
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Figure 6.8: The relaxation time tR (in units of tc) using Eqs. (6.4) and (6.5) between two
discs, as illustrated in Fig. 6.3. For the three cases considering only rotation,
only translation or both, the relaxation time remains constant independent of
the integration step.
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6.3 Improved approach to integrate the tangential contact force

When considering discs, one does not take into account the shape of the particles.
Next, we consider the more realistic situation of irregular polygonal-shaped particles.
Motion of rigid particles with polygonal shape is more complicated than that of simple
discs, since the contact point no longer lies on the vector connecting the centers of mass.
Further, for polygons, one must also be careful when decomposing the dynamics of each
particle into translation and rotation around its center of mass. This implies recalculat-
ing each time the position of the center of mass (only from translation) and the relative
position of the vertices (only from rotation).

Therefore, for the translational contribution ξ(tr) in Eqs. (6.4), we compute the overlap
area between the two particles at time (t) and (t + ∆t). This overlap area is in general
a polygon whose center of mass can be also computed, yielding ~rp

c (t) and ~rp
c (t + ∆t),

respectively. The increment for the translational contribution will be just the projection
of (~rp

c (t)−~rp
c (t+∆t)) onto the contact plane t̂c. Similarly, the contribution from the particle

rotation is computed by determining the branch vectors, ~lc,p(t) and ~lc,p(t + ∆t), defined
as the vectors connecting the center of the particle and the center of the overlap area at
time (t) and (t+∆t), respectively. Having the branch vectors at the time (t) and (t+∆t),

one can derive their average value la = (‖ ~lc,p(t + ∆t) ‖ + ‖ ~lc,p(t) ‖)/2 and the angle

defined by them, namely θ = arccos
(

~lc,p(t + ∆t) ·~lc,p(t) / ‖ ~lc,p(t + ∆t) ‖ ‖ ~lc,p(t) ‖
)

. This

yields an increment for Eq. (6.5) equal to θ la.
Figure 6.9 compares how the relaxation time varies with the normalized time step

when the original Cundall approach is used (squares) and when our improved approach
is introduced (circles). Clearly, the dependence on the integration step observed for the
usual integration scheme disappears when our improved approach is introduced. There-
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Figure 6.9: Stress control test between two polygonal particles. Comparison of the re-
laxation time tR (in units of tc) when using the standard integration scheme
(squares) and the proposed improved scheme (circles). Here, rotation is
neglected.
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fore, all the conclusions taken above for discs remain valid for polygons.

6.4 Concluding remarks

In this chapter we introduced a technique to improve the accuracy of the numerical
scheme used to compute the evolution of particle systems.

To that end, we have first shown that the range of admissible integration steps has
an upper limit significantly smaller than the one typically used. The accuracy of the
numerical scheme not only depends on the associated error when computing the particle
positions (predictor-corrector scheme), but also on the accuracy when determining the
frictional force, which is usually implemented by the Cundall spring. Since the Cundall
spring is linear in the integration step, the overall accuracy of the numerical scheme
cannot be higher than (∆t)2. Therefore, when large integration steps are required, e.g., in
slow shearing, the numerical scheme does not give accurate results.

To overcome this problem we introduced an alternative approach for computing the
frictional forces that suits not only the simple situation of discs but the more realistic
situation of polygonal particles. Our approach is particularly suited for situations where
non-sliding contacts are relevant to the overall response. In general, for any other inte-
gration scheme, the substitution of the Cundall spring expression by the relations intro-
duced in Eqs. (6.4) and (6.5), yields an error that is of the same order as the one associated
with the predictor-corrector scheme.

Inspired by the above results, some questions arise to further improve our approach.
First, the influence of the relations kt/kn and ǫt/ǫn should also be considered. Preliminary
simulations have shown that the upper limit for the integration step increases with the
value of kt/kn. Second, the test assumes a unique choice for the position of the contact
point. However, in a system under shear the integration must be also performed before
the appearance of new contacts. The initial contact point of a new contact will depend on
the size of the integration step. This point should also be taken into account within our
new approach, either by assuming some sort of interpolation or by using an event-driven
scheme till the first contact point. Third, there is the problem of how to better define the
contact point between two polygons. Since the contact point is taken as the geometrical
center of their overlap area, the branch vectors also vary during rotation, which is not
taken into account in our present approach. These points have to be addressed in the
future.
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Chapter 7

Conclusions

In this thesis we have carried out a micro-mechanical investigation of the mechanical be-
havior of granular soils using the Discrete Element Method (DEM). The granular soil is
represented by a two dimensional model of polygonal particles. This model enables
a more realistic representation of granular soils than the existing models of disks or
spheres, since it reproduces the two principal scales in shape irregularity at the scale
of particle diameter.

We focused on the following main problems: (i) the existence and uniqueness of the
so-called critical state in soil mechanics, the influence of particle shape anisotropy on the
global mechanical behavior of granular packing and in particular on the critical state,
(ii) the evolution of isotropic and anisotropic granular packing under very slow shear
conditions as appear in earthquake faults and, (iii) the dependency of the tangential
contact force on the integration step of the numerical simulation.

The main results of this thesis are summarized as follows:
(i) We established the existence and uniqueness of the critical state attained under

larger shear deformations by studying packings of isotropic particles under biaxial com-
pression. The simulation results show that at large strains the granular packing reaches
the critical state independent of their initial density and deforms not only at constant
void ratio and shear stress but also at constant fabric anisotropy and mechanical coordi-
nation number. The coordination number was found to be the first variable to attain a
critical value enabling the rest of the micro and macro-mechanical variables to converge
towards the critical state. The uniqueness of the critical state was proven when criti-
cal states, i.e., critical void ratio and critical stress ratio associated with different initial
stress conditions, collapsed onto one critical state line connecting the critical states. We
also showed that for different contact friction coefficients the granular packing reaches
the same critical state.

For interparticle friction coefficient equal to zero the packing yields a resistance to
shear. From this result we conclude that the macroscopic frictional behavior of granular
materials is not only a result of the interparticle friction but also of mesoscale arrange-
ments such as force chains [45–47] and fabric evolution [44]. This emphasizes the idea of
the nonlocal behavior of granular assemblies.

At the critical state the granular packing presents an unstable behavior that is charac-
terized by strong fluctuations of stress in agreement with experiments involving glass
spheres [40, 41, 79] and with biaxial tests performed on sand that show dynamic insta-
bilities at large deformations [80]. The stress drops match with the drops of the fraction
of sliding contacts. At this state the system develops force chains highly susceptible to
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collapse. These chain collapses are result of frictional instabilities that are also observed
in earthquake dynamics [42, 43].

We found that particle shape anisotropy determines the inherent anisotropy, namely
contact and particle orientations, and also its evolution towards the critical state. The in-
fluence of particle shape anisotropy on the mechanical response of granular packing was
investigated by means of biaxial compression and periodic shear cells. The critical state
is also established to be independent of any particle shape characteristics. A stationary
value of the components of the stress tensor, the fabric tensor and the inertia tensor of
the particles is stated as a micromechanical requirement for the existence of the critical
state at the macro-mechanical level.

By performing biaxial compression of anisotropic samples we showed that the critical
state at the global level is not reached since at the micro-mechanical level the coordina-
tion number, the fabric and the particle orientation do not converge to a critical value.
In the periodic shear cell, in which large deformation can be imposed, the results show
that at macro-mechanical level samples with anisotropic particles reach the same critical
value for both shear force and void ratio independent of their initial orientation [48]. This
global stationary state resembles the critical state and is reached since the micromechan-
ical evolution of the stress, the fabric and particle orientation also attain a critical state.
In the case of isotropic particles the orientation of the fabric is dependent on the princi-
pal direction of the stress tensor, while for anisotropic particles the fabric orientation is
determined by the particle orientation.

Concerning particle rotation, the strong frustration of rotation that anisotropic parti-
cles experience due to the larger interlocking among them is manifested in all the exper-
iments and showed to influence the mechanical properties of the granular packing.

The influence of particle shape anisotropy on the critical state parameters can be sum-
marized as follows. The larger the anisotropy,

• the larger the mobilized strength.

• the larger the void ratio, and therefore higher sensibility to volumetric changes.

• the larger the coordination number, although it saturates to a constant value for
λ > 2.3.

• the larger the fabric anisotropy.

• the larger the anisotropy related to particle orientation.

• the smaller the accumulated mean particle rotation.

• the longer the time to reach micro-mechanical equilibrium in fabric and particle
orientation.

(ii) We showed that particle shape anisotropy influences the temporal and mechanical
stability of granular packings but not the size distribution of the avalanches observed
under slow shearing. To this end, we further studied the frictional instabilities observed
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at the critical state by simulating very slow shear processes as in the case of earthquake
faults. We mimic fault zones with transform boundaries, i.e. the boundaries of the tec-
tonic plates are parallel to the direction along which the tectonic plates move [50, 51].
The material inside the fault, the gouge, was represented by both isotropic and anisotro-
pic particles.

Avalanches with sizes spanning several orders of magnitude characterized the dy-
namical response of the system. The probability distribution of the energy released in the
avalanches follows a power law behavior over 6 orders of magnitude. This distribution
is independent of the particle anisotropy and is in good agreement with the Gutenberg-
Richter law [53] describing the distribution of earthquakes. The same behavior is found
for different system sizes and at the particle level. Consequently this behavior is an in-
variant characteristic of the distribution of sizes of avalanches associated with very slow
shear processes.

We studied the temporal stability of the granular packing through the sequence of
events after a mainshock. The temporal stability of the system is found to depend on the
initial configuration of the sample and therefore on the orientation of anisotropic par-
ticles. Hence, the differences in the decay observed in realistic earthquake sequences
might be explained by the existence of anisotropic gouge within the fault zone. In
our numerical simulations the number of aftershocks obeys Omori’s law [54], i.e, it de-
creases with the inverse of time. In particular, we found that the exponents obtained
by fitting the sequences are in agreement with the values expected in real observations
0.7 < p < 1.5. Anisotropic samples with anisotropic particles oriented in the direction
of shearing exhibit a smaller value of p and present a more stable configuration. This
is a consequence of the larger hindering of the deformation modes such as rotation of
the particles. Anisotropic particles oriented perpendicular to the shear direction are less
stable since the induced torque is maximized.

We also highlighted the effect of anisotropic particle shape on the mechanical behavior
by characterizing the mechanical stability of the system. It involved the calculation of the
conditional probability of occurrence of an avalanche for a specific value of stiffness or
mobilized strength. We showed that the probability of failure decreases logarithmically
with the stiffness and that the exponent of the decay is dependent on the particle shape.
Anisotropic systems explore a wider range of stiffness at failure. Regarding mobilized
strength, anisotropic samples not only exhibit lower probability of failure for the same
strength but also mobilize higher strength values. The distribution of mobilized strength
at failure is also dependent on particle anisotropy.

(iii) Finally, we uncovered a numerical problem in the DEM related to the calculation
of the tangential forces. The Cundall-Strack spring [2] is usually used to implement
such tangential force. This approach is linear in the integration step yielding an error of
O(∆t2). This numerical error affects the overall accuracy of the integration scheme. We
proposed a new technique that improves the accuracy of the tangential force calculation.
It uses quantities from a predictor-corrector integration scheme and therefore the overall
error is of the same order as that of the integration scheme.

115
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7.1 Overview

The results and conclusions presented in this thesis provide better comprehension of the
role of particle shape on the macro and micro-mechanical response of granular materi-
als. They also show a good agreement with the processes observed in experiments and
nature. Despite the efforts towards a proper characterization of particle shape irregu-
larity [24, 75, 152–154] and the understanding of its influence on the overall mechanical
response [19, 21, 33, 70, 155], it must be stressed that particle irregularity is still widely
disregarded in soil classification systems. Based on previous work and the results pre-
sented in this thesis concerning the critical state parameters, we conclude that charac-
terization of particle shape is important and will recognized as an important part of
both soil classification and engineering practice. Furthermore, our results on the occur-
rence of avalanches may have implications in a geophysical context. The large temporal
and mechanical stability that we find for systems with anisotropic particles compared
to isotropic ones may provide a possible explanation for the variation of the decay rate
of aftershocks in earthquake faults. The presence of anisotropic gouge in the shear zone
might be thought of as a control parameter on the temporal occurrence of earthquakes.

Many issues still remain to be resolved for a more deeper understanding of sheared
granular materials:

First, in our simulations, we retained low stress levels, where dense samples still ex-
pand and exhibit a clear peak on the stress behavior [11]. This is due to the fact that our
model does not consider fragmentation of the particles. For high stress levels the crush-
ing of the particles is expected to be the primary mechanism of deformation. Experimen-
tally, it was already shown that the initial density state and grain size distribution affects
the fragmentation process of the particles [156]. Particle crushing increases with the
stress level and affects the mechanical behavior of granular materials, e.g., suppression
of dilatancy in dense media [11], reduction of the mobilized shear strength [11, 157], non-
linear behavior of the strength envelope [22] and thus the critical state line for the stress
ratio is also not straight [158]. Furthermore, the effect of particle shape, e.g., spheric-
ity and roundness is expected to be suppressed at higher stress levels [159]. In DEM
the particle crushing can be implemented either by agglomerates composed of bounded
particles that can disaggregate as the stress is increased [1, 72] or by imposing a failure
criterion for particle breakage and replacing it by an equivalent set of smaller particles
when the criterion is fullfilled [160]. A deeper study of the particle crushing is particu-
larly important in a wide variety of engineering works such as embankments, founda-
tions and pavements where large monotonic and cyclic loading are applied, as well as
in geological proccess such as earthquake faults where natural earthquakes occur as a
result of the combined effect of frictional instabilities and rock fragmentation.

Second, in order to fully characterize the shape irregularity it is necessary to con-
sider the surface roughness, i.e., the small scale variations of particle surface. Since sur-
face roughness exhibits a fractal character lacking of characteristic scale, it still remains
poorly characterized [19]. Despite some previous results where the effect of roughness
on the propagation wave parameters was investigated experimentally [161] and with
micro-mechanical models[162] the influence of particle roughness at the macromechan-
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ical level remains an open issue.
Third, an additional step concerns the generalization of our particle model to a three

dimensional system using polyhedra to represent the particles. This is essential for true
quantitative characterization of the material. Such a task has already started [163, 164]
and it uses a combination of DEM with methods and formulations of multibody systems.
It is a very promising tool but is still expensive in terms of the computational time.

Fourth, concerning our numerical improvement of the DEM for the calculation of the
tangential force some further improvements are needed. A straightforward implemen-
tation to define the initial point during particles collisions has to be undertaken either by
interpolating before and after the collision or by using an event-driven scheme till the
contact is established. For polygonal particles a proper definition of the contact plane
between two polygons is still missing. Preliminary results have shown that a definition
based on the shape of the overlap area instead of the intersection points between the
particles guarantees the continuous change of the contact plane for any case of contact
and therefore a continuous change of the contact forces [165].

Finally, on the occurrence of avalanches, answer to the following questions will help
to understand the process that a granular system undergoes during slow shearing. Can
the stick-slip fluctuations in granular media be characterized by such natural tendency
of the system to build up force chains susceptible to collapse under large shear deforma-
tions? Is this succeptibility only related to the existence of the fluidized regions between
the force chains? Is failure approached when these regions percolate? Is there any other
micro-mechanical signature prior to the failure? To answer these question we require
a systematic study of the geometrical properties of the contact network. Current geo-
metrical characterization of force chains has been done for two dimensional packing of
disks [47]. The extension of this method for complex shaped particles and the study of
the interplay with the fluidized regions will throw light on the nature of the stick-slip
fluctuation and the occurrence of avalanches on sheared granular materials.
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[118] M. Oda, H. Kazama, and J. Konishi. Effect of induced anisotropy on the devel-
opment of shear bands in granular materials. Mechanics of materials, 28:103–111,
1998.

[119] H. Ouadfel and L. Rothenburg. Stress-force-fabric’ relationship for assemblies of
ellipsoids. Mechanics of Materials, 33(4):201–221, 2001.

[120] L. Rothenburg and R. J. Bathurst. Micromechanical features of granular assemblies
with planar elliptic particles. Géotechnique, 42(1):79–95, 1992.
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[127] F. Donzé, P. Mora, and S.-A. Magnier. Numerical simulation of faults and shear
zones. Geophys. j. Int., 116:46–52, 1994.

[128] P. Mora and D. Place. Stress correlation function evolution in lattice solid elasto-
dynamic models of shear and fracture zones and earthquake prediction. Pure appl.
geophys., 159(10):2413–2427, 2002.

[129] L. R. Sykes, B. E. Shaw, and C. H. Scholz. Rethinking earthquake prediction. Pure.
appl. geophys., 155:207–232, 1999.

[130] K. Mair, K. M. Frye, and C. Marone. Influence of grain characteristics on the fric-
tion of granular shear zones. J. Geophys. Res., 107:2219, 2002.

[131] C. Marone. Laboratory-derived friction laws and their application to seismic fault-
ing. Annual Review of Earth and Planetary Sciences, 26:643–696, 1998.

[132] R. Summers and J. D. Byerlee. A note on the effect of fault gouge composition on
the stability of frictional sliding. Int. J. Rock Mech. Min. Sci., 14(3):155–160, 1977.

[133] P. Mora and D. Place. Numerical simulation of earthquake faults with gouge:
toward a comprehensive explanation for the heat flow paradox. J. Geophys. Res.,
103:21067–21089, 1998.

[134] C. H. Scholz. The mechanics of earthquakes and faulting. Cambridge university press,
2002.

[135] W. J. Morgan. Rises, trenches, great faults, and crustal blocks. J. Geophys. Res.,
73:1959–1982, 1968.

[136] Nasa’s Observatorium. http:// observe.arc.nasa.gov/nasa/earth/tectonics/ Tec-
tonics2.html.

127



Bibliography

[137] Nasa Planetary Geodynamics Laboratory. http://denali.gsfc.nasa.gov/dtam/
seismic/.

[138] Nevada sismological laboratory. http://www.seismo.unr.edu/ftp/pub/louie/
class/.

[139] H. Kanamori and E. E. Brodsky. The physics of earthquakes. Physics today, 54:34–
40, 2001.

[140] K. B. Chakrabarti and L. G. Benguigui. Statistical physics of fracture and breakdown
in disordered systems. Clarendon, Oxford, 1997.

[141] A. Papoulis. Probability, random variables, and stochastic processes. McGraw-Hill,
Boston, 2002.

[142] H. J.S. Feder and J. Feder. Self-organized criticality in a stick-slip process. Phys.
Rev. Lett., 66(20):2669–2672, 1991.

[143] L. Staron and F. Radjai. Friction versus texture at the approach of a granular ava-
lanche. Phys. Rev. E, 72:041308, 2005.

[144] F. Radjai, D. E. Wolf, M. Jean, and J.-J. Moreau. Bimodal character of stress trans-
mission in granular packings. Phys. Rev. Lett., 80(1):61–64, 1998.

[145] L. Staron, F. Radjai, and J. P. Vilotte. Granular micro-structure and avalanche pre-
cursors. J. Stat. Mech., P07014, 2006.

[146] F. Alonso-Marroquin, A.A Peña, H.J. Herrmann, and P. Mora. Simulation of shear
bands using polygonal particles. In Discrete Element Methods (DEM) Conference.,
2007.

[147] M.P. Ciamarra, A. Coniglio, and M. Nicodemi. Shear instabilities in granular mix-
tures. Phys. Rev. Lett., 94:188001, 2005.

[148] F. da Cruz, S. Eman, M. Prochnow, and J.N. Roux. Rheophysics of dense granular
materials: Discrete simulation of plane shear flows. Phys. Rev. E., page 021309,
2005.

[149] S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J. Duran. Anomalous en-
ergy dissipation in molecular dynamics simulations of grains: The “detachment
effect”. Phys. Rev. E, 50:4113, 1994.

[150] S. Luding. Collisions & contacts between two particles. In H. J. Herrmann, J.-P.
Hovi, and S. Luding, editors, Physics of dry granular media - NATO ASI Series E350,
page 285, Dordrecht, 1998. Kluwer Academic Publishers.

128



Bibliography

[151] S. Latham, S. Abe, and P. Mora. Macroscopic friction response of rotational and
non-rotational lattice solid gouge models in 2d and 3d. In R. Garcı́a-Rojo, H.J.
Herrmann, and S. McNamara, editors, Powders and Grains 2005, pages 213–217.
Balkema, 2005.

[152] P. J. Barrett. The shape of rock particles, a critical review. Sedimentology, 27:291–303,
1980.

[153] R. L. Folk. Student operator error in determination of roundness, sphericity, and
grain size. J. Sediment. Petrol., 25(4):297–301, 1955.

[154] T. Matsushima and H. Saomoto. Discrete element modeling for irregularly-shaped
sand grains. In Mestat, editor, Proc. NUMGE2002: Numerical Methods in Geotechni-
cal Engineering, pages 239–246, 2002.

[155] T. T. Ng. Behavior of ellipsoids of two sizes. J. Geotech. Geoenviron. Engng, ASCE,
130(10):1077–1083, 2004.

[156] Y. Nakata, M. Hyodo, A. Hyde, Y. Kato, and H. Murata. Microscopic particle
crushing of sand subjected to high pressure one-dimensional compression. Soils
and foundations, 41(1):69–82, 2001.

[157] S. Lobo-Guerrero and L. E. Vallejo. Discrete element method evaluation of granu-
lar crushing under direct shear test conditions. J. Geotech. Eng., 131(10), 2005.

[158] Y. P. Cheng, M. D. Bolton, and Y. Nakata. Grain crushing and critical states ob-
served in dem simulations. In R. Garcı́a-Rojo, H.J. Herrmann, and S. McNamara,
editors, Powders and Grains 2005, pages 1393–1397. Balkema, 2005.

[159] J. Feda. Notes on the effect of grain crushing on the granular soil behavior. Engi-
neering geology, 63(1-2):93–98, 2002.

[160] J. A. Aström and H. J. Herrmann. Fragmentation of grains in a two-dimensional
packing. Eur. Phys. J. B, (5):551–554, 1998.

[161] J. C. Santamarina and G. Cascante. effect of surface roughness on wave propaga-
tion parameters. Geotechnique, 48(1):129–137, 1998.

[162] S. Yimsri and K. Soga. Effect of surface roughness on small strain stiffness of soils
- micromechanical approach. In Pre-failure deformation characteristics of geomaterials
IS-Torino, pages 597–602, Lancellotta & Lo Presti, 1999.

[163] B. Muth and P. Eberhard. Investigation of large systems consisting of many spa-
tial polyhedral bodies. In M.D. Lazurko D.H. van Campen and W.P.J.M. van der
Oever, editors, Proceedings of the ENOC-2005 Fifth EUROMECH Nonlinear Dynamics
Conference, pages 1644–1650, 2004.

129



Curriculum Vitæ

[164] B. Muth, P. Eberhard, and S. Luding. Simulation of contacting spatial polyhedral
particles. In Proceedings of the XXI. ICTAM 2004, pages 1–2, 2004.

[165] A. A. Peña, P.G. Lind, and H. J. Herrmann. Modeling slow deformation of polyg-
onal particles using dem. Submitted to Particuology, cond-mat arXiv:0712.0919v1,
2007.

130



Curriculum Vitae

Name: Andrés Alfonso Peña Olarte

Birth: June 21st, 1977, Manizales, Colombia

Parents: Samuel Peña and Esther Olarte, Tunja, Colombia

Feb 82 - Nov 94 School education. Colegio San luis Gonzaga, Maniza-
les, Colombia.

Jan 95 - Jul 00 Degree in Civil Engineering, Universidad Nacional de
Colombia, Manizales, Colombia.

May 00 - Jul 02 Junior engineer, Laboratory of Materials and Quality
Control of Roller Compacted Concrete, Hydroelectric
Project Miel I, Ingetec S.A. Norcasia, Colombia.

Aug 02 - Mar 04 Master Degree in Civil Engineering, Universidad de
los Andes, Bogotá, Colombia.
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Nr. 08 Lächler, W. (1977) Beitrag zum Problem der Teilflächenpressung
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Stützwände bei nachgiebigem Baugrund.

12,78e

Nr. 15 Smoltczyk, U. /
Schweikert, O.

(1981) Vorstudie über bauliche Alternativen für
Durchgangsstraßen in Siedlungen.

6,14e

Nr. 16 Malcharek, K. /
Smoltczyk, U.

(1981) Vergleich nationaler Richtlinien für die Berech-
nung von Fundamenten.

7,67e

Nr. 17 Gruhle, H.D. (1981) Das Verhalten des Baugrundes unter Ein-
wirkung vertikal gezogener Ankerplatten als
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