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Preface 
 

Traditional geotechnical analyses use a single “Factor of Safety”, which 

implicitly includes all sources of variability and uncertainty inherent in the 

geotechnical design. In foundation analysis for example, Terzaghi’s bearing 

capacity equation leads to an estimate of the ultimate soil resistance, which is 

then divided by a Factor of Safety to give allowable loading levels for design. 

Meanwhile probabilistic geotechnical analyses have been proposed to include 

the effects of soil property variability in a more scientific way. For the bearing 

capacity problem, it implies that the soil properties such us the friction angle and 

the cohesion are random variables that can be expressed in the form of 

probability density functions. Meanwhile pioneering experimental studies have 

been performed providing information on such functions for the random input 

variables. Now the issue has become one of calculating the probability density 

function of some outcome, such as the bearing capacity of a foundation. Mrs. 

Consolata Russelli, focuses exactly on this problem. 

   On taking the bearing capacity of a footing as a benchmark problem, she 

considers several stochastic procedures. Besides the well-known Monte-Carlo 

simulations she uses approximations of first and second order. The main focus 

of her study is the application of the Point Estimation Method (PEM), as 

developed by Rosenblueth. She modifies this method by taking sampling points, 

which suit the characteristics of the problem. On top of that she focuses on the 

critical part of the curve. This is indeed a promising approach that merits further 

research. No doubt, this so-called Advanced Point Estimation Method can also 

be applied to slope stability and other geotechnical problems. 

   The financial support by the BMBF (Federal Ministry of Education and 

Research) in the form of an IPSWAT
1
 scholarship to Mrs. Russelli is gratefully 

acknowledged. 

 

 

Prof. Dr.-Ing. P. A. Vermeer 

Stuttgart, March 2008 
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 IPSWAT stands for International Post-graduate Studies in Water Technologies 
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Abstract  
 

Geotechnical problems are often dominated by uncertainty, such as inherent 

spatial variability of soil properties or scarcity of representative data. Engineers 

try to solve these problems using the traditional deterministic approach based on 

the safety factor, but this cannot explicitly deal with uncertainty, thus affecting 

the safety of engineering structures. In recent years reliability analyses and 

probabilistic methods have been applied in order to provide a more rational 

mathematical framework to incorporate different types of uncertainty into a 

geotechnical design.  

   In this thesis probabilistic concepts and methods are described and 

successively applied to the bearing capacity study of a strip footing. The 

uncertainties involved in this problem are investigated through a comprehensive 

literature review. 

   First of all Monte Carlo simulations are considered. For practical applications 

this method is too time consuming. Then the approximative First Order Second 

Moment and Second Order Second Moment methods are applied. Unfortunately 

these methods do not provide any information about the shape of the probability 

density function of a performance function, such as the bearing capacity. For 

this reason another alternative, the Point Estimate Method, is considered. With 

this approach the skewness coefficient can also be estimated, thus being 

substantially more accurate than the moments methods, with much less 

computational effort than the Monte Carlo simulations. Despite the good 

agreement of the results in terms of mean value and standard deviation, a 

significant difference is observed between the skewness coefficients provided by 

the Point Estimate and the Monte Carlo methods. 

  Another important observation refers to the correlation between the soil 

parameters cohesion and friction angle. Some authors have based their 

probabilistic studies considering uncorrelated variables to simplify calculations, 

thus being more conservative. Other authors found a negative correlation on the 

basis of experimental data. However in the literature it is hard to find 

probabilistic studies on the assumption of a negative correlation between soil 

parameters. In this thesis, the influence of this correlation is accurately 

investigated. It is found that a negative correlation reduces the variability of the 

bearing capacity and the uncertainty in the analysis significantly, thus increasing 

the reliability level. 

   In addition, the choice of a certain probability density function as 

approximation of the bearing capacity results is thoroughly discussed. It is found 

that the shifted lognormal distribution matches all the three moments of the 
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bearing capacity extremely well, i.e. mean value, standard deviation and 

skewness, thus being more accurate than other distributions. 

   The reliability analysis of the bearing capacity problem shows that the results 

of the Point Estimate method approximated by the shifted lognormal distribution 

do not match the low failure probabilities evaluated using MCS very well. In 

order to cope with the shortcoming of the Point Estimate method in assessing 

small values of the failure probability, a new method is developed, referred to as 

the advanced Point Estimate method. The proposed method is also applied to the 

bearing capacity problem and the results are then validated using the Monte 

Carlo approach. 
 



vii 

Zusammenfassung 
 

Geotechnische Probleme, wie zum Beispiel die Tragfähigkeit einer Gründung, 

unterliegen Unsicherheiten. Gründe dafür sind zum einen geologische 

Abweichungen und räumliche Veränderlichkeit der Bodeneigenschaften. Zum 

anderen werden häufig Vereinfachungen und Näherungen bei der Modellierung 

angenommen. Auch Abweichungen von der Realität, die durch die 

Modellierung hervorgerufen werden, sind nicht zu vernachlässigen.  

   Traditionell versuchen Ingenieure, diese Probleme mit Hilfe deterministischer 

Berechnungen zu lösen. Durch die Anwendung von Sicherheitsbeiwerten und 

konservativen Annahmen bei der Planung und dem Entwurf kann aber ein 

technisches System überdimensioniert werden und extrem teuer sein. Außerdem 

werden sogar erweiterte deterministische Methoden bei sehr hoher Unsicherheit 

unbrauchbar. Infolgedessen kann das Zuverlässigkeitsniveau einer 

geotechnischen Struktur nicht quantitativ geschätzt werden. 

   Die Bewertung von geotechnischen Unsicherheiten ist eine nicht einfache 

Aufgabe. In der Realität ist eine Unsicherheit aufgrund des Mangels an 

vollkommenem Wissen oder der unvollständigen Information über vorhandene 

Daten unvermeidbar. Aus diesem Grund erfordert die Ermittlung der 

Unsicherheit notwendigerweise die Anwendung der Wahrscheinlichkeitstheorie, 

welche die Unsicherheit in den Entwurfsprozess durchweg quantitativ 

bestimmen und eingliedern kann. 

   Trotz des Nutzens einer Wahrscheinlichkeitsanalyse sind Ingenieure häufig 

noch skeptisch, wenn sie diese Herangehensweise anwenden, weil sie irrtümlich 

denken, dass der geforderte Berechnungsaufwand viel größer als für eine 

deterministische Analyse ist. Dazu können manchmal Schwierigkeiten beim 

Verständnis und bei der Interpretation der probabilistischen Ergebnisse 

angetroffen werden. Die Wahrscheinlichkeitsanalyse sollte jedoch nicht als 

Ersatz für die konventionelle deterministische Berechnung betrachtet werden, 

da, in der Tat, diese Analyse ein ergänzendes Mittel ist, um mit Unsicherheiten 

umzugehen. 

 

Ziel und Motivation  

Das erste Ziel dieser Arbeit ist, weit verbreitete Wahrscheinlichkeitskonzepte 

und -methoden zu beschreiben und ihre Anwendung auf geotechnische 

Probleme mit kleinen Versagenswahrscheinlichkeiten vereinfacht darzustellen. 

Somit wird ein theoretisch fundiertes Gerüst zur Verfügung gestellt, um 

relevante Unsicherheiten in der Analyse konsistent einzubeziehen. Unter den 
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vorhandenen Wahrscheinlichkeitsmethoden werden dann Verfahren für eine 

weitere Analyse gewählt, die für geotechnische Probleme am besten geeignet 

sind. 

   Außerdem wird in vorliegender Arbeit eine neue Wahrscheinlichkeitsmethode 

entwickelt, welche die Einschränkungen anderer Methoden überwinden kann, 

besonders für die Auswertung der kleinen Versagenswahrscheinlichkeiten einer 

geotechnischen Struktur. Um von praktischen Ingenieuren angenommen zu 

werden, sollte diese neue Methode für Zuverlässigkeit- und Risikoanalysen 

geotechnischer Probleme leicht anwendbar sein und sowohl Expertenwissen als 

auch Entscheidungsträger unterstützen. 

   Zu diesem Zweck wird ein einfaches Beispielproblem betrachtet, die Analyse 

der Grundbruchtragfähigkeit einer Flachgründung auf einer homogenen 

Bodenschicht, für die eine analytische Lösung zur Verfügung steht. Aufgrund 

der natürlichen Streuung der  Scherfestigkeitsparameter werden die effektive 

Bodenkohäsion und der effektive Reibungswinkel als Zufallsvariablen 

angenommen und durch bekannte Verteilungsfunktionen beschrieben. Andere 

Bodenparameter, die nicht abhängig von irgendeiner bedeutenden Streuung sind, 

werden deterministisch behandelt, um die Komplexität des Problems zu 

verringern. 

   Zuerst kommen Monte-Carlo Simulationen (MCS) zur Anwendung. Um 

genaue statistische Werte zu erhalten, werden mindestens zehntausend 

Realisierungen innerhalb des betrachteten Bereiches der Bodenparameter 

ausgewertet. Da diese Methode in der Praxis allzu rechenintensiv und 

zeitaufwändig ist, werden andere Methoden wie die Momentenmethoden FOSM 

(First Order Second Moment) und SOSM (Second Order Second Moment) 

angewendet, bei denen um den Mittelwert der Eingangsparameter linearisiert 

wird. Eine andere Näherungsverfahren ist das Punktabschätzverfahren (PEM) 

nach ROSENBLUETH (1975, 1981). Bei der PEM wird die Verteilungsfunktion 

der Scherfestigkeitsparameter diskretisiert, indem man einige Stützpunkte wählt. 

Danach können der Mittelwert, die Standardabweichung und die Schiefe der 

Grundbruchtragfähigkeit durch gewichtetes Aufsummieren der diskreten 

Realisationen (Stützpunkte) ermittelt werden. Die PEM benötigt mehr 

Berechnungsaufwand als die Methoden FOSM und SOSM. Die Ergebnisse sind 

jedoch wesentlich genauer, weil diese Annäherung nicht nur Mittelwert und 

Standardabweichung der Grundbruchtragfähigkeit auswertet, sondern auch 

deren Schiefekoeffizient.  

   In dieser Arbeit werden auch die Ergebnisse der Zuverlässigkeitsanalyse des 

Grundbruchtragfähigkeitsproblems gezeigt, indem die bereits erwähnten 

Wahrscheinlichkeitsverfahren angewendet werden. 
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Dabei wird die betroffene Schwierigkeit bei der Auswertung von kleinen 

Versagenswahrscheinlichkeiten betont. Aus diesem Grund wird eine neue 

Methode berücksichtigt, die erweiterte PEM oder kurz APEM (Advanced Point 

Estimation Method), die die Erweiterung der traditionellen PEM darstellt.  

   Es wird aufgezeigt, dass diese vielversprechende Annäherung ausgezeichnete 

Einschätzungen der kleinen Versagenswahrscheinlichkeit der 

Grundbruchtragfähigkeit ergibt, besonders wenn ihre Ergebnisse mit denen des 

aufwändigen Monte-Carlo Verfahrens verglichen werden. 

 

Einschränkungen  

Um die Berechnungen zu vereinfachen, werden die folgenden Annahmen und 

Einschränkungen in vorliegender Arbeit vorgenommen: 

 

1. In Bodenschichten streuen die Parameter wie die effektive Kohäsion und der 

Reibungswinkel räumlich in horizontaler und vertikaler Richt 

ung. Die Verteilung dieser Eigenschaften in einer bestimmten Bodenschicht 

hängt von der zugehörigen Heterogenität, von der geologischen Geschichte der 

Bodenbildung und von deren fortlaufender natürlicher Veränderung ab. Eine 

homogene Bodenschicht ist selten. In den meisten Bodenschichten zeigen 

Eigenschaften eine bedeutende räumliche Streuung. In dieser Studie wird die 

Bodenschicht als homogen mit einheitlichen aber nicht genau bekannten 

Bodeneigenschaften behandelt. Der Einfluss der räumlichen Streuung der 

Bodenparameter, die eine bedeutende Fehlerquelle ist, und deren 

Korrelationslänge zwischen verteilten Punkten werden ignoriert. Wird die 

Streuung der Bodeneigenschaften betrachtet, können Unsicherheiten 

geotechnischer Probleme wesentlich verringert werden. Wegen der extrem 

hohen Kosten von  Baugrunduntersuchungen ist es leider praktisch unmöglich, 

genügend Daten zu sammeln, um die Streuung einer Bodeneigenschaft genau zu 

kennen. Folglich ist es notwendig, den Trend der vorhandenen Daten der 

Bodeneigenschaften innerhalb eines großen Volumens zu interpolieren.  

 

2. Das bedeutende Risiko aufgrund von Messfehlern, der Unsicherheit in der 

Modellierung und des menschlichen Versagens bei technischen Systemen kann 

herabgesetzt werden, z.B. indem die Anzahl und die Präzision von Messungen 

sowie die Genauigkeit des Modells verbessert werden. Wenn diese Fehler in 

einer Wahrscheinlichkeitsanalyse betrachtet würden, könnte die Unsicherheit 

eines technischen Entwurfs besser quantitativ bestimmt werden. 

 



Zusammenfassung 

x 

3. Trotz der Bemühungen, Unsicherheiten der Bodeneigenschaften in einer 

Wahrscheinlichkeitsanalyse zu berücksichtigen, besteht immer die Möglichkeit, 

einige von ihnen zu vernachlässigen. Dieses könnte die Lösung eines 

bestimmten geotechnischen Problems erheblich beeinflussen. Zusätzlich werden 

häufig viele Parameter nicht behandelt, um Wahrscheinlichkeitsanalysen zu 

vereinfachen. Auf diese Weise wird ihr Beitrag nicht betrachtet, wenn man das 

Zuverlässigkeitsniveau eines technischen Systems auswertet. Deshalb kann die 

berechnete Versagenswahrscheinlichkeit nur als unterere Grenze zur absoluten 

Versagenswahrscheinlichkeit angesehen werden. Eine anspruchsvollere 

Risikoanalyse wäre erforderlich, um das Risiko weiterer nicht berücksichtigter 

Unsicherheiten miteinzubeziehen. 

 

Überblick  

In diesem Zusammenhang werden die folgenden Kapitel berücksichtigt: 

 

Kapitel 2:   Dieses Kapitel beginnt mit der Berücksichtigung von wesentlichen 

Quellen und Arten der Unsicherheit im Bereich der Geotechnik. Die wichtige 

Rolle der Anwendung von Wahrscheinlichkeitsmethoden als Alternative zur 

deterministischen Analyse wird betont, um Unsicherheiten quantitativ zu 

bestimmen. Es folgt nachher eine Beschreibung der wichtigsten Statistik- und 

Wahrscheinlichkeitskonzepte von Zufallsvariablen, welche für diese Arbeit 

relevant sind. Eine Definition von Zufallsvariablen wird dann gegeben. Dabei 

werden ihre Haupteigenschaften und einige nützliche Verteilungsfunktionen 

beschrieben. Schließlich hebt das Kapitel die Bedeutung des Durchführens einer 

Zuverlässigkeitsanalyse und des Auswertens der Versagenswahrscheinlichkeit 

eines technischen Entwurfs hervor. Es wird gezeigt, wie sich der traditionelle 

Sicherheitsbeiwert zu der Versagenswahrscheinlichkeit, welche ein 

realistischeres Maß eines Zuverlässigkeitssystems ist, in Beziehung setzt. 

 

Kapitel 3: Ziel dieses Kapitels ist, einige weithin bekannte 

Wahrscheinlichkeitsmethoden zu erläutern, mit denen vorhandene 

Unsicherheiten rationeller behandelt und Wahrscheinlichkeitskonzepte in 

geotechnische Analysen einbezogen werden können. Besondere 

Aufmerksamkeit wird den Monte-Carlo Simulationen (MCS), dem 

Punktabschätzverfahren (PEM), den Momentenmethoden FORM, FOSM und 

SOSM gewidmet. Die Vorgehensweise dieser Methoden wird weitgehend 

veranschaulicht und die entsprechenden Vorteile und Einschränkungen 

diskutiert.  
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Kapitel 4:   Dieses Kapitel behandelt eine mögliche Anwendung der Methoden 

MCS, FOSM und SOSM zur Grundbruchtragfähigkeit eines Streifenfundaments 

auf einer homogenen Bodenschicht. Zwei Fallstudien werden vorgestellt, für 

welche die effektive Kohäsion und der effektive Reibungswinkel als 

Zufallsvariablen angenommen werden, da diese die größte Auswirkung auf die 

Baugrundtragfähigkeit haben. Unterschiedliche Werte des 

Korrelationskoeffizienten zwischen den Bodenparametern werden betrachtet. 

Insbesondere wenn die Ergebnisse der oben genannten Methoden verglichen 

werden, wird aufgezeigt, wie die Korrelation die Wahrscheinlichkeitsanalyse 

stark beeinflusst, da die Streuung der Grundbruchtragfähigkeit und die 

Unsicherheit erheblich verringert werden. Schließlich wird der Bedarf einer 

alternativen Methode angesprochen, welche die Einschränkungen der Methoden 

MCS, FOSM und SOSM bewältigen kann. 

 

Kapitel 5:   In diesem Kapitel wird gezeigt, wie die PEM die Einschränkungen 

der Methoden MCS, FOSM und SOSM überwinden kann. Daher erweist sich 

die PEM als eine attraktive und leistungsfähige Alternative zu den anderen 

Wahrscheinlichkeitsmethoden, da sie weniger Berechnungsaufwand erfordert. 

Aus diesem Grund wird die PEM auf das Grundbruchtragfähigkeitsproblem 

angewendet. Ihre Ergebnisse werden dann mit denen der Verfahren MCS, 

FOSM und SOSM verglichen. Es wird gezeigt, dass die Ergebnisse der PEM 

genauer als die der Methoden FOSM und SOSM sind; jedoch wird ein 

bedeutender Unterschied zwischen den Schiefekoeffizienten von PEM und MCS 

beobachtet. Zusätzlich werden die Bedeutung und der Einfluss der Korrelation 

zwischen Bodenparametern bei der Anwendung der PEM hervorgehoben. 

 

Kapitel 6: Dieses Kapitel greift die grundlegenden Probleme der 

Zuverlässigkeitsanalyse auf, die auf der Auswertung einer kleinen 

Versagenswahrscheinlichkeit fokussiert. Zunächst werden die Ergebnisse der 

Zuverlässigkeitsanalyse des Grundbruchtragfähigkeitsproblems, welche in 

Versagenswahrscheinlichkeit und Zuverlässigkeitsindex ausgedrückt werden, 

dargestellt und verglichen, indem bekannte Wahrscheinlichkeitsmethoden 

einschließlich MCS und PEM verwendet werden. Um die Einschränkungen der 

PEM bei der Ermittlung einer kleinen Versagenswahrscheinlichkeit zu 

überwinden, wird danach eine sogenannte erweiterte PEM (kurz APEM) 

eingeführt. Diese ist in der Literatur bislang nicht behandelt worden. Die 

Grundidee dieser Methode ist, Augenmerk auf die verhältnismäßig kleinen 

Werte der Bodenkohäsion und des Reibungswinkels zu richten, die zum 

Versagen führen.  
 



Zusammenfassung 

xii 

Die APEM wird auf verringerte Intervalle der Scherfestigkeitsparameter 

angewendet, um die Versagenswahrscheinlichkeit der Grundbruchtragfähigkeit 

genauer abzuschätzen. Dieser Wert wird dann mit der ermittelten 

Versagenswahrscheinlichkeit der MCS verglichen, um die Genauigkeit der 

APEM zu bestimmen.  

 

Kapitel 7: Die relevantesten Ergebnisse dieser Arbeit werden im 

abschließenden Kapitel zusammengefasst. Darüber hinaus werden die 

wichtigsten Schlussfolgerungen aufgegriffen und Empfehlungen für 

weiterführende Forschungsprojekte gegeben. 
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Chapter 1 
 

Introduction 
It has long been recognised that uncertainties, such as the inherent spatial 

variability of soil properties, often dominate many events or problems of interest 

to geotechnical engineers. Traditionally engineers try to solve these problems by 

deterministic calculation through the use of safety factors and adopting 

conservative assumptions in the process of engineering planning and design. In 

this way an engineering system can be over-designed and extremely expensive. 

Furthermore, even advanced deterministic methods become useless when the 

uncertainty is very high. As a result the reliability level of a geotechnical 

structure cannot be estimated quantitatively.  

   The assessment of geotechnical uncertainties is not an easy task. As a matter 

of fact uncertainty is unavoidable, due to the lack of perfect knowledge or to the 

incomplete information about available data. For this reason the determination 

of uncertainty necessarily requires the application of probability theory, which 

quantifies and integrates uncertainty into the design process in a consistent 

manner. 

   Despite the benefits gained from a probabilistic analysis, engineers are often 

still sceptical in adopting this approach, because they think, erroneously, that the 

calculation effort required is much larger than for a deterministic analysis. In 

addition, difficulties are sometimes encountered in understanding and 

interpreting probabilistic results. 

   Probabilistic analysis should not however be considered as a substitute for the 

conventional deterministic design, it is in fact a complementary measure to deal 

with uncertainties. 

 

1.1 Thesis purpose and motivation 

The first object of this research is to describe well-known probabilistic concepts 

and methods and show their application to geotechnical low probability 

estimation problems in a straightforward way, thus providing a rational 

framework to incorporate consistently relevant uncertainties in the analysis. 
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Among the available probabilistic approaches, the ones most suitable for the 

geotechnical field will be then chosen for a further analysis.  

   Moreover, in the present thesis a new probabilistic approach will be 

developed, which should be able to cope with the shortcomings of other 

methods, especially for the evaluation of low failure probabilities of a 

geotechnical structure. In order to be accepted by practical engineers, this new 

method should be easily applicable for reliability and risk analyses of 

geotechnical problems, supporting both engineering judgement and decision 

making. 

   To achieve these aims a simple example problem is analysed: the bearing 

capacity study of a strip footing on a homogeneous soil layer, for which an 

analytical solution is available. The soil shear strength parameters, i.e. the 

effective cohesion and friction angle, are described by specific probabilistic 

distribution functions. While other soil parameters that are not subject to any 

significant variation are treated deterministically to reduce the complexity of the 

problem.  

   Initially Monte Carlo simulations (MCS) are applied. In order to obtain 

accurate statistical values at least ten thousand realisations are required within 

the considered range of soil parameters. Since this method is too complex and 

time consuming for the practice, other methods are examined, such as the First 

Order Second Moment (FOSM) and the Second Order Second Moment (SOSM) 

methods, which produce a linearization around the average values of the input 

random variables. Another approximation method is the Point Estimate Method 

(PEM) after ROSENBLUETH (1975, 1981). With the PEM a continuous 

distribution curve is replaced by particularly specified discrete probabilities and 

the first three moments of a probability distribution function, i.e. mean value, 

standard deviation and skewness, can be defined. The determination of these 

moments is realized through the weighted sum of every discrete realizations, 

also referred to as sampling points. The PEM requires more computational effort 

than FOSM and SOSM methods. The results however are substantially more 

accurate, because this approach evaluates not only mean value and standard 

deviation of the bearing capacity, but also its skewness coefficient. 

   In this thesis, the results of the reliability analysis of the bearing capacity 

problem by applying the already mentioned probabilistic techniques will also be 

shown, stressing the difficulty encountered in evaluating low failure 

probabilities. For this reason a new approach is taking into account, the 

advanced PEM, or shortly APEM, which represents the enhancement of the 

traditional Point Estimate method.  
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This promising technique will be shown to give excellent predictions of the 

failure behaviour of the bearing capacity, especially when its results will be 

compared with those of Monte Carlo method.  

 

1.2 Thesis restrictions 

In order to simplify the calculations, the following assumptions and restrictions 

are adopted in this research: 

 

1. In soil layers parameters, such as the effective cohesion and the friction angle, 

vary spatially in both horizontal and vertical directions. The distribution of these 

properties on a particular soil layer depends on the inherent heterogeneity, the 

geological history of soil formation and its continuous modification by nature. A 

homogeneous soil layer is rare. In most soil layers properties show a significant 

variation over space.  

   This study is carried out by treating the soil layer as homogeneous with 

uniform, but not exactly known, soil properties. The influence of the spatial 

variability of soil parameters, which is a significant source of error, and the 

correlation length (or scale of fluctuation) between the different points of the 

random field are ignored. Taking into account the variability in soil properties 

when predicting geotechnical performance may substantially reduce the 

uncertainties associated with a design. Unfortunately, because of the extremely 

high costs of subsurface investigations, it is practically impossible to collect 

enough data to exactly understand the variation of a soil property. Therefore it is 

necessary to interpolate the trend of the available data of soil properties within a 

large volume. 

 

2. The significant risk due to the measurement, model and human errors in 

engineering systems can be minimized, for example, by improving the quantity 

and precision of measurements, the accuracy of the model and the quality 

assurance and control system. When these errors are taken into account in a 

probabilistic analysis, the uncertainty of an engineering design could be better 

quantified. 

 

3. Notwithstanding the efforts of including soil properties uncertainties in a 

probabilistic analysis, there is always the possibility of missing some of them. 

This could affect the solution of a certain geotechnical problem significantly. 

Additionally many parameters are not usually taken into account in order to 

simplify probabilistic analyses. In this way their contribution is not considered 
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in evaluating the reliability level of an engineering system and the computed 

failure probability can only be seen as a lower bound to the absolute failure 

probability. A more sophisticated probabilistic risk analysis would be needed to 

assess the risk due to all undetected events.  

 

1.3 Thesis outline 

In order to achieve the objects of the present research discussed in section 1.1, 

the following chapters will be considered: 

 

Chapter 2:   this chapter starts by considering the primary sources and types of 

uncertainty in the geotechnical field, underlying the importance of using 

probabilistic methods as alternative to the deterministic analysis to quantify 

uncertainties. Hereafter follows a description of the most important statistical 

and probabilistic concepts of continuous random variables, which are relevant to 

this research. A definition of random variables is then provided by describing its 

main characteristics and some useful continuous probability distributions. 

Finally the chapter will highlight the importance of carrying out a reliability 

analysis and of evaluating the failure probability of an engineering design. It is 

shown how the traditional safety factor relates to the probability of failure, the 

latter representing a more realistic measure of a system reliability. 

 

Chapter 3:   the aim of this chapter is to review some well-known probabilistic 

techniques for dealing with uncertainties and for implementing probabilistic 

concepts into geotechnical analyses in a more rational way. Particular attention 

is given to Monte Carlo Simulations (MCS), the Point Estimate method (PEM), 

the First Order Reliability (FORM) method, the First Order Second Moment 

(FOSM) and the Second Order Second Moment (SOSM) methods. The 

methodologies are extensively illustrated and the corresponding advantages and 

limitations are discussed. 

 

Chapter 4:   this chapter presents a possible application of the probabilistic 

methods MCS, FOSM and SOSM to the bearing capacity study of a strip footing 

on a homogeneous soil layer characterised by the corresponding effective 

cohesion and friction angle. Two benchmarks are introduced, for which the 

effective cohesion and friction angle are considered as random variables, since 

they have the greatest impact on the soil bearing capacity. Different values of 

the correlation coefficient between the soil parameters will be taken into 

account. In particular, when the final results of MCS, FOSM and SOSM 
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methods are compared, it will be shown how this correlation strongly influences 

the probabilistic analysis, reducing the variability of the bearing capacity and the 

uncertainty in the final results significantly. Finally, the necessity of an 

alternative probabilistic approach, which could cope with the shortcomings of 

MCS, FOSM and SOSM methods, will be discussed. 

 

Chapter 5:   the purpose of this chapter is to show how the PEM can overcome 

the drawbacks of MCS, FOSM and SOSM methods, thus resulting to be an 

attractive alternative to the other probabilistic methods in terms of 

computational effort and mathematical simplicity. For this reason, the PEM is 

also applied to the bearing capacity benchmarks described in chapter 4 and the 

results are then compared with those of MCS, FOSM and SOSM methods. It 

will be shown that the PEM results are more accurate than FOSM and SOSM 

methods; however a large difference between the skewness coefficients of PEM 

and MCS will be seen. In addition, it will be stressed that care should be taken in 

applying the PEM when a correlation between soil parameters is considered.  

 

Chapter 6:  this chapter starts with a discussion of the basic problems 

concerning the reliability analysis of engineering systems, focusing on the 

evaluation of small values of the failure probability. Next, the results of the 

reliability analysis of the bearing capacity problem by applying well-known 

probabilistic approaches, including MCS and PEM, are presented and compared, 

both in terms of failure probability and reliability index. Afterwards, in order to 

cope with the shortcomings of the PEM for the assessment of small values of the 

failure probability, a so called advanced PEM, or shortly APEM, is introduced. 

This has not been previously mentioned in the literature. The basic idea of this 

method is to focus on the relatively small values of soil cohesion and friction 

angle, which would most probably cause bearing capacity failure. The APEM 

will be applied to the reduced intervals of the soil strength parameters to predict 

the failure behaviour of the bearing capacity. Finally, the applicability of the 

estimated failure probabilities of the bearing capacity is discussed using 

diagrams usually employed in decision-making.  

 

Chapter 7:  a summary of the most relevant findings of this research is 

presented in the final chapter, drawing conclusions and including 

recommendations for further research. 
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Chapter 2 
 

Probabilistic concepts for geotechnical 

engineering 

Introduction 
The purpose of this chapter is to provide the most important statistical and 

probabilistic concepts of continuous random variables, which are fundamental 

for this study, such as the mean value or the standard deviation. For more 

detailed descriptions about the mathematical background of probability theory 

the author refers to ANG and TANG (1975). 

   The chapter begins by considering the primary sources and types of 

uncertainty in the geotechnical field, underlying the importance of using 

probabilistic methods as an alternative to the deterministic analysis to quantify 

uncertainties. 

   It continues by providing a definition of random variables and by describing 

their main characteristics and some useful continuous probability distributions. 

   Finally the chapter will address the reliability analysis, highlighting the 

importance of evaluating the failure probability of an engineering system. 

 

2.1 Uncertainty in Geotechnics 

Many sources of uncertainty exist in the geotechnical field ranging from the 

variability of soil properties to the sampling and testing technique. Engineers try 

to cope with these problems using deterministic analyses, which are based on 

the classical notion of the safety factor.  

   However practical experience shows that the deterministic approach, relying 

on conservative designs, which are not always safe against failure, is not suitable 

for dealing rationally with uncertainty. As a result, the reliability of a system can 

not be properly  assessed. This fact will be better explained in section 2.4. 

  The authors EINSTEIN and BÄCHER (1982) stated in one of their papers that: 
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„In thinking about sources of uncertainty in engineering geology, one is left 

with the fact that uncertainty is inevitable. One attempts to reduce it as much as 

possible, but it must ultimately be faced. […]. The question is not whether to 

deal with uncertainty, but how?”. 

 

In this regard, a rigorous evaluation of the uncertainty involved in geotechnical 

problems necessarily requires the application of probabilistic theory as a 

complement to conventional deterministic analyses. In fact probabilistic 

concepts and methods, associated to the statistical theory, offer a theoretical 

basis for quantifying uncertainties consistently, rendering them into precise 

mathematical terms. In this way, a logical framework is provided for reliability 

and risk analysis. 

 

2.1.1 Sources of uncertainty 

Geotechnical variability results from different sources of uncertainties. The three 

primary sources are inherent variability, measurement error and model 

uncertainty, as described in Fig. 2.1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Uncertainty in soil property estimates (KULHAWY, 1992) 
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Inherent variability results primarily from natural geologic processes that 

created in-situ soil layers. Measurement error is caused by sampling and 

laboratory testing. 

   This error is increased by statistical uncertainty that arises from limited 

amount of information. Finally the model uncertainty is introduced when field or 

laboratory measurements are transformed into input parameters for design 

models involving simplifications and idealisations.  

 

2.1.2 Types of uncertainty 

Uncertainties associated with geotechnical engineering can be divided into three 

categories: the inherent or natural uncertainty (aleatory), the uncertainties due to 

the lack of perfect knowledge (epistemic) and the human error. 

   The aleatory (from Latin aleator meaning “gambler” or alea meaning “die”) 

uncertainty is attributed to the natural variability or randomness of a certain 

property, such as the spatial variation of the soil layer properties cohesion and 

friction angle. It could be quantified by measurements and statistical estimations 

or by expert opinion. This kind of uncertainty is unpredictable and therefore 

irreducible via collection of more experimental data or use of more refined 

models. For this type of uncertainty the term probability means the frequency of 

occurrence of a random event, which is an innate property of nature. 

   The epistemic (from Greek επιστηµη meaning “knowledge”) uncertainty 

arises from the lack of knowledge of a system and it is related to limited or 

ambiguous data, measurement error, incomplete knowledge, imperfect models 

and subjective judgement. It can in principle be quantified by experts, but not 

measured. This kind of uncertainty can be reduced by collecting more 

experimental data, by improving the measurement and calculation methods and 

by using more refined models. For this type of uncertainty the term probability 

means the degree of belief in the occurrence of a random event, which is a 

subjective interpretation of the individual, e.g. the engineering judgement of an 

expert. 

   In Geotechnics aleatory and epistemic uncertainties coexist in most practical 

applications.  

 

2.2 Random variables 

In a probabilistic analysis the geotechnical parameters, which represent the 

major sources of uncertainties, are treated as random variables. 

   A random variable is a mathematical function defined on a sample space that 

assigns a probability to each possible event within the sample space.  
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In practical terms, it is a variable for which the precise value (or range of values) 

cannot be predicted with certainty, but only with an associated probability, 

which describes the possible outcome of a particular experiment in terms of real 

numbers.  

   In this study the soil shear strength parameters cohesion and friction angle are 

considered as random variables for the probabilistic analysis of the bearing 

capacity problem, as described in chapter 4. 

 

2.2.1 Main characteristics of random variables 

The most important statistical parameters related to the soil layer variability are 

the mean value, the standard deviation, the skewness and the correlation 

coefficients between the soil properties.   

   Another important characteristic is the autocorrelation length, or scale of 

fluctuation, which describes the spatial variability of a soil property in both 

horizontal and vertical direction. As information on this parameter is rather 

limited in literature, it is ignored in this study, as is traditionally done. However 

its consideration may contribute to a reduction in model uncertainty.  To define 

all these parameters we need to collect much experimental data on soil 

properties using in-situ and laboratory tests.  

   The variability of these data can then be plotted graphically as histograms, or 

frequency diagrams, as shown in Fig. 2.2.  

   Using histograms it is possible to verify the consistency of data of a certain 

event and to identify trends, biases in measurements, errors in the results and 

outliers. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Frequency diagram of a certain event and possible probability  

                        density functions 
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2.2.1.1 The probability distribution and the probability density functions 

The probability distribution function FX(x), also called cumulative distribution 

function or shortly CDF, describes the probability measures that a random 

variable X takes on a value less than or equal to a number x, for every value x. 

This function is defined as 

 

( ) ∞+<<∞−≤≡ xfor,xXP)x(F
X

     (2.1) 

 

If the random variable is discrete, the CDF is found by summing up all its 

probability measures on a given sample space. While, if the random variable is 

continuous, its probability measures can also be described in terms of a 

probability density function fX(x), or shortly PDF. This function can be 

integrated to obtain the probability that the random variable takes a value in a 

given interval. Formally, the PDF is the derivative of the CDF, thus the 

following relationship exists  

 

( )
( )

dx

xdF
xf X

X
=           (2.2) 

 

Considering Eqs. (2.1) and (2.2), the probability of a random variable X being in 

the interval [x1, x2] can be evaluated as follows 

 

( ) ( ) ( ) ( )
2112

x

x

X
xXxPxFxFxf

2

1

≤<=−=∫      (2.3) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: CDF and PDF of a continuous random variable 
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The CDF must be a continuous non-decreasing function with values in the 

interval [0,1]. As a consequence, the PDF is a non-negative function for all 

values x and the total area under this function is always unity.  Both functions 

are plotted in Fig. 2.3. 

   For more detailed descriptions about the probability distribution and the 

probability density functions the author refers to ANG and TANG (1975). 

 

2.2.1.2 The mean value 

The mean value of a random variable, also defined as expected or central value, 

is the sum of the probability of each possible outcome of an experiment 

multiplied by its value. Thus it represents the weighted average of all the 

available experimental data of the variable according to the corresponding 

frequency of occurrence.  

   In general, if X is a continuous random variable, such as the effective cohesion 

of a homogeneous soil, and fX(x) is its probability density function, then its 

mean value is given by 

 

dx)x(fx
XX ∫

∞+

∞−
⋅=µ          (2.4) 

 

The mean value is also referred to as the first central moment, or centre of 

gravity, of a probability density function, which may be, together with the 

variance or second central moment, the only practically obtainable information 

on soil data. 

 

2.2.1.3 The variance and the standard deviation 

Besides the mean value, another important characteristic of a random variable is 

its measure of dispersion or variance, also referred to as the second central 

moment, or moment of inertia, of the variable. This quantity indicates how 

widely the values of the variable spread around the mean value. For a 

continuous random variable X with probability density function fX(x) and using 

Eq. (2.4), the variance is given by 

 

dx)x(f)x()X(Var
X

2

X

2

X
⋅⋅µ−=σ= ∫

∞+

∞−
       (2.5) 

 

A more understandable measure of dispersion is the standard deviation σ  given 

by the square root of the variance, that is 
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)X(Var
X

=σ           (2.6) 

 

As its name indicates, it gives in a standard form an indication of the possible 

deviations from the mean value. It will be possible to observe in next chapters 

that the standard deviation is of great importance for the evaluation of the 

uncertainties of input random variables and their consequences. 

 

2.2.1.4 The coefficient of variation 

As it is hard to specify whether the dispersion of a variable is large or small only 

on the basis of the standard deviation, it is more convenient to use the 

coefficient of variation, or shortly COV. This non dimensional coefficient 

describes whether the dispersion relative to the central value of a certain random 

variable is large or small. It is defined as the ratio of the standard deviation over 

the mean value of the random variable, i.e.  

 

X

X

X
COV

µ

σ
=           (2.7) 

 

Some authors have collected information on the ranges of variation coefficient 

values for spatial variability of different soil properties, as derived from in-situ 

soil investigation and for the variability due to measurement errors. A well-

known study on the COV values is that of PHOON and KULHAWY (1999), 

which represents a good indication of the order of magnitude for the COV 

values of soil variability. In this study PHOON and KULHAWY presented data 

for a sand and a clay layer and they found COV values between 5-15% for the 

effective friction angle. This range was also put forward by HARR (1989) and 

CHERUBINI (1997). Occasionally higher COV values can be found for the 

friction angle, as in the report of MOORMANN and KATZENBACH (2000), 

where a value of about 30% is indicated for the Frankfurt clay. But this high 

COV value of the friction angle is not for a particular site, but for the entire 

Frankfurt area. 

   Considering the effective cohesion, HARR suggests in his work a value of 

about 20%. CHERUBINI presents values between 20-30%, LI and LUMB 

(1987) report a particular clay layer with a COV of 40% and MOORMANN and 

KATZENBACH quote 50% for the Frankfurt clay. It can be seen that the 

available data on the effective cohesion show much more variation than for the 

effective friction angle. 
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Considering the effective cohesion, HARR suggests in his work a value of about 

20%. CHERUBINI presents values between 20-30%, LI and LUMB (1987) 

report a particular clay layer with a COV of 40% and MOORMANN and 

KATZENBACH quote 50% for the Frankfurt clay. It can be seen that the 

available data on the effective cohesion show much more variation than for the 

effective friction angle. 

   Referring to the soil unit weight, CHERUBINI (1998) states that its variability 

is rather limited (i.e. less than 10%) and for this reason this parameter will be 

considered as deterministic value in this study. 

   However, the COV values reported in the literature for the shear strength 

parameters may be considerably larger than the actual inherent soil variability. 

FENTON and GRIFFITHS (2004) stated that it is still unknown which value of 

the coefficient of variation should be used for the characterization of soil 

parameters. In general representative values of COV are those derived from 

similar geologic origins and collected over limited spatial extents of the 

investigation site using good quality of equipment and procedural controls. 

   For this reason considerable research is needed before defining lower and 

upper bounds of COV of soil properties for any given situation. 

 

2.2.1.5 The skewness  

Another useful descriptor of a random variable is the skewness or third central 

moment. It is a measure of the degree of asymmetry of the probability density 

function fX(x) of a random variable X. It is defined as  

 

( ) ( )∫
∞+

∞−
⋅⋅µ−= dxxfx)X(skew

X

3

X
      (2.8) 

 

For well-known continuous probability density functions, such as the Gaussian 

distribution, formulas are available in the literature to evaluate directly the 

skewness, without solving the integral (2.8). 

   A more convenient non-dimensional measure of asymmetry of a random 

variable is the skewness coefficient given by 

 

( )
dx)x(f

x
X3

X

3

X

X
⋅⋅

σ

µ−
=ν ∫

∞+

∞−

        (2.9) 

 

When the skewness coefficient is nil then a function is symmetric, as in the case 

of a Gaussian normal distribution. Otherwise it may be positive or negative. 

 



2.2  Random variables 

15 

(a)
0 X

fX(x) 0X >ν

(b)
0 X

fX(x) 0<νX

(a)
0 X

fX(x) 0X >ν

(b)
0 X

fX(x) 0<νX

 

 

 

 

 

 

 

 

 

Figure 2.4: Example of positively (a) and negatively (b) skewed distributions 

 

 

 

 
Figure 2.5: Probability density functions of soil strength parameters for the  

              Frankfurt clay (MOORMANN and KATZENBACH, 2000) 

 

 

Fig. 2.4(a) shows the case of a positively skewed distribution, which is steep for 

low values of the random variable and flat for large values. A negatively skewed 

distribution as in Fig. 2.4(b) is flat for low values of the random variable and 

steep for large values. However negative skewness coefficients would seem to 

be unrealistic for the distribution of soil parameters. 

   Considering data as reported by MOORMANN and KATZENBACH and EL 

RAMLY et al. (2005), it would seem that the skewness coefficient of the 

effective friction angle could be disregarded and the choice of a Gaussian 
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distribution would seem suitable, as Fig. 2.5(a) shows. On the other hand, the 

above authors find skewness of νc ≈1.7 (MOORMANN and KATZENB) and 4 

(EL RAMLY et al.) for the effective cohesion, thus a lognormal distribution 

would seem to be more appropriate, as plotted in Fig. 2.5(b). In any case, very 

few data about the skewness coefficient is available in the literature and 

skewness values need further testing. 

 

2.2.1.6 The covariance and the correlation coefficient 

The covariance, also referred to as the joint second moment, is a measure of the 

degree of linear dependence between two or more random variables. 

Considering the continuous random variables X and Y, the covariance is defined 

as 

 

( )( )∫ ∫
∞+

∞−

∞+

∞−

µ−µ−= dydx)y,x(fyx)Y,X(Cov
XYYX

            (2.10) 

 

When the variables X and Y are statistically independent then the covariance 

will be equal to zero. Instead of the covariance, the use of the normalized 

covariance or coefficient of correlation is preferred, which is given by  

 

11,
)Y,X(Cov

XY

YX

XY
≤ρ≤−

σ⋅σ
=ρ             (2.11) 

 

When the correlation coefficient is equal to ± 1 there is a perfectly positive, 

respectively negative, linear relationship between the variables X and Y, as 

shown in Fig. 2.6(a) and 2.6(b) for the effective cohesion and friction angle. 

However when it is nil then X and Y are uncorrelated, as in Fig. 2.6(c).  

   Some authors have based their probabilistic studies on the assumption that soil 

cohesion and friction angle are uncorrelated. This is often done to simplify 

calculations. LUMB (1969) was probably the first to study the correlation 

between soil cohesion and friction angle on the basis of experimental data.  

   He found a negative correlation between the shear strength parameters in the 

range –0.3 < ρc´ϕ´ < -0.7 for a silty sand, a clayey silty sand and a clayey silt in 

Hong Kong, implying that low values of the cohesion are associated with high 

values of the friction angle, and vice versa.  
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Figure 2.6: Example of perfectly positive correlated (a), perfectly negative  

                        correlated (b) and uncorrelated (c) soil properties 

 

 

However in some cases the correlation was found to be insignificant. LUMB 

concluded that the assumption of independence of the strength parameters 

simplifies strength interpretation considerably, and also leads to conservative 

results if the correlation is in fact negative. Instead the results of CHERUBINI 

(1998) indicate a significant negative correlation of ρc´ϕ´ = -0.6 between effective 

cohesion and friction angle for drained triaxial tests on Blue Matera clays. The 

same strong value of the correlation coefficient was reported by SCHAD (1985) 

for a marl in Urbach and confirmed by SPEEDIE (1956). Hence it would seem 

that a value of about -0.6 is realistic for the soil parameters. 

   For this reason in this study the effective cohesion and friction angle are 

assumed to be negatively correlated. It will be shown that negative correlation 

coefficient decreases the standard deviation of computational results, thus 

increasing the reliability of the problem considered, or, inversely, decreasing the 

failure probability. 

 

2.3 Useful continuous probability distributions of random 

variables 

The main characteristics of a random variable can be completely described if the 

probability density function and its associated parameters are known. In many 

cases, unfortunately, the form of the distribution function is unknown and often 

an approximated description is necessary. Several continuous distributions, 

which play an important role in civil engineering as well as in numerous other 

engineering fields, can be used as a good approximation for a random variable. 
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These continuous distributions are applied when the random variables can take 

any value within some range, such as the normal and the shifted lognormal 

distributions. 

 

2.3.1 The normal and the standard normal distributions 

The normal Gaussian distribution is the probability distribution most frequently 

used because of its symmetry and mathematical simplicity. It is commonly 

assumed to characterize many random variables where the coefficient of 

variation is less than about 30%, as seen in Fig. 2.5(a) for the effective friction 

angle of the Frankfurt clay. 

   A random variable X is said to be Gaussian normally distributed with mean 

Xµ  and standard deviation Xσ  if its probability density function fX(x) is given by 
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In Fig. 2.7(a) the density function of the normal distribution is given for two sets 

of parameters values. It can be seen that, maintaining the mean value 

Xµ constant, the standard deviation Xσ  governs the spread of the curves. 

   To simplify calculations using Eq. (2.12), an arbitrary normal distribution can 

be converted to a standard normal distribution, plotted in Fig. 2.7(b), by 

transforming the normal variable X into the standard normal variable Z, as 

below described 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Normal (a) and standard normal (b) probability density functions 
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where Z has mean 0 and standard deviation 1, i.e. N(0,1). Its corresponding 

probability density function is given by 
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Probabilities associated with the distribution ΦZ(z) are widely tabulated in the 

literature and are readily available in the software libraries of most computer 

systems. 

   From the geotechnical point of view, the Gaussian distribution allows negative 

soil properties values, which are physically unrealistic. For this reason this 

distribution could never be more than a rough approximation at best. 

 

2.3.2 The shifted and the standard lognormal distributions 

A random variable X has a lognormal distribution if its natural logarithm 

)ln(XY =  has a normal distribution. The lognormal distribution for the random 

variable X may be specified by its mean Xµ , standard deviation Xσ  and 

skewness coefficient Xν . Alternatively, it may be specified by the mean value 

)ln(Xµ  and standard deviation )ln(Xσ  of the normal variable ln(X).  

The general formula for the probability density function of the shifted lognormal 

distribution, also defined as the three parameter lognormal distribution, is given 

by 
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where x0 is the location or shifting parameter of the random variable X.  

 

When this parameter is zero then one returns to the standard lognormal 

distribution, which is then called two parameters lognormal distribution.  

   Using the shifted lognormal distribution it is possible to match not only the 

mean value and standard deviation of a certain data population, as the standard 

lognormal function does, but also the skewness coefficient. This allows a more 
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realistic data fitting. This is possible using the following closed form equations, 

which allow the transformation of the lognormal random variable X into the 

standard normal variable Y=ln(X): 
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First of all the Eq. (2.18), which is a third degree polynomial, should be solved 

numerically to get the required estimate of the location parameter x0. When the 

skewness coefficient νx is nil, then Eq. (2.18) does not converge to a solution. 

Once x0 is known, then the two parameters )ln(Xµ  and )ln(Xσ  are easily found 

using Eqs. (2.16) and (2.17). For more detail about the numerical solution of 

equations (2.16), (2.17) and (2.18) the reader is referred to KOTTEGODA and 

ROSSO (1997). 

   Fig. 2.8 shows an example of the shifted lognormal function and its 

transformation in the standard normal distribution. Practical examples of how 

matching stochastic values of a certain population using the shifted lognormal 

distribution will be shown in next chapters. 

   The lognormal distribution is generally accepted to reasonably model many 

soil properties, because it is strictly non-negative. It often provides a reasonable 

shape in cases where the coefficient of variation is larger than 30%, as for the 

effective cohesion of the Frankfurt clay in Fig. 2.5(b). 

   Moreover soil properties such as cohesion are often measured as a geometric 

mean over a certain volume, whose distribution tends to the lognormal 

distribution by the central limit theorem. 

   It can be concluded that the lognormal distribution may well represent the 

natural distribution for many spatially varying soil properties. 
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Figure 2.8: Shifted lognormal density function and its transformation in the  

                       standard normal distribution 

 

 

2.4 The reliability analysis 

One important challenge for an engineer is the definition of the safety of an 

engineering project by including the uncertainty components and doing a 

reliability analysis on which he can base his decisions. In order to achieve 

consistent levels of reliability, which are subject to important economic and 

social constraints, proper methods are required. 

   The object of this section is to show how the traditional safety factor relates to 

the probability of failure, the latter representing a more realistic measure of a 

system reliability. 

 

2.4.1 The factor of safety  

The traditional deterministic approach is based on the concept of the safety 

factor FS, which is defined as the ratio between values of available strength or, 

more generally, the resistance R to failure and the load L soliciting the failure of 

an engineering system, i.e. LRFS = . Typical values of the safety factor 

commonly adopted in the geotechnical field are, for example, FS=2 for the 

bearing capacity problem or FS=1.5 for the slope stability design of new earth 

dams. 

   Unfortunately this conventional analysis leads to conservative designs because 

uncertainties in analysis parameters are not taken into account during the 

calculation of the safety factor. In this sense the factor of safety is not a 

sufficient indicator of safety because the uncertainties in material and load 

properties can significantly influence the probability of failure. 
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2.4.2 The safety margin and the failure probability 

The traditional safety factor can be replaced by the definition of the safety 

margin Z, also defined as performance function. This function could indicate the 

collapse of a structure or, in a very general way, its loss of serviceability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: (a) Safety margin. (b) and (c) Safety factor versus failure probability 

 

 

It is defined as the difference between the resistance R and the load L of an 

engineering system. If Xi represents a collection of input random variables, then 

the safety margin is given by 

 

( ) ( ) ( )
iii

XLXRXZ −=                (2.19) 

 

In Fig. 2.9(a) the safety margin is plotted and the failure space is indicated in the 

Resistance-Load-plane. When Z<0 then failure occurs, while when Z>0 then the 

system is safe. The boundary defined by Z=0 separating the safe and unsafe state 

is called the limit state function. 

   The goal of the reliability analysis is the assurance of safety and this is 

possible only in terms of probability, i.e. 

 

( )( ) ( ) ( )( )
iiiS

XLXRP0XZPP >=>=              (2.20) 

 

where ( ) ( )( )ii XLXRP >  is the probability that the resistance is greater than the 

load. On the other hand the probability of unsafe conditions or failure 

probability is given by 
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Considering the resistance and the load as random variables with their 

corresponding probability density function, then the probability of failure Pf is 

given roughly by the size of the intersecting area Ω, or failure region, for which 

the load L is greater than the resistance R, i.e. L>R, as shown in Fig. 2.9(b) and 

2.9(c). More precisely the failure probability is calculated from the convolution 

integral of the joint probability density function of resistance and load fR,L(r,l) 

over the failure region Ω, as follows 

 

( ) dldrl,rfP
L,Rf

⋅⋅= ∫∫
Ω

                 (2.22) 

 

Figs. 2.9(b) and 2.9(c) are also useful to show how the probability of failure 

represents a more rational indicator of unsafe conditions than the safety factor. 

In fact for the two cases of load and resistance in this figure, the safety factor FS 

is the same, but the probability of failure is very different. Then the same 

conventional safety factor FS can be associated with a large range of reliability 

levels, thus showing to be an inconsistent measure of safety. 

   To help engineers to appreciate the benefits of considering failure probability 

for reliability analysis, another example is shown in Fig. 2.10(a). Two cases are 

presented: the first case has a safety factor of 1.4 and lower uncertainty due to 

the lower standard deviation; the second case has a safety factor of 1.8 but 

higher uncertainty.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: (a) Factor of safety and failure probability. (b) Reliability index  

                          approach  
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From a deterministic point of view it would seem that the case with FS=1.8 is 

safer. However when one compares the failure probability values, then the 

apparently safer case has a higher probability of failure, thus demonstrating that 

the deterministic analysis is not always safe against failure. 

   It can be concluded that, while one does not precisely know what a safety 

factor of 1.5 means, a failure probability, for example, of 10
-3

 is very clear. 

 

2.4.3 The reliability index 

If resistance and load follow normal distributions then the convolution integral 

(2.22) may be evaluated as 

 

( )β−Φ=βΦ−= )(1P
f

                (2.23) 

 

where Φ denotes the standard normal distribution function and β is a very useful 

parameter for characterizing the degree of safety, commonly called the 

reliability index. This index was first defined by CORNELL (1969) and is given 

by 

 

Z

Z

LRRL

2

L

2

R

LR

2
)normal(

σ

µ
=

σ⋅σ⋅ρ⋅±σ+σ

µ−µ
=β             (2.24) 

 

where µR, µL and µZ, respectively σR, σL and σZ are the mean values, 

respectively the standard deviations of resistance, load and safety margin. While 

ρRL is the correlation coefficient between resistance and load. In the case of 

uncorrelated input variables the term with the correlation coefficient drops out.  

   As Fig. 2.10(b) shows, the reliability index represents the number of standard 

deviations of the safety margin Z by which the mean value µZ exceeds the limit 

state. 

   Figure 2.11 shows the relation between failure probability and reliability index 

for a performance function with a normal distribution. It is clear how the 

reliability index is monotonically related to the failure probability, so that higher 

values of β imply lower values of Pf. Other distributions give similar curves for 

β<2.5, but the curves differ substantially for higher values of the reliability 

index.  
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Figure 2.11: Failure probability Pf versus reliability index β for a normal  

                             distribution 

 

 

If resistance and load are uncorrelated and both lognormal then the reliability 

index is 
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where COVR, COVL are the variation coefficients of resistance and load, while 

µlnZ and σlnZ are the mean value and standard deviation of the normal variable 

ln(Z). 

   When COVR and COVL are lower than 0.3 and provided that β<2.5, it is 

possible to obtain a very good estimate of the failure probability for lognormal 

variables using Eq. (2.24) and the relation of Fig. 2.11 (WHITMAN, 1984; 

FENTON, 2006). For larger values of β, the failure probability is quite sensitive 

to the shape of the distribution. 

 



 



27 

 

 

 

 

Chapter 3 
 

Probabilistic methods for quantifying 

uncertainties in Geotechnics 

Introduction 
The quantification and analysis of uncertainty are central issues in the evaluation 

of reliability and the development of associated reliability based-design.  

   The purpose of this chapter is to review some well-known probabilistic 

techniques, such as the Monte Carlo and the Point Estimate methods, for dealing 

with uncertainties and for implementing probabilistic concepts into geotechnical 

analyses in a more rational way. Actually, assuming soil parameters, such as the 

friction angle and the cohesion, as random variables described by a certain 

probability density function, then probabilistic methods are applied to assess the 

probability density function and the statistical values of a limit state function 

(e.g. the bearing capacity) which depends on the input variables. Thus, failure 

probabilities and reliability indeces can be estimated from the output results, 

leading to a more meaningful evaluation of safety design. 

   In this chapter the methodology of probabilistic approaches are illustrated and 

their corresponding advantages and limitations discussed. 

 

3.1 Monte Carlo Simulations (MCS) 

The word “simulation” refers to any numerical method meant to imitate a real-

life system, especially when other analyses are mathematically too complex or 

too difficult to reproduce. Without the aid of simulation, a spreadsheet model 

will only reveal a single deterministic outcome, generally the most likely or 

average value. One type of simulation technique is the Monte Carlo method, 

which can be used in every field, from economics to nuclear physics. Of course 

the way this method is applied varies widely from field to field. In the MCS 

assumptions are only made on the input random variables, whose values are 

generated consistently with the corresponding probability 
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density function. Then the safety margin, for which no assumption on the 

probability density function is required, is calculated for each realization. The 

process is repeated numerous times, typically thousands, and the mean value, 

standard deviation, skewness coefficient and probability distribution of the 

safety margin are evaluated. Thus Monte Carlo procedure consists of solving a 

deterministic problem many times to build up a statistical distribution of the 

output.  

   This method is close to the real answer and is therefore used as reference for 

comparison with other probabilistic methods results, as will be shown in the 

following chapters for the probabilistic analysis of the bearing capacity problem.  

   However, for certain geotechnical problems, such as slope stability analyses, 

additional special programming for the MCS would be needed. Moreover, to 

obtain any real confidence, the model would need a large number of simulations. 

In practice, it is too time consuming for daily computer calculations, especially 

for Finite Elements codes. The idea is, therefore, to replace MCS by other 

probabilistic approaches requiring only a limited amount of calculations. 

   For more detail about MCS and the way of generating random numbers, the 

author refers to ANG and TANG (1984), ROSS (1995) and the publication 

CUR190 of the Delft University of Technology (CUR-Publicatie 190, 1997). 

 

3.2 The First Order Second Moment method (FOSM) 

The first relatively simple alternative to MCS is the well-known First Order 

Second Moment method, or shortly FOSM, which produces a linearisation 

around the mean value of the input random variables of a probabilistic problem. 

This method uses a Taylor’s series expansion of the performance function to be 

evaluated to determine the values of its first two central moments, mean value 

and standard deviation, depending on the input variables. This expansion is 

truncated after the linear term and, for this reason, the method is called “First 

Order”.  

   Considering a performance function Z of n random variables Xi, as for 

example the bearing capacity as function of the cohesion and the friction angle, 

its Taylor’s series expansion about the mean value of the random variables 

µX1,…, µXn, truncated after first order terms, gives 
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The derivatives are evaluated at µX1,…, µXn, considered as linearisation points. 

The mean value and the variance of the performance function are given 

approximately by the following equations 
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If the random variables are uncorrelated, then the term with the covariance drops 

out. In general, for n random variables 2n+1 calculations are involved. 

   In practice it is sometimes complicated to evaluate derivatives of non-linear 

functions. For this reason the required derivatives can be estimated numerically 

using the finite difference approach, described in detail by EL-RAMLY, 

MORGENSTERN and CRUDEN (2001). 

   The usual output of FOSM method is the reliability index given by Eq. (2.24) 

for normally distributed variables. For non-normal probability density functions 

the reliability index evaluated by FOSM method is only an approximation. Very 

refined methods have been developed to convert general probability density 

functions into standard normal distributions (ANG and TANG, 1984). 

 

3.2.1 Advantages and limitations of the FOSM method 

The most important advantages of the FOSM method include the following: 

 

• The FOSM method is exact for linear performance functions. 

• The summation terms of Eqs. 3.1 and 3.3 provide an explicit indication of 

the relative contribution of uncertainty of each random variable. 

• Experts (EL RAMLY, MORGENSTERN and CRUDEN, 2003) state that, 

in comparison to MCS, the FOSM method shows an error in its estimates 

between 5%-15%, which is a reasonable value for geotechnical field. This 

will be shown in next chapters. 

 

To avoid the misuse of FOSM method in probabilistic analyses, one should be 

referred of its limitations, which are listed below: 

 

• Due to the Taylor’s series truncation after first order terms, the accuracy 

of the method deteriorates if second and higher derivatives of the 
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performance function are significant. Thus the accuracy of the FOSM 

method diminishes as the non-linearity of a function increases. 

Unfortunately, retaining second and higher order terms of the Taylor’s 

series expansion of a complex function with more than one input variable 

is mathematically complex. 

• The skewness of the output probability density function is not provided. 

• As the level of uncertainty in the input variables increases and their 

probability density functions become more skewed the accuracy of the 

FOSM method decreases. 

• Additional assumptions on the output probability density function must be 

made to estimate any probability of failure; moreover the reliability index 

is not uniquely defined, because it depends on the safety format 

considered (e.g. R-L=0, where R = resistance and L = load). 

• The shape of the probability density function of the input variables is not 

taken into account, the random variables are described using only their 

mean and standard deviation. In this way no information about the shape 

of the probability density function of the output is provided, but it has to 

be assumed. This assumption introduces a source of inaccuracy.  

• Finally, the FOSM method is applied primarily to problems without 

spatial correlation among input variables. With extra calculation effort, 

the method can be applied for two correlated random variables, but this 

can be very cumbersome. 

 

3.3 The Second Order Second Moment method (SOSM) 

The Second Order Second Moment method, or shortly SOSM, represents a 

slight extension of FOSM method. Actually with SOSM method it is possible to 

include second order terms of the Taylor’s series expansion in the evaluation of 

the mean value of a performance function.  

   Considering the variances, or standard deviations, of two random variables X, 

Y as known, the mean value of Z(X,Y) is given by 

 

( )
( ) ( ) ( ) ( ) ( )

yx

Z
Y,XCov

y

Z
YVar

2

1

x

Z
XVar

2

1

y

Z
y

x

Z
x),(Z

2

2

2

2

2

YXYXY,XZ
∂⋅∂

∂
⋅+

∂

∂
⋅⋅+

∂

∂
⋅⋅+

∂

∂
⋅µ−+

∂

∂
⋅µ−+µµ≈µ

            (3.4) 

 

where all derivatives are evaluated at the mean value of the input variables. The 

term including the covariance drops out if the variables are uncorrelated. 
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When compared with FOSM method, the obvious advantage of SOSM method 

is that the calculated mean value is more accurate because second order terms 

are considered in the analysis.  

   Important references for FOSM and SOSM methods and their applications to 

engineering problems are: GRIFFITHS, FENTON and TVETEN (2002), 

CHRISTIAN and BÄCHER (1992, 1994), MOSTYN and LI (1993), WOLFF 

(1994), DUNCAN (2000).  

 

3.4 The Hasofer-Lind method (FORM) 

A drawback of the FOSM method is that the results depend on the mean value 

of the input variables at which the partial derivatives of the safety margin are 

evaluated (invariance problem). Moreover the FOSM method is exact only for 

linear functions, while for non-linear functions errors are introduced in the 

analysis.  

   The Hasofer-Lind method, also well-known as the First Order Reliability 

Method, or shortly FORM, can overcome this difficulty by calculating the 

derivatives of the safety margin at a critical point on the failure surface, also 

called design point. An iterative solution is usually required to find this point, 

but the process tends to converge very rapidly.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Linearisation of the safety margin in the design point in the RL-plane   

          (a) and definition of the reliability index for normalized random  

                  variables (b) 

 

 

l 
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In Fig. 3.1(a) the joint probability density function of the random variables R 

and L is linearised in the design point P. When the variables are non-normally 

distributed, then they can be transformed into standard normal variables with 

zero mean value and standard deviation equal to unity, as described by ANG and 

TANG (1984) and plotted in the standard normalised space as in Fig. 3.1(b).  

   The shortest distance between the failure point P and the origin of the 

normalized space is the reliability index β, i.e. 

 

( )2

L

2

R
0Z

UUmin +=β
=

         (3.5) 

 

To find the design point many known analytical and numerical optimisation 

routines can be used, such as those described in VRIJLING (1997). 

   Other important references for FORM theory and its application are: NADIM 

(2006), PULA (2006), CHRISTIAN and BÄCHER (1992, 1994). 

 

 

3.4.1 Advantages and limitations of the FORM method 

The most important advantages of the FORM method are the following: 

 

• The reliability index and the failure probability are independent of the 

safety format used and they can be evaluated also for non-linear functions. 

• It is a more efficient method for estimating low probability of failure 

when compared with other approaches, as will be shown in chapter 6. 

• The sensitivity factors give additional information on the influence of the 

input random variables on the performance function. 

 

As with the FOSM and SOSM methods, the FORM method does not provide the 

shape of the probability density function and the skewness coefficient of the 

performance function. In addition this method requires special software or very 

good programming skill for the iteration procedure, such as the current VaP 

(Variables Processor) program, developed by the Austrian company 

“Petschacher Software und Projektentwicklungs GmbH” and the test version of 

the program ProBox, developed by the TNO Building and Construction 

Research Institute of Delft. 
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3.5 The Two Point Estimate Method (PEM) 

Another alternative method to evaluate statistical moments of a performance 

function is the Point Estimate Method, or shortly PEM. The Point Estimate 

method was first developed by ROSENBLUETH (1975, 1981) and then further 

developed by other authors such as CHRISTIAN and BÄCHER (1999), EVANS 

et al. (1993), LIND (1983), ZHOU and NOWAK (1988), HARR (1989), LI 

(1992), HONG (1998). The method used in this study is the “Two Point 

Estimate Method” after ROSENBLUETH. 

   The Two Point Estimate method is a computationally straightforward 

technique for uncertainty analysis, capable of estimating statistical moments of a 

model output involving several stochastic variables, correlated or uncorrelated, 

symmetric or asymmetric. It is fundamentally a weighted average method 

similar to numerical integration formulas involving sampling points and 

weighting parameters.  

   The PEM can be seen as a special case of the orthogonal polynomial 

approximation procedures leading to the Gaussian quadrature formulas, which 

are well known in numerical analyses and in Finite Elements methods 

(CHRISTIAN and BÄCHER, 1999). 

   The basic idea of this method is to replace the probability distributions of 

continuous random variables by discrete equivalent distributions having the 

same first three central moments, to calculate then the mean value, standard 

deviation and skewness of a performance function, which depends on the input 

variables.  

   To do this, two point estimates are considered at one standard deviation on 

either side of the mean value from each distribution representing the random 

variables. Then the performance function is calculated for every possible 

combination of the point estimates, producing 2
n
 solutions, where n is the 

number of the random variables involved. Then the mean value, standard 

deviation and skewness of the performance function can be found from these 2
n
 

solutions.  

   While the PEM does not provide a full distribution of the output variable, as 

Monte Carlo does, it requires little knowledge of probability concepts and could 

be applied for any probability distribution. In future it might be widely used for 

reliability analysis and for the evaluation of failure probability of engineering 

systems. 

   The procedure for implementing the PEM is clearly described in the next 

section. For a simple introduction, the reader should refer to GRIFFITHS, 

FENTON and TVETEN (2002). 
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3.5.1 The procedure for implementing the PEM 

The procedure for implementing the PEM is described below step by step. 

 

1. First of all a performance function Z(Xi) depending on n random variables Xi 

should be considered. 

 

2. Then the locations of the sampling points for every random variables should 

be estimated. To do this one should first evaluate the so-called standard 

deviation units ξXi+ and ξXi-, which depend on the skewness coefficient 
ixν  of 

the input variables and given by 
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If the input variables are symmetrically distributed, the standard deviation units 

will be both equal to unity. Knowing the mean value 
ixµ  and the standard 

deviation 
ixσ  of the input variables, the corresponding sampling point locations 

xi- and xi+ can be calculated using the following formulas 

 

iii xxxi
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x σ⋅ξ−µ=

−−
  (3.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Sampling point locations and weights for a single random variable  

           (a) and for a function depending on two random variables (b) 
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In Fig. 3.2(a) and 3.2(b) the sampling point locations for a single random 

variable and for a function Z depending on two random variables X and Y are 

shown. 

 

3. The weights Pi, also called probability concentrations, can now be determined 

to obtain all the point estimates. As a probability density function encloses an 

area of unity, then the weights must also sum to unity and they have to be 

positive. The weights of the random variables are given by different expressions 

depending on the number of the input variables and on their correlation. An 

example of weights distribution is shown in Fig. 3.2(a) and 3.2(b). 

 

For a single random variable (ROSENBLUETH, 1975) the weights are easily 

calculated using the standard deviation units as 
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When the random variable is symmetric then the weights are both equal to 0.5, 

as shown in Fig. 3.2(a). 

 

For two correlated random variables (ROSENBLUETH, 1981) the weights are 

given as follows 
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where 
2s1s XX

PP ⋅  are the associated weights, with 
1sX

P  and 
2sX

P  being the weights 

for the input variables evaluated as single variables. 
21 xx

ρ  is the correlation 

coefficient between the variables X1 and X2, s1 and s2 take positive sign for 

points greater than the mean value of the variables and negative sign for points 

smaller than the mean value.  

   The sign product 
21

ss ⋅  determines the sign of the correlation coefficient and 

the subscripts of the weight P indicate the location of the point that is being 

weighted. For example, considering the point evaluated at 

( ) ( )
222111 xxxxxx21

,x,x σ⋅ξ−µσ⋅ξ+µ=
−+−+

 then s1 = + and s2 = -, resulting in 

a negative product with a weight denoted by P+-. 
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When the variables are uncorrelated then 
21 xx

ρ  will be zero and the formula 

(3.9) will give the associated weights of two uncorrelated random variables. 

   Unfortunately Eq. (3.9) has some evident drawbacks. First of all, if the 

skewness coefficient of the input variables has different sign then the radicand 

under the square root can be negative, which is mathematically impossible. This 

can happen for example if one input variable has a negatively skewed 

distribution and the other a symmetrically or positively skewed distribution. 

Secondly if the skewness coefficient of the input variables is equal to –2 then the 

denominator of the second term of Eq. (3.9) tends to infinity, giving then infinite 

weights. Moreover this formula can sometimes give negative values. This fact is 

unacceptable, because the weights are described as probability values, which are 

always positive by definition. For example, negative values of the weights can 

occur when the random variables are symmetric and perfectly correlated (i.e. 

1
21 xx

±=ρ ).  

   The problem of obtaining negative weights could be solved, for example, by 

applying the Three Points Estimate Method instead of the Two PEM.  

   Considering all the drawbacks of Eq. (3.9), it is necessary to establish some 

conditions for its use, i.e. 
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3)   2
1x
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The first condition assures that the weights are positive. The third condition is 

actually already implied in the second one. 

   To overcome the problem in ROSENBLUETH’s formula (3.9), a better 

definition for two correlated random variables, being symmetrically distributed, 

is given by CHRISTIAN et al. (1999), where the weights can be evaluated as 
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For n symmetrically distributed and correlated random variables, CHRISTIAN 

et al. (1999) define the weights as 
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In equation (3.14) the notation is the same as for equation (3.9). 

4. Now it is possible to determine the performance function Z(Xi) at each 

sampling point located at xi+ and xi-. To do this, it is sufficient to introduce the 

sampling point estimates found using Eqs. (3.7) in the formula of the 

performance function. For n random variables, the performance function is 

evaluated at 2
n
 points. 

 

5. Finally the first three moments of the performance function, respectively the 

mean value, the variance and the skewness coefficient, can be determined using 

the following equations 
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The standard deviation of the performance function is easily obtained as 
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ROSENBLUETH (1981) notes that for the multiple random variables case, 

skewness coefficients can only be reliably calculated using Eq. (3.17) if the 

variables are uncorrelated. This fact will be shown in chapter 5. 

 

3.5.2 Advantages and limitations of the PEM 

The most important advantages of PEM in comparison to FOSM, SOSM and 

FORM methods are: 
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• As with the FOSM, SOSM and FORM methods, the PEM does not 

require the knowledge of the particular shape of the probability density 

function of the input random variables. Moreover the PEM furnishes the 

exact solution for linear performance functions. 

• It provides not only the mean value and the standard deviation, but also 

the skewness coefficient of a performance function, giving then more 

accurate results than FOSM, SOSM and FORM methods, with little or no 

increase in computational effort. 

• The PEM may better capture the behaviour of non-linear functions. 

• To evaluate the statistical values of a performance function there is no 

need to compute the derivatives, nor even their continuity let alone their 

existence. 

• As a non-iterative procedure, the PEM overcomes the convergence 

problems of the FORM, thus being less time consuming. 

• It can be also applied to problems with spatial correlation among multiple 

input variables, even if more computational effort is required. 

 

When compared with Monte Carlo method, the PEM results in terms of mean 

value and standard deviation are in good agreement with those of MCS, with 

smaller computational effort for a comparable degree of accuracy. 

 

Limitations of the PEM as described above: 

 

• No information about the shape of the probability density function of the 

output is provided, but it has to be assumed, introducing uncertainty in the 

final results.  

• The skewness provided by PEM presents a significant difference to the 

skewness value derived from MCS, as it will be shown in chapter 5. 

• If more accuracy is required, then a larger number of input variables is 

necessary and higher moments have to be considered, thus increasing the 

number of calculations. 

• Results are poor and less accurate for discontinuous functions or functions 

having discontinuous first derivatives (CHRISTIAN and BÄCHER, 

1999). 

• The implementation of PEM into Finite Element codes requires additional 

out of house software. 

• CHRISTIAN and BÄCHER (1999) suggest that the PEM should not be 

applied for evaluating moments higher than the second (i.e. variance) for 

non-linear functions. Additionally they observe that the larger the 
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variation coefficient of the input variables, the larger is the error in the 

estimates. Finally these authors affirm that caution should be used in 

applying PEM to cases in which the transformation of input variables 

changes the distributional form, because the final results can be in error 

loosing important information on the variables main characteristics. This 

fact will be seen in chapter 5, where the lognormal variable cohesion, with 

a high COV-value, is transformed into the corresponding normal variable 

lnc’ for solving probabilistically the bearing capacity problem of a 

shallow foundation. 
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Chapter 4 
 

Probabilistic analysis of the bearing 

capacity problem 

Introduction 
This chapter presents an application of probabilistic methods to the study of the 

bearing capacity of a strip footing on a homogeneous soil layer characterised by 

the effective cohesion c´ and friction angle ϕ´. These parameters are selected to 

be represented as random variables since they have the greatest impact on the 

soil bearing capacity.  

   Different values of the correlation coefficient between soil parameters are 

taken into account in the analysis. The influence of the spatial variability of soil 

parameters (i.e. the scale of fluctuation), which is a significant source of error, is 

ignored here. 

   For a comparison of the failure probabilities from the MCS, FOSM and SOSM 

methods the author refers to chapter 6.  

4.1 Benchmarks on the bearing capacity of a strip footing 

4.1.1 Benchmark 1: bearing capacity of a strip footing with effective friction 

angle as the input random variable 

The first benchmark deals with the study of the bearing capacity of a strip 

footing with a width of 2m on top of a cohesionless homogeneous soil layer, as 

shown in Fig. 4.1(a). More specifically, the soil type is what can be called a 

grossly uniform soil, in which the whole mass is all of the same consistency and 

whose properties show no marked trend with depth or distance.  

   For this study soil layering is ignored, assuming that in the soil mass no 

discontinuities or sudden changes exist. The unit soil weight is 15 kN/m
3
 and a 

surcharge q0=10 kN/m
2
 is considered. The effective soil cohesion c´ is taken as a 

uniform fixed property with a value of 4 kN/m
2
, while the effective friction 

angle ϕ´ is taken into account as a normal random variable with its 

corresponding statistical values given in Fig. 4.1(b). 
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Figure 4.1: (a) Strip footing on a homogeneous soil layer. Normal distribution  

                     and statistical values of ϕ´ (b) and tanϕ´ (c) 

 

 

To simplify calculations, the tangent of the friction angle tanϕ´ will be 

considered as random variable instead of ϕ´. The mean value and standard 

deviation of tanϕ´ are listed in Fig. 4.1(c).  

   A coefficient of variation of 13% is considered for tanϕ´, which is a realistic 

value for the range of COV values found in the literature (PHOON and 

KULHAWY, 1999; MOORMANN and KATZENBACH, 2000; HARR, 1987; 

CHERUBINI, 1997), as already discussed in chapter 2. Knowing the mean value 

and the coefficient of variation of tanϕ´, it is possible to define the standard 

deviation. 

   The shape of the probability density function of the bearing capacity, denoted 

as qf, has to be found. Its statistical values are evaluated using the probabilistic 

methods MCS, FOSM and SOSM, already described in chapter 3.  

   The classical formula (A.4) in Appendix A of TERZAGHI (1943) for the 

bearing capacity is applied, considering the bearing capacity factor Nγ after 

BRINCH-HANSEN (1961). For more detail on the ultimate bearing capacity 

formula the author refers to appendix A. This formula gives a deterministic 

value of 287.6 kN/m
2
 for the bearing capacity. 

 

4.1.2 Benchmark 2: bearing capacity of a strip footing with effective friction 

angle and cohesion as input random variables 

The second benchmark is similar to the bearing capacity problem of the first 

benchmark, but here the effective soil cohesion is also considered as random 

variable with a standard lognormal distribution and mean value µc´ = 4 kN/m
2
, as 

described in Fig. 4.2(a).  
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Figure 4.2: Probability distribution and statistical values of the variables c´(a)  

                     and lnc´ (b) 

 

 

A coefficient of variation of 80% is assumed for the cohesion, which is a value 

somewhat higher than the COV values generally reported in the literature (LI 

and LUMB, 1987; MOORMANN and KATZENBACH, 2000; HARR, 1987; 

CHERUBINI, 1997). The standard deviation of the cohesion is also determined 

from its mean value and coefficient of variation. 

   The skewness coefficient of the cohesion can be evaluated knowing the COVc´ 

with the well known formula of BENJAMIN and CORNELL (1970), valid for a 

standard lognormal distribution 

 
3

xxx
COVCOV3 +⋅=ν          (4.1) 

 

which gives a value 94.2=ν
′c . Formula (4.1) can be rewritten considering the 

standard deviation of the transformed lognormal variable x into the 

corresponding normal variable lnx, instead of its variation coefficient, thus 

giving 
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where 1eCOV
2

Xln

X
−=

σ

. For more detail about formulas (4.1) and (4.1bis) 

the author suggests to refer to BENJAMIN and CORNELL (1970) and to look 

up well-known probabilistic literature available worldwide. 
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Considering the property of the lognormal distribution, the cohesion can be 

transformed into the normal variable lnc´, as shown in Fig. 4.2(b). The mean 

value and standard deviation of lnc´ are also shown in this figure. These values 

are useful for simplifying calculations in the probabilistic analysis, as it will be 

seen in next sections and in chapter 5. 

   As with benchmark 1, the shape of the bearing capacity and its statistical 

values should be found by applying the probabilistic methods already 

mentioned. For the second benchmark different correlation coefficients between 

the effective soil properties will be taken into account in the analysis. 

 

 

4.2 Application of Monte Carlo Simulations  

For the probabilistic bearing capacity analysis of the benchmarks described in 

section 4.1, Monte Carlo Simulations are initially performed using a spreadsheet 

method, more specifically by using the familiar Microsoft Excel software.  

   The accuracy of MCS results depends on the number of calculations carried 

out for the input parameters considered. Hence improving the accuracy requires 

an increase of the simulations number (KOTTEGODA and ROSSO, 1997). 

   Different numbers of calculations are executed for the bearing capacity 

problem, respectively 1000, 10000 and 100000. Comparing the results of each 

case, the mean value and the standard deviation seem to be already stable for 

1000 simulations. On the other hand, the skewness coefficient requires 100000 

simulations to converge to a constant value, as it will be seen in next sections. 

   First of all the soil properties are generated as uniformly distributed variables 

between 0 and 1. They are then transformed into variables with the 

corresponding mean value, standard deviation and probability distributions, i.e. 

normal distribution for tanϕ´ and standard lognormal distribution for c´.  

   The goodness of the generator is judged by subjecting the generated random 

numbers to the “periodicity test”. This is a useful test to verify the periodicity of 

the random numbers generated, by testing their uniform distribution and the 

statistical independency. In fact it can happen in the Microsoft Excel software 

that these variables start repeating themselves after a while. The periodicity test 

has shown that the thousand input variables generated are not periodic, so that 

they can be properly used to perform Monte Carlo Simulations. Successively 

thousands of successive deterministic bearing capacity calculations are carried 

out to assess its statistical values and the shape of the distribution function. 

Because of the many simulations, Monte Carlo method leads to the most 

accurate and reliable estimation of statistical and probability values. 
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In next sections the MCS results for both benchmarks are presented and 

compared. The importance of assuming negatively correlated soil parameters for 

uncertainty analysis is stressed. 

 

4.2.1 Monte Carlo results for benchmark 1 

In the first benchmark the only input variable is tanϕ´, which is normally 

distributed. Thousands of tanϕ´-values are generated and thousands of bearing 

capacity values are estimated, thus obtaining the results shown in Tables 4.1, 4.2 

and 4.3 for a different number of Monte Carlo simulations, respectively 1000, 

10000 and 100000. For all the three cases the mean value of the bearing capacity 

is about 6% higher than the deterministic value. 

   When comparing the statistical values of Tables 4.1, 4.2 and 4.3, one sees that 

generally mean value, standard deviation and skewness coefficient change 

slightly as the number of simulations increases, converging to more stable 

values for 100000 simulations, especially the skewness coefficient. 

 

 

 

 

 

 

 

Table 4.1: Statistical values of qf predicted by 1000 MCS 

 

 

 

 

 

 

 

Table 4.2: Statistical values of qf predicted by 10000 MCS 

 

 

 

 

 

 

 

Table 4.3: Statistical values of qf predicted by 100000 MCS 
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Referring to the values of the variation coefficient, one knows from the literature 

(PHOON & KULHAWY, 1999; POPESCU, 2004) that a good range of COVqf 

values for the bearing capacity is 0.1-1.0. In Tables 4.1, 4.2 and 4.3 the COVqf 

ranges between 0.329 and 0.336, thus the order of magnitude complies with 

those suggested in the literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Shifted lognormal fit and relative frequency (pointwise) of qf for  

                      1000 MCS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Shifted lognormal fit and relative frequency (pointwise) of qf for  

                      10000 MCS 
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Figure 4.5: Shifted lognormal fit and relative frequency (pointwise) of qf for  

                  100000 MCS 

 

 

In Figs. 4.3, 4.4 and 4.5 the probability density function of the bearing capacity 

is drawn by considering the relative frequency of qf pointwise together with the 

corresponding best fit curve using the shifted lognormal distribution. 

   This distribution seems to match the results of MCS well for all the three 

cases, becoming smoother and thus being more accurate for a higher number of 

simulations. 

   The chi-square test for the goodness of fit shows that the assumed theoretical 

distribution, i.e. the shifted lognormal distribution, for approximating MCS-

results is a suitable model at around 5% significance level. 

 

4.2.2 Monte Carlo results for benchmark 2 with uncorrelated soil 

parameters 

In the second benchmark the effective cohesion is also considered as input 

variable together with tanϕ´, but no correlation is taken into account between 

them. Initially the cohesion is transformed into the corresponding normal 

variable lnc´ to be generated by MCS, then it is transformed back to the 

lognormal variable c´. 

   Again thousands of input variables are generated and thousands of bearing 

capacity values are evaluated, thus obtaining the results shown in Tables 4.4, 4.5 

and 4.6. In this case the results of Table 4.4 for mean value, standard deviation 

and variation coefficient derived from 1000 MCS are slightly higher than those 

from 10000 and 100000 simulations. 
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   If the statistical values of Tables 4.1, 4.2 and 4.3 are compared to those of 

Tables 4.4, 4.5 and 4.6, one sees that the mean value generally remains constant 

and around 6% higher than the deterministic value, while the standard deviation 

and the skewness coefficient increase. This is due to the consideration of the 

cohesion as input variable, which introduces more uncertainty in the analysis. 

   The increase of the standard deviations results in higher COV values of the 

bearing capacity than those of benchmark 1. However the values are similar to 

those found in the literature. 

   In Figs. 4.6, 4.7 and 4.8 the relative frequency of the bearing capacity is again 

plotted pointwise together with the probability density function by assuming a 

shifted lognormal distribution as approximation.  

 

 

 

 

 

 

 

Table 4.4: Statistical values of qf predicted by 1000 MCS with uncorrelated soil  

                  variables 

 

 

 

 

 

 

 

Table 4.5: Statistical values of qf predicted by 10000 MCS with uncorrelated  

                     soil variables 

 

 

 

 

 

 

 

Table 4.6: Statistical values of qf predicted by 100000 MCS with uncorrelated  

                    soil variables 
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Also for benchmark 2 this distribution matches the MCS results well for all the 

three cases and the chi-square test for the goodness of fit shows that the shifted 

lognormal distribution is accurate at around 5% significance level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Shifted lognormal fit and relative frequency (pointwise) of qf for  

                      1000 MCS with uncorrelated soil variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Shifted lognormal fit and relative frequency (pointwise) of qf for  

                      10000 MCS with uncorrelated soil variables 
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Figure 4.8: Shifted lognormal fit and relative frequency (pointwise) of qf for  

                      100000 MCS with uncorrelated soil variable 

 

 

4.2.3 Monte Carlo results for benchmark 2 with correlated soil parameters 

Soil properties are generally modelled as spatially perfectly correlated random 

variables and the results could be therefore uncertain. To perform a proper 

analysis involving spatially correlated random variables, it is necessary to 

generate random numbers which will simulate the correlation structure of soil 

properties. For this reason the effective soil parameters will now be considered 

as correlated variables. The results in Tables 4.7, 4.8 and 4.9 refer to a 

correlation coefficient ρc´tanϕ´ = -0.6, because this is a most realistic value, as 

suggested in the literature and as discussed in chapter 2. 

   The formula of KENNEY and KEEPING (1951, p. 202) for the correlation 

coefficient is applied to generate thousands of correlated input variables for 

MCS. 

   The MCS results are reported in Tables 4.7, 4.8 and 4.9. For this case the 

statistical values derived from 1000 MCS are slightly lower than those from 

10000 and 100000 simulations.     

   Comparing the statistical values of Tables 4.7, 4.8 and 4.9 to those of Tables 

4.4, 4.5 and 4.6, one sees that all the statistical values decrease when a negative 

correlation of –0.6 is considered. More specifically the mean value changes 

slightly and is around 3.5% higher than the deterministic value, but the standard 

deviation decreases significantly, being around 35% lower than the value found 

considering uncorrelated parameters. 
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As a consequence the skewness and the variation coefficients also decrease. 

Thus the variability of the bearing capacity and the uncertainty in the analysis 

decrease considerably.  

   The frequency diagrams of Figs. 4.9, 4.10, 4.11
 
and the shifted lognormal fits 

show that these plots become narrower and the corresponding peak values 

consequently higher than those of the case with uncorrelated soil parameters. 

This difference can be seen better in Fig. 4.12, where the probability density 

function of qf from 10000 MCS for soil parameters having no correlation and a 

value of ρc´tanϕ´ = -0.6 are plotted together. For uncorrelated variables the density 

function is wider and the peak value is 0.0043, whereas for negatively correlated 

variables the curve is narrower reaching a peak value of 0.0062. 

 

 

 

 

 

 

 

Table 4.7: Statistical values of qf predicted by 1000 MCS with negatively  

                       correlated variables 

 

 

 

 

 

 

 

Table 4.8: Statistical values of qf predicted by 10000 MCS with negatively  

                      correlated variables 

 

 

 

 

 

 

 

Table 4.9: Statistical values of qf predicted by 100000 MCS with negatively  

                     correlated variables 
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It is also clear that the variability of the bearing capacity considering correlated 

soil parameters decreases, starting from a value of around 120 kN/m
2
 for non-

zero probabilities compared to a value of around 80 kN/m
2
, for the case with 

uncorrelated variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Shifted lognormal fit and relative frequency (pointwise) of qf for  

                      1000 MCS with negatively correlated variables  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Shifted lognormal fit and relative frequency (pointwise) of qf for  

                       10000 MCS with negatively correlated variables 
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Figure 4.11: Shifted lognormal fit and relative frequency (pointwise) of qf for  

                       100000 MCS with negatively correlated variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Comparison of shifted lognormal fits of qf from 10000 MCS for  

                       uncorrelated and negatively correlated soil variables 
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KENNEY and KEEPING’s formula, the value ρc´tanϕ´ = -1.0 can not be taken 

into account.  

   By decreasing the correlation coefficient, the mean value changes slightly. 

Whereas the standard deviation decreases significantly, from around 123.4 

kN/m
2
 when there is no correlation between soil parameters down to around 

50.3 kN/m
2
, when ρc´tanϕ´ = -0.9. 
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)/( 2mkN
fqµ )/( 2mkN

fqσϕ′′ρ tanc
fqν

-0.9 294.635 50.321 2.244

-0.8 295.616 57.661 1.462

-0.7 296.734 65.774 1.057

-0.6 297.848 73.372 0.911

-0.5 299.071 81.274 0.877

-0.4 300.305 88.902 0.932

-0.3 301.448 95.729 1.004

-0.2 302.709 103.054 1.100

-0.1 303.986 110.295 1.206

0.0 306.805 123.367 1.387

)/( 2mkN
fqµ )/( 2mkN

fqσϕ′′ρ tanc
fqν

-0.9 294.635 50.321 2.244

-0.8 295.616 57.661 1.462

-0.7 296.734 65.774 1.057

-0.6 297.848 73.372 0.911

-0.5 299.071 81.274 0.877

-0.4 300.305 88.902 0.932

-0.3 301.448 95.729 1.004

-0.2 302.709 103.054 1.100

-0.1 303.986 110.295 1.206

0.0 306.805 123.367 1.387

The skewness coefficient has a strange behaviour. In fact, when the correlation 

decreases from ρc´tanϕ´ = 0 down to the value ρc´tanϕ´ = -0.5, the skewness 

coefficient decreases too. If one proceed to reduce the correlation down to ρc´tanϕ´ 

= -0.9, then the skewness coefficient increases, reaching a maximum value of 

2.244.  

   Fig. 4.13 shows the influence of the correlation coefficient variation on the 

shape of the shifted lognormal fit of the bearing capacity. As already pointed out 

in Fig. 4.12, the curves become narrower for lower correlation coefficients, thus 

decreasing the variability of the bearing capacity and increasing the peak of the 

fit. It is also clear how the skewness coefficient changes the shape of the curves 

from the least skewed curve for ρc´tanϕ´ = -0.5 to the most skewed one for ρc´tanϕ´ = 

-0.9. 

   Recapitulating all these observations, it is then possible to conclude that the 

choice of a negative correlation for the soil parameters is reasonable, because 

the uncertainty in the problem decreases considerably. 

   Notwithstanding the accuracy of MCS results, this method is too time 

consuming for practical computations, therefore alternative methods need to be 

considered. In next sections the FOSM and SOSM methods are applied to the 

same bearing capacity benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.10: Influence of ρc´tanϕ´ on the statistical values of qf  from MCS 
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Figure 4.13: Influence of the correlation coefficient variation on the shifted  

                         lognormal fit of qf for 10000 MCS 

 

 

4.3 Application of the FOSM method  

It was highlighted in chapter 2 that the simplest alternative to MCS is the FOSM 

method, which produces a linearisation around the mean value of the input soil 

variables. The next sections will show the results of FOSM application to the 

benchmarks already considered. 

 

4.3.1 FOSM results for benchmark 1 

Considering Terzaghi´s bearing capacity formula (A.4) in appendix A as a 

function of tanϕ´, the Taylor’s series expansion for the bearing capacity about 

the mean value µtanϕ´ truncated after the first order terms is given by 

 

( ) ( )
ϕ′∂

∂
⋅µ−ϕ′+µ≈

ϕ′ϕ′

tan

q
tanqq f

tantanff
     (4.2) 
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where the first term is determined by substituting the mean value of tanϕ´, while 

the derivative of the second term is evaluated at µtanϕ´. The mean value and the 

variance of the bearing capacity are obtained using formulas (4.3) and (4.4) 

 

( )
( )

ϕ′ϕ′
µ=ϕ′=µ

tanftanq
tanq

f
       (4.3) 

 

( ) ( ) .
tan

q
tanVarqVar

2

f

f 








ϕ′∂

∂
⋅ϕ′=        (4.4) 

 

Now considering Eqs. (A.5) for the bearing capacity factors Nq, Nc, Nγ in 

appendix A, together with the following trigonometric relation 

 

( )[ ]2
1

2
tan1tan

24
tan ϕ′++ϕ′=







 ϕ′
+

π
      (4.5) 

 

and substituting them in Eq. (A.4), the bearing capacity formula is then given as 

 

( )[ ] ( )[ ] +ϕ′++ϕ′⋅⋅+
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−ϕ′++ϕ′⋅⋅
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2tan

0

2
2

1
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f
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( )[ ]
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





−ϕ′++ϕ′⋅⋅ϕ′⋅γ⋅+
ϕ′⋅π 1tan1tanetan5.1

2
2

1
2tan    (4.6) 

 

Substituting the deterministic value of the unit weight 15 kN/m
3
, the surcharge 

10 kN/m
2
, the cohesion 4 kN/m

2
 and µtanϕ´ = 0.466 into Eq. (4.3), it is possible to 

estimate the bearing capacity mean value, which is 2/878.290 mkN
fq =µ . 

   The first derivative of the bearing capacity computed analytically with respect 

to tanϕ´ is given by Eq. (B.2) in appendix B. Substituting again the numerical 

values of the unit weight, surcharge, cohesion and mean value of tanϕ´ one 

obtains 

 

2f m/kN592.1548
tan

q
=

ϕ′∂

∂
. 

 

It is now possible to evaluate the variance and the standard deviation of the 

bearing capacity using Eq. (4.4), hence 
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fqµ
fqσ

fqCOV

290.878 kN/m
2

93.876 kN/m
2 0.323

fqµ
fqσ

fqCOV

290.878 kN/m
2

93.876 kN/m
2 0.323

( ) 22

f
)m/kN(638.8812qVar =  

 

.m/kN876.93 2

q f
=σ  

 

In Table 4.11 the results of the bearing capacity predicted using FOSM method 

are presented. The estimated mean value is in good agreement with the 

deterministic one. As for MCS, the coefficient of variation is within the range 

found in the literature for the bearing capacity (PHOON and KULHAWY, 1999; 

POPESCU, 2004), being COVqf = 0.323. 

   It is important to remember that FOSM method does not provide any skewness 

coefficient. For this reason no information about the shape of the probability 

density function of the bearing capacity is given. Thus, in order to estimate any 

probability, a standard lognormal distribution is assumed as an approximation, 

which leads to the probability density function shown in Fig. 4.14. A shifted 

lognormal distribution can not be assumed because the skewness coefficient is 

unknown and Eq. (2.18) can not be solved. 

   Using formula (4.1) valid for a standard lognormal distribution, the skewness 

coefficient of the bearing capacity can be determined, thus leading to 

 

003.1
fq

=ν . 

 

It should be pointed out that the bearing capacity does not vary linearly, but 

exponentially with tanϕ´. The FOSM procedure only considers linear functions, 

then uncertainty is introduced in the bearing capacity calculations, giving less 

accurate results than MCS. This fact will be seen in section 4.5. 

 

 

 

 

 

 

 

Table 4.11: Statistical values of qf predicted by FOSM method for benchmark 1 
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Figure 4.14: Standard lognormal distribution of qf from FOSM method for  

                          benchmark 1 

 

 

4.3.2 FOSM results for benchmark 2 with uncorrelated soil parameters 

Considering now the bearing capacity as a function of both soil parameters tanϕ´ 

and cohesion, the Taylor’s series expansion for the bearing capacity about the 

mean values µtanϕ´ and µc´, truncated after the first order terms, is given by 
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where the derivatives are evaluated at the mean values µtanϕ´ and µc´. The mean 

value and variance of the bearing capacity are obtained using formulas (4.8) and 

(4.9) 
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114.931 kN/m
2 0.395

fqµ
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fqCOV

290.878 kN/m
2

114.931 kN/m
2 0.395

fqµ
fqσ

fqCOV

Considering again the trigonometric relation (4.5) and Eq. (A.4) and substituting 

the mean value of cohesion and tanϕ´, the expected bearing capacity value is 

./878.290 2mkN
fq =µ  

   The first derivatives of the bearing capacity computed analytically with 

respect to the soil parameters are given by Eqs. (B.1) and (B.2) of appendix B. 

Substituting the numerical values for the mean value of the cohesion and friction 

angle, one obtains 

 

2f m/kN720.20
c

q
=

′∂

∂
 

 

.m/kN592.1548
tan

q 2f
=

ϕ′∂

∂
 

 

Hence the variance and the standard deviation estimated using Eq. (4.4) will be 

 

( ) 22

f
)m/kN(084.13209qVar =  

 
2

q
m/kN931.114

f
=σ . 

 

Table 4.12 shows the statistical values of the bearing capacity for uncorrelated 

soil parameters. The mean value is exactly the same of benchmark 1 because in 

both cases the numerical value of the soil parameters are unchanged. The 

standard deviation and, consequently, the COVqf are increased.  

 

 

 

 

 

 

 

Table 4.12: Statistical values of qf from FOSM method for benchmark 2 with  

                     uncorrelated soil variables 
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Figure 4.15: Standard lognormal distribution of qf from FOSM method for  

                          benchmark 2 with uncorrelated soil variables 

 

 

This is because the consideration of the cohesion as an additional input variable 

introduces more uncertainty in the analysis. Again the value of COVqf is within 

the range of values reported in the literature for the bearing capacity. 

   In Fig. 4.15 the assumed standard lognormal distribution is plotted for the 

bearing capacity results of Table 4.12. Due to the higher standard deviation, the 

curve presents a slightly lower peak when compared to the first benchmark 

(from 0.0048 down to 0.0043), and a slightly higher bearing capacity variability.  

   Using formula (4.1), one can evaluate the skewness coefficient corresponding 

to the results in Table 4.12, thus finding 247.1≈ν
fq . This value is higher than 

that found for benchmark 1, because of the increase of the variation coefficient. 

 

4.3.3 FOSM results for benchmark 2 with correlated soil parameters 

If the input soil variables tanϕ´ and c´ are correlated, then the variance formula 

(3.3) will be applied taking into account also the last term, which includes the 

covariance.  

   Considering a correlation coefficient of ρc´tanϕ´ = -0.6, then the resulting 

statistical values of the bearing capacity will be those presented in Table 4.13. 

When compared to benchmark 1, the mean value does not change, instead the 

standard deviation decreases significantly, thus reducing also the COVqf. 
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Table 4.13: Statistical values of qf from FOSM method for benchmark 2 with  

                      correlated soil variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Comparison of probability density functions of qf from FOSM  

                         method for benchmark 2 with ρc´tanϕ´ = 0 and ρc´tanϕ´ = -0.6 

 

 

Assuming a standard lognormal distribution for approximating the FOSM 

results, as previously done, it is possible to plot the probability density function 

of qf considering both uncorrelated and negatively correlated soil parameters. 

Benjamin and Cornell’s formula (4.1) estimates a value of 0.798 for the 

skewness coefficient when ρc´tanϕ´ = -0.6, which is significantly lower than the 

uncorrelated case. 

   In Fig. 4.16 the curve obtained by considering uncorrelated soil variables is 

wider, having a lower probability peak of ca. 0.0042. Whereas the curve for the 

case with ρc´tanϕ´ = -0.6 has a peak of ca. 0.0057 and a narrower shape, thus 

giving lower bearing capacity variability and decreasing the uncertainty. 
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Varying the correlation coefficient from 0 to –1.0, the standard deviation of qf 

decreases down to around 76% for ρc´tanϕ´ = -1.0, as shown in Table 4.14, while 

the mean value is always constant and equal to 290.878 kN/m². 

   If the standard lognormal distribution would be assumed to draw the 

probability density curves of the bearing capacity results of Table 4.14, then the 

same conclusions of Fig. 4.13 about the shape of the curves and the variability 

of the bearing capacity with the correlation between the input soil parameters 

would come out. 

   Summarizing all these observations it seems to be very important for 

probabilistic analysis to include a negative correlation between cohesion and 

friction angle in order to have less uncertainty in the final results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.14: Influence of ρc´tanϕ´ on the standard deviation of qf from FOSM 

            method for benchmark 2 with uncorrelated and negatively  

                         correlated soil variables 

 

 

4.4 Application of the SOSM method  

FOSM method can be slightly extended for a better prediction of the bearing 

capacity mean value through the SOSM method. Results of this approach will be 

illustrated in the next section and compared to those of Monte Carlo and FOSM 

methods. 
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4.4.1 SOSM results for benchmark 1 

Second order terms of Taylor’s series expansion of the bearing capacity will be 

now added to Eq. (4.3). In this way it is possible to refine the estimate of the 

bearing capacity mean value, leading to 
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f
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f
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tan

q
tanq

f
         (4.10) 

 

where the derivatives, given by Eqs. (B.1) and (B.4) of appendix B, are 

evaluated at µtanϕ´. Substituting the numerical values for unit weight, surcharge, 

cohesion and the mean value of tanϕ´, the first derivative of the bearing capacity 

is the same as for FOSM method in section 4.3.1, while the second derivative is 

given by 

 

.m/kN685.7060
tan

q 2

2

f

2

=
ϕ′∂

∂
 

 

Then the bearing capacity mean value, given by Eq. (4.10), will be 
2/851.303 mkN

fq =µ . 

   The statistical values of the bearing capacity derived from SOSM application 

are shown in Table 4.15. The mean value is around 5% higher than the 

deterministic value. Comparing these results to those of Table 4.11 for FOSM 

method, one sees that the second order terms have increased the mean value of 

the bearing capacity µqf and thus reduced the COVqf value, while the standard 

deviation remains constant. 

   Assuming a standard lognormal distribution, the probability density function 

of the bearing capacity is plotted in Fig. 4.17. In this case the skewness 

coefficient, evaluated with formula (4.1), will be 956.0≈ν
fq , which is slightly 

lower than the value found with FOSM method. 

 

 

 

 

 

 

 

Table 4.15: Statistical values of qf from SOSM method for benchmark 1 
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Figure 4.17: Standard lognormal distribution of qf from SOSM method for  

                          benchmark 1 

 

 

4.4.2 SOSM results for benchmark 2 with uncorrelated soil parameters 

By considering the cohesion as input random variable, the mean value formula 
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        (4.11) 

 

where derivatives are evaluated at the mean values µtanϕ´ and µc´. The first 

derivatives of the bearing capacity have the same values found for the FOSM 

method in section 4.3. While the second derivatives with respect to cohesion and 

tanϕ´ are given by Eqs. (B.3) and (B.4). Substituting the mean values of 

cohesion and tanϕ´, one obtains 
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303.851 kN/m
2

114.931 kN/m
2 0.378

fqµ
fqσ

fqCOV

303.851 kN/m
2

114.931 kN/m
2 0.378

fqµ
fqσ

fqCOV

Then the bearing capacity mean value, given by Eq. (4.11), will be 
2

q
m/kN851.303

f
=µ . The corresponding statistical estimates of the bearing 

capacity are shown in Table 4.16. 

   Comparing these results to those of Table 4.12, one notes that the second order 

terms have increased the mean value µqf, thus reducing COVqf value, while the 

standard deviation is still the same. These results are shown in Fig. 4.18 

assuming a standard lognormal distribution as approximation. Using Benjamin 

and Cornell’s formula (4.1), the skewness coefficient value is 188.1
fq

≈ν , 

which is slightly lower than the value found by FOSM method for uncorrelated 

input variables. 

 

 

 

 

 

 

 

Table 4.16: Statistical values of qf from SOSM method for benchmark 2 with  

                     uncorrelated soil variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Standard lognormal distribution of qf from SOSM method for  

                          benchmark 2 with uncorrelated soil variables 
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296.067 kN/m
2

75.761 kN/m
2 0.256

fqµ
fqσ

fqCOV

296.067 kN/m
2

75.761 kN/m
2 0.256

fqµ
fqσ

fqCOV

4.4.3 SOSM results for benchmark 2 with correlated soil parameters 

Taking into account c´ and tanϕ´ as negatively correlated variables with ρc´tanϕ´ = 

-0.6, the mean value formula (3.4) for the bearing capacity will be applied 

considering also the last term which includes the covariance, leading to 
2

q
m/kN067.296

f
=µ . 

   The standard deviation remains constant, as obtained by FOSM. The statistical 

values of the bearing capacity are presented in Table 4.17. Because of the lower 

mean value, the variation coefficient also decreases.  

   When a standard lognormal distribution is assumed to plot the results of Table 

4.17, it is possible to evaluate the skewness coefficient by using Benjamin and 

Cornell’s formula (4.1), thus obtaining a value of 0.785. This value is very 

similar to the estimate of FOSM method for the same benchmark, even if 

slightly lower. 

   Fig. 4.19 shows the comparison between probability density functions for 

uncorrelated and negatively correlated soil parameters. As for FOSM method, 

the curve for uncorrelated variables is wider having a lower probability peak, 

while the curve for the case with a negative correlation of -0.6 has a higher peak 

and a narrower shape with lower bearing capacity variability. 

   Varying the correlation coefficient from 0 to –1.0, the mean value of the 

bearing capacity will vary as shown in Table 4.18. On the other hand, the 

standard deviation values are the same of those presented in Table 4.14 from 

FOSM method. When compared with the FOSM results, a decrease of the 

correlation coefficient results in a reduction of both mean value and standard 

deviation of the bearing capacity. Additionally, as already seen for the FOSM 

application, a perfect negative correlation between cohesion and tanϕ´ strongly 

influences the bearing capacity variability. 

   If again the standard lognormal distribution would be assumed to draw the 

probability density curves of the bearing capacity results of Table 4.18, then the 

same conclusions of Fig. 4.13 about the shape of the curves and the variability 

of the bearing capacity with the correlation between the soil variables would 

result. 

 

 

 

 

 

 

Table 4.17: Statistical values of qf  from SOSM method for benchmark 2 with  

                      correlated soil variables 
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fqµ )/(

2
mkN

fqσϕ′′
ρ tanc

-1.0 290.878 27.570

-0.9 292.175 44.777

-0.8 293.472 57.008

-0.7 294.770 67.043

-0.6 296.067 75.761

-0.5 297.364 83.574

-0.4 298.662 90.717

-0.3 299.959 97.336

-0.2 301.257 103.534

-0.1 302.554 109.381

0.0 303.851 114.931
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Summing up all these observations, it would seem that SOSM method can refine 

the estimate of the bearing capacity mean value. However results show that the 

improvement is small and hardly worthwhile for the proposed benchmarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Comparison of probability density functions of qf from SOSM  

                         method for benchmark 2 with ρc´tanϕ´ = 0 and ρc´tanϕ´ = -0.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.18: Influence of ρc´tanϕ´ on the statistical values of qf  from SOSM  

                          method for benchmark 2 
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Method

MCS

FOSM

SOSM 303.851 kN/m
2

93.876 kN/m
2 0.309 0.956*

290.878 kN/m
2

93.876 kN/m
2 0.323 1.003*

306.562 kN/m
2

102.242 kN/m
2 0.333 1.008

fqµ
fqσ

fqCOV
fqν

* value found with BENJAMIN and CORNELL´s formula (1970) for a standard lognormal distribution

Method

MCS

FOSM

SOSM 303.851 kN/m
2

93.876 kN/m
2 0.309 0.956*

290.878 kN/m
2

93.876 kN/m
2 0.323 1.003*

306.562 kN/m
2

102.242 kN/m
2 0.333 1.008

fqµ
fqσ

fqCOV
fqνMethod

MCS

FOSM

SOSM 303.851 kN/m
2

93.876 kN/m
2 0.309 0.956*

290.878 kN/m
2

93.876 kN/m
2 0.323 1.003*

306.562 kN/m
2

102.242 kN/m
2 0.333 1.008

fqµ
fqσ

fqCOV
fqν

* value found with BENJAMIN and CORNELL´s formula (1970) for a standard lognormal distribution

4.5 Results comparison and necessity of an alternative method  

The aim of this section is to compare the results of the probabilistic methods 

MCS, FOSM and SOSM applied to the benchmarks described in this chapter. At 

the end, the necessity of an alternative probabilistic approach, which could 

overcome the drawbacks of MCS, FOSM and SOSM methods, will be 

discussed. 

 

4.5.1 Comparison of MCS, FOSM and SOSM results 

The statistical values estimated using MCS, FOSM and SOSM methods for 

benchmark 1 and 2 are summarised in Tables 4.19, 4.20 and 4.21.  

   For both benchmarks, MCS results are similar to those evaluated by FOSM 

and SOSM methods. The mean value provided by SOSM method is closer to 

MCS estimate due to the introduction of second order terms in Eq. (3.4). 

However the standard deviation is exactly the same as that found by FOSM 

method. 

   It is very important to remember that the FOSM and SOSM methods do not 

provide any skewness coefficient value. The fictitious skewness coefficients 

depending on the assumption of a standard lognormal distribution for 

approximating FOSM and SOSM results are listed in Tables 4.19, 4.20 and 4.21. 

If another type of density function were to be assumed then the skewness 

coefficients would change. However it seems that these values are very similar 

to those of MCS, especially for the first benchmark. A larger difference in the 

skewness coefficients is evident when a correlation of ρc´tanϕ´ = -0.6 is taken into 

account. 

 

 

  

 

 

Table 4.19: Comparison of statistical values of qf found using MCS, FOSM and  

                    SOSM methods for benchmark 1 

 



4.5  Results comparison and necessity of an alternative probabilistic method 

69 

1.247*

SOSM 303.851 kN/m
2

114.931 kN/m
2 0.378 1.188*

FOSM 290.878 kN/m
2

114.931 kN/m
2 0.395

MCS 306.805 kN/m
2

123.367 kN/m
2 0.402 1.387

Method

* value found with BENJAMIN and CORNELL´s formula (1970) for a standard lognormal distribution
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MCS 306.805 kN/m
2

123.367 kN/m
2 0.402 1.387

Method

* value found with BENJAMIN and CORNELL´s formula (1970) for a standard lognormal distribution

0.798*

SOSM 296.067 kN/m
2

75.761 kN/m
2 0.256 0.785*

FOSM 290.878 kN/m
2

75.761 kN/m
2 0.26

MCS 297.848 kN/m
2

73.372 kN/m
2 0.246 0.911

Method

* value found with BENJAMIN and CORNELL´s formula (1970) for a standard lognormal distribution

0.798*
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75.761 kN/m
2 0.256 0.785*
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2 0.26

MCS 297.848 kN/m
2

73.372 kN/m
2 0.246 0.911

Method

* value found with BENJAMIN and CORNELL´s formula (1970) for a standard lognormal distribution

 

 

 

 

Table 4.20: Comparison of statistical values of qf found using of MCS, FOSM  

                     and SOSM methods for benchmark 2 with uncorrelated soil  

                     parameters (ρc´tanϕ´= 0) 

 

 

 

 

 

 

Table 4.21: Comparison of statistical values of qf found using MCS, FOSM and  

                    SOSM methods for benchmark 2 with negatively correlated  

                    parameters (ρc´tanϕ´= -0.6) 

 

 

Figs. 4.20, 4.21 and 4.22 show the Monte Carlo results plotted pointwise 

together with the standard lognormal distribution approximations for FOSM and 

SOSM methods. 

   For benchmark 1 and 2 with uncorrelated variables, the FOSM probability 

density function is shifted more to the left than MCS points and SOSM curve. 

Hence there is a better agreement between the SOSM curve and the MCS 

results, as Figs. 4.20 and 4.21 demonstrate. In any case FOSM and SOSM 

curves have a higher probability peak when compared with the MCS one. This is 

because their standard deviations are lower.  
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Figure 4.20: Comparison of MCS, FOSM and SOSM results in terms of  

                            probability distribution for benchmark 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: Comparison of MCS, FOSM and SOSM results in terms of  

                           probability distribution for benchmark 2 considering  

                           uncorrelated soil variables. 
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Figure 4.22: Comparison of MCS, FOSM and SOSM results in terms of  

                           probability distribution for benchmark 2 considering correlated  

                           soil variables  

 

 

The opposite happens for benchmark 2 with negatively correlated parameters, 

where MCS probability peak is higher than FOSM and SOSM values, as Fig. 

4.22 illustrates. This is due to the lower value of the MCS standard deviation. 

   In Fig. 4.22 the perfect matching of the FOSM and SOSM curves can be seen. 

In addition they are in good agreement with MCS results. 

   Having compared the results of the MCS, FOSM and SOSM methods, it can 

be concluded that similar results are found for the mean value and the standard 

deviation. On the other hand no skewness coefficient is provided by the FOSM 

and SOSM methods. Thus, it is not possible to guess the shape of the probability 

density function of the bearing capacity, as for the Monte Carlo method. A 

standard lognormal distribution has been assumed to approximate the final 

results. So doing, a satisfactory agreement between the curves of FOSM and 

SOSM methods and the MCS results has been observed. 
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4.5.2 Necessity of an alternative probabilistic method 

It was seen in chapter 3 that the Monte Carlo approach is the most reliable 

technique between other well-known probabilistic methods, because not only 

mean value, standard deviation and skewness coefficient of a performance 

function can be estimated, but also the corresponding probability density 

function can be identified. However, as already seen in chapter 3, for 

geotechnical problems without an analytical solution, additional special 

programming for the MCS would be needed. Furthermore, to obtain a high 

accuracy, a large number of simulations are involved. Thus, in practice, this 

method requires a very high computational effort.  

   FOSM and SOSM methods were then chosen as alternative probabilistic 

approaches to replace MCS, both of which require only a limited amount of 

calculations. However these methods are accurate only for linear functions. The 

accuracy diminishes as the non-linearity of a function increases. In fact in this 

chapter it has been pointed out that the bearing capacity varies exponentially 

with tanϕ´. Thus, using FOSM and SOSM methods for a probabilistic analysis 

of the bearing capacity problem, uncertainty is introduced in the calculations, 

giving less accurate results than MCS. 

   It has been observed that the SOSM method seems to refine the estimate of the 

bearing capacity mean value found by the FOSM method. However results show 

that the improvement is small and hardly worthwhile for the proposed 

benchmarks. 

   In addition these approaches require the computation and evaluation of partial 

derivatives. This could be exceedingly difficult or impossible for many 

problems, such as when relationships are only in the form of charts or graphics 

or for solutions involving finite element methods. Furthermore no skewness 

coefficient is provided by both these methods. For this reason no information 

about the shape of the probability density function of the output is given. It has 

to be assumed, thus introducing a source of inaccuracy.  

      Hence it is necessary to take into account another alternative, which can 

overcome the drawbacks of MCS, FOSM and SOSM methods, providing a 

skewness coefficient value together with the other statistical estimates, but with 

less computational effort. 

   In chapter 5 the Two Point Estimate Method (PEM) will be chosen as 

alternative approach to be applied to the bearing capacity benchmarks. The 

results will be then presented and compared to those of the MCS, FOSM and 

SOSM methods.  

   Although the PEM does not provide a full distribution of the output variable, 

as Monte Carlo does, it will show to be a simple but powerful technique for 
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probabilistic analyses, as it requires less computational effort than MCS for a 

comparable degree of accuracy.  

   Moreover the PEM will provide not only mean value and standard deviation, 

but also the skewness coefficient of the bearing capacity, giving then more 

accurate results than FOSM and SOSM methods, with little or no increase in 

computational effort and without evaluation of partial derivatives. 

In chapter 6 the PEM will be applied for the evaluation of the failure probability 

of the bearing capacity problem. It will be shown that also this method has some 

limitations, as already mentioned in chapter 3. 

    However, despite its limitations, the PEM will proof to be a more attractive 

method than MCS, from a computational point of view, and than FOSM and 

SOSM approaches, as it will overcome their drawbacks. 
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Chapter 5 
 

The Two Point Estimate method applied to 

the bearing capacity problem 

Introduction 
It has been shown in chapter 3 that various probabilistic methods exist to 

quantify uncertainty. The most common are Monte Carlo simulations and the 

moments methods FOSM and SOSM. However these approaches present 

important shortcomings, as described in chapter 3 and demonstrated in chapter 

4. These difficulties can be overcome, with some limitations, using the Two 

Point Estimate Method after ROSENBLUETH (1975, 1981), described in 

chapter 3.  

   In the present chapter, the PEM is applied to the bearing capacity problem. 

The PEM results are then compared with those of the MCS, FOSM and SOSM 

methods. 

 

5.1 PEM results for benchmark 1 

In order to assess the bearing capacity statistical values related to the first 

benchmark, illustrated in chapter 4, the Two Point Estimate method after 

ROSENBLUETH (1975) is applied. The procedure for implementing the PEM 

and the corresponding calculations are described step by step in next section. 

 

5.1.1 Procedure of the PEM  

1. The relationship (4.6) between the dependent variable qf and the single 

random variable tanϕ´ is considered. 

 

2. The two sampling point locations for tanϕ´, which is normally distributed 

( 0
tan

=ν
ϕ′

), have to be computed. First of all, the standard deviation units, giving 

locations of the sampling points to the right and to the left of the mean value, are 

evaluated using Eqs. (3.6), thus giving 
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f(tanφ´)

ϕ′
µ

tan

f(tanφ´)

0
+

ϕ′tan
−

ϕ′tan
ϕ′tan

+ϕ′tanP
−ϕ′tanP

f(tanφ´)

ϕ′
µ

tan ϕ′
µ

tan

f(tanφ´)

0
+

ϕ′tan
−

ϕ′tan
ϕ′tan

+ϕ′tanP
−ϕ′tanP

1
tantan

=ξ=ξ
−ϕ′+ϕ′

. 

 

Then the corresponding sampling point locations can be found by using Eqs. 

(3.7), thus obtaining 

 

406.0tan =ϕ′
−

 

527.0tan =ϕ′
+

. 

 

Figure 5.1 shows the sampling points located at 
−

ϕ′tan and 
+

ϕ′tan . 

 

3. Then the weights Pi are determined. In this case there is only one input 

variable, for this reason no correlation coefficient is considered in the weights 

formula.  For tanϕ´ the weights are simply given by formula (3.8) and, because 

of the symmetry of the normal distribution, they will have the same value, i.e.: 

 

5.0PP
tantan

==
−ϕ′+ϕ′

. 

 

4. The values of the bearing capacity are then evaluated at both sampling point 

locations of tanϕ´. The results are shown in Table 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Sampling point locations and weights for tanϕ´ 
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fqµ
fqσ

fqCOV
fqν

306.785 kN/m
2

97.167 kN/m
2 0.317 0

fqµ
fqσ

fqCOV
fqν

306.785 kN/m
2

97.167 kN/m
2 0.317 0

403.953 kN/m2

0.5

0.5 0.527

0.406 209.619 kN/m2

±
P

±
ϕ′tan

±fq

403.953 kN/m2

0.5

0.5 0.527

0.406 209.619 kN/m2

±
P

±
ϕ′tan

±fq

 

 

 

 

 

 

 

Table 5.1: Weights and sampling points of tanϕ´ and bearing capacity values for  

                 PEM 

 

 

5. Now the first three moments of the bearing capacity can be evaluated using 

Eqs. (3.15), (3.16) and (3.17), where n = 1. 

   The results of the bearing capacity predicted by PEM are presented in Table 

5.2. From this table, it can be seen that the mean value is 6.2% higher than the 

deterministic value (i.e. 287.6 kN/m
2
). In addition the skewness coefficient is 

nil, thus suggesting a symmetric probability density function for the bearing 

capacity.  

   However, for a better definition of the shape of the bearing capacity 

distribution more sampling points would be needed. 

    Assuming both a standard lognormal and a normal distribution, as suggested 

by the skewness value in Table 5.2, the shape of the bearing capacity 

distribution can be plotted for both cases obtaining the curves in Fig. 5.2.  

   In the literature (e.g. ANG and TANG, 1975; FENTON, 2006) it is frequently 

reported that, for values of the variation coefficient lower than 30%, there is not 

much difference between the shape of a normal and a lognormal distribution. On 

the other hand, when the COV is higher than 30%, then a discrepancy exists 

between the shape of these two important density functions. For the first 

benchmark, the bearing capacity has a variation coefficient of approximately 

32%, thus a certain discrepancy exists between the curves of Fig. 5.2. 

 

 

 

 

 

 

 

Table 5.2: Statistical values of qf predicted by PEM  
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Figure 5.2: Approximation of PEM results using the standard lognormal and the  

                   normal distributions 

 

 

5.2 PEM results for benchmark 2 with uncorrelated soil parameters 

For the second benchmark the number of input variables increases, thus 

increasing the number of PEM calculations from 2 to 4 (because n=2). As the 

soil parameters are uncorrelated, the determination of the bearing capacity 

statistical values, the procedure as is described stepwise in next section, is still 

very simple, as for benchmark 1.  

 

5.2.1 Procedure of the PEM 

1. The relationship (4.6) between the dependent variable qf and the random input 

variables tanϕ´ and c´ is considered. 

 

2. Then the sampling point locations for tanϕ´ and c´ are computed. The 

standard deviation units will be evaluated for both soil parameters by applying 

formulas (3.6), thus leading to 

 

1
tantan

=ξ=ξ
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222.3
c

=ξ
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−′
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The corresponding sampling point locations can be evaluated with Eqs. (3.7) 

 

527.0tan =ϕ′
−

 

406.0tan =ϕ′
+

 
2

m/kN311.14´c =
+

 
2

m/kN007.3´c =
−

. 

 

3. The weights Pi, giving each of the four point estimates of soil parameters 

considered as single random variable, are then determined using Eq. (3.8), thus 

obtaining 

 

5.0PP
tantan

==
−ϕ′+ϕ′

 

088.0P
c

=
+′

 

912.0P
c

=
−′

. 

 

Figure 5.3 shows how the sampling points of both soil parameters tanϕ´ and c´ 

are located. The corresponding weights are also shown in these diagrams. Then 

the associated weights need to be found, considering the input parameters as 

multiple uncorrelated variables. Formula (3.9) gives the following weights: 

 

044.0PPP
ctan

=⋅=
+′+ϕ′++

 

456.0PPP
ctan

=⋅=
−′+ϕ′−+

 

044.0PPP
ctan

=⋅=
+′−ϕ′+−

 

456.0PPP
ctan

=⋅=
−′−ϕ′−−

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Sampling point locations and weights of the soil parameters tanϕ´  

                     and c´ 
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fqµ
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2
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0.044 14.311 kN/m
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2
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2 0.406 192.762 kN/m

2

4. The value of the bearing capacity at each sampling point can now be 

evaluated. The results are shown in Table 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3: Associated weights, sampling points and bearing capacity values for  

                  tanϕ´ and c´ 

 

 

5. The mean value, variance and skewness coefficient of the bearing capacity 

can be determined using Eqs. (3.15), (3.16) and (3.17), where n = 2. The results 

of the statistical estimates of the bearing capacity predicted by PEM are 

presented in Table 5.4. 

   Comparing these results with those of Table 5.2, it can be seen that the mean 

value is constant, while the standard deviation increases. This also increases the 

skewness and the variation coefficients. The higher standard deviation is due to 

the consideration of the effective cohesion as input random variable, which 

introduces more uncertainty in the final results. Moreover, it can be deduced 

from the positive skewness coefficient that the probability density function of 

the bearing capacity is no longer symmetric, as found in the first benchmark. 

 

 

 

 

 

 

 

Table 5.4: Statistical values of qf predicted by PEM with uncorrelated soil  

                       variables
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Figure 5.4: Approximation of PEM results using a shifted lognormal distribution  

                   with uncorrelated soil variables 

 

 

Assuming a shifted lognormal distribution to approximate the results of Table 

5.4, the bearing capacity curve can be plotted and shown in Fig. 5.4. This 

function is positively (right) skewed with respect to the mean value of the 

bearing capacity. 

 

5.3 PEM results for benchmark 2 with correlated soil parameters 

If the soil parameters tanϕ´ and c´ are correlated, then Rosenblueth´s formula 

(3.9) can not be applied for this benchmark, because negative weights are found. 

For this reason Christian’s formula (3.13) is used. As this formula is valid only 

for symmetrical random variables, instead of the lognormal variable c´, the 

normal variable lnc´ will be considered with its corresponding statistical values 

listed in Fig. 4.2 (b). In this way it is possible to simplify calculations working 

with two symmetrically distributed and correlated variables and applying 

formula (3.13) without any mathematical difficulties.  

   However, it will be seen in this chapter that formula (3.13) also presents some 

problem when applied to correlated soil parameters. This fact will be clearer 

when PEM results are compared with those of MCS in section 5.4. 

   The bearing capacity statistical values are found by following the usual 

procedure for implementing the PEM, as shown stepwise in next section. 
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ϕ′′ρ tancln

P++ P+- P-+ P--

-1.0 0.000 0.500 0.500 0.000

-0.9 0.025 0.475 0.475 0.025

-0.8 0.050 0.450 0.450 0.050

-0.7 0.075 0.425 0.425 0.075

-0.6 0.100 0.400 0.400 0.100

-0.5 0.125 0.375 0.375 0.125

-0.4 0.150 0.350 0.350 0.150

-0.3 0.175 0.325 0.325 0.175

-0.2 0.200 0.300 0.300 0.200

-0.1 0.225 0.275 0.275 0.225

0.0 0.250 0.250 0.250 0.250

Associated weights
ϕ′′ρ tancln

P++ P+- P-+ P--

-1.0 0.000 0.500 0.500 0.000

-0.9 0.025 0.475 0.475 0.025

-0.8 0.050 0.450 0.450 0.050

-0.7 0.075 0.425 0.425 0.075

-0.6 0.100 0.400 0.400 0.100

-0.5 0.125 0.375 0.375 0.125

-0.4 0.150 0.350 0.350 0.150

-0.3 0.175 0.325 0.325 0.175

-0.2 0.200 0.300 0.300 0.200

-0.1 0.225 0.275 0.275 0.225

0.0 0.250 0.250 0.250 0.250

Associated weights

5.3.1 Procedure of the PEM 

1. The relationship (4.6) between qf and the soil variables tanϕ´ and c´ is again 

considered. 

 

2. As tanϕ´ and lnc´ are both symmetrically distributed, then the standard 

deviation units of the soil parameters will be both equal to unity. In fact Eqs. 

(3.6) lead to 

 

1
tantan

=ξ=ξ
−ϕ′+ϕ′

 

1
clncln

=ξ=ξ
−′+′

. 

 

The sampling point locations for tanϕ´ and lnc´ are then computed by applying 

formulas (3.7), thus obtaining 

 

406.0tan =ϕ′
−

 

527.0tan =ϕ′
+

 
2

m/kN842.1´cln =
+

 
2

m/kN436.0´cln =
−

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5: Associated weights of tanϕ´ and lnc´ varying the correlation  

                         coefficient 
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3. The weights Pi, giving each of the four point estimates of the soil parameters 

considered as single random variable, are then determined using formula (3.8), 

thus leading to 

 

5.0PP
tantan

==
−ϕ′+ϕ′

 

5.0PP
clncln

==
−′+′

. 

 

Formula (3.13) is then used to find the associated weights. The sampling 

weights calculated for various correlation coefficients between 0 to –1.0 are 

listed in Table 5.5. 

 

4. To determine the bearing capacity values at each sampling point, the sampling 

point locations of lnc´ need to be transformed into the sampling point locations 

of the lognormal cohesion. This is done simply using the exponential function, 

i.e. 

 
2cln

m/kN311.6ec ==′ +
′

+
 

2cln
m/kN546.1ec ==′ −

′

−
. 

 

Then the relationship (4.6) can be easily applied to evaluate the bearing capacity 

values listed in Table 5.6 for ρc´tanϕ´ = -0.6.  

   Eqs. (3.15), (3.16) and (3.17) can now be used to define the statistical values 

of the bearing capacity corresponding to a correlation coefficient of –0.6. The 

results are shown in Table 5.7.  

   Comparing results of Tables 5.4 and 5.7, one sees a slight change in the mean 

value, while the standard deviation decreases down to around 35% when 

compared with the value obtained considering uncorrelated soil parameters. 

Consequently the skewness and the variation coefficients also decrease. Thus 

the bearing capacity variability and the uncertainty in the analysis are strongly 

reduced. 

Assuming a shifted lognormal distribution and considering uncorrelated and 

negatively correlated soil parameters with ρc´tanϕ´ = -0.6, the probability density 

functions of the bearing capacity for both cases can be compared in one 

diagram, as shown in Fig. 5.5. When uncorrelated variables are taken into 

account then the density function shows a higher variability, being wider than 

the curve for negatively correlated parameters. Also the peak values of these 

distributions is clearly different, being around 0.0037 for the case with ρc´tanϕ´ = 0 

and around 0.0052 for the case with ρc´tanϕ´ = -0.6.  
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fqµ
fqσ

fqCOV
fqν

299.255 kN/m
2

78.282 kN/m
2 0.262 0.394

fqµ
fqσ

fqCOV
fqν

299.255 kN/m
2

78.282 kN/m
2 0.262 0.394299.255 kN/m

2
78.282 kN/m

2 0.262 0.394

±±
P

±
ϕ′tan ±±fq

±
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0.1 0.436 kN/m
2 0.406 167.961 kN/m

2

0.4 1.843 kN/m
2 0.406 248.846 kN/m

2

0.4 0.436 kN/m
2 0.527 341.645 kN/m

2

0.1 1.843 kN/m
2 0.527 462.628 kN/m

2

±±
P

±
ϕ′tan ±±fq

±
′cln

0.1 0.436 kN/m
2 0.406 167.961 kN/m

2

0.4 1.843 kN/m
2 0.406 248.846 kN/m

2

0.4 0.436 kN/m
2 0.527 341.645 kN/m

2

0.1 1.843 kN/m
2 0.527 462.628 kN/m

2

 

 

 

 

 

 

 

 

 

 

Table 5.6: Associated weights, sampling points and bearing capacity values for  

                   tanϕ´ and lnc´ 

 

 

 

 

 

 

 

Table 5.7: Statistical values of qf predicted by PEM with ρc´tanϕ´ = -0.6 

 

 

Varying the correlation coefficient from 0 to –1.0, the statistical values of the 

bearing capacity change as shown in Table 5.8. By decreasing the correlation 

coefficient and considering the normal variable lnc´ as input for the analysis, the 

mean value changes slightly (less than 4% difference for uncorrelated soil 

parameters to parameters with ρc´tanϕ´ = -1.0), while the standard deviation 

decreases significantly down to about 60% reduction for the case with ρc´tanϕ´ = -

1.0. The skewness coefficient increases up to a maximum value when ρc´tanϕ´ = -

0.7, then it decreases to a value of zero for a correlation of ρc´tanϕ´ = -1.0. This 

strange behaviour of the skewness is influenced mainly by the standard 

deviation reduction. 

   At the bottom of Table 5.8 the bearing capacity statistical values from Table 

5.4 found considering uncorrelated soil parameters and the lognormal cohesion 

c´, instead of the normal variable lnc´, are also listed. Comparing the results for 

both cases, the mean value is practically unchanged, while there is a clear 

difference between standard deviations and even more between skewness 

coefficients. This divergence is due to the different associated weights 
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evaluated, respectively, by Eq. (3.9) for c´ and Eq. (3.13) for lnc´, which are 

listed in Tables 5.3 and 5.6. 

   Unfortunately Rosenblueth´s formula can not be applied for benchmark 2 to 

estimate any statistical values of the bearing capacity considering different 

correlation coefficients, because, as already mentioned, negative associated 

weights are found. Also Christian’s formulas can only be used when the normal 

variable lnc´ is taken into account, because this formula refers only to 

symmetrically distributed variables.  

   Hence the results of Table 5.8 referred to negative correlation coefficients can 

not be compared with other statistical values, as done for the case with 

uncorrelated variables.  

   As the results of Table 5.8 are the outcome of the application of formulas 

(3.13) using a mathematical trick for considering the input variable cohesion as 

normally distributed, i.e. lnc´ instead of c´, then the correlation between the 

input variables is different, thus influencing the values of the associated weights.  

   For this reason these results will be used as reference for further comparisons 

with other probabilistic methods results only for the case with negatively 

correlated variables. Whereas the statistical values of Table 5.4 will be 

considered as reference for further comparisons in case of uncorrelated soil 

parameters, i.e. when 0
ctan

=ρ
′ϕ′

. For these comparisons the author refers to 

section 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Comparison of the probability density functions of qf  with ρc´tanϕ´ = 0  

                   and with ρc´tanϕ´ = -0.6 
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)/( 2mkN
fqµ )/(

2
mkN

fqσϕ′′ρ tanc fqν

-1.0 295.246 46.399 0.000

-0.9 296.248 56.122 0.318

-0.8 297.250 64.378 0.399

-0.7 298.253 71.675 0.409

-0.6 299.255 78.282 0.394

-0.5 300.258 84.361 0.369

-0.4 301.260 90.020 0.340

-0.3 302.263 95.333 0.309

-0.2 303.265 100.354 0.280

-0.1 304.268 105.127 0.251

0.0 (considering lnc´) 305.270 109.683 0.223

0.0 (considering c´) 306.785 119.236 0.912

)/( 2mkN
fqµ )/(

2
mkN

fqσϕ′′ρ tanc fqν

-1.0 295.246 46.399 0.000

-0.9 296.248 56.122 0.318

-0.8 297.250 64.378 0.399

-0.7 298.253 71.675 0.409

-0.6 299.255 78.282 0.394

-0.5 300.258 84.361 0.369

-0.4 301.260 90.020 0.340

-0.3 302.263 95.333 0.309

-0.2 303.265 100.354 0.280

-0.1 304.268 105.127 0.251

0.0 (considering lnc´) 305.270 109.683 0.223

0.0 (considering c´) 306.785 119.236 0.912

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.8: Statistical values of the bearing capacity for different correlation  

                      coefficients  

 

 

Fig. 5.6 shows the influence of the correlation coefficient variation on the shape 

of the shifted lognormal fit of the bearing capacity. As already pointed out for 

Fig. 5.5, the curves become narrower for lower correlation coefficients, thus 

decreasing the bearing capacity variability, which means less uncertainty in the 

analysis. As a consequence the distribution peaks increase. 

It should be noted that, for 0.1
ctan

−=ρ
′ϕ′

, the skewness coefficient of the 

bearing capacity is nil, as reported in Table 5.8, meaning a symmetrical 

distribution. For this reason a Gaussian distribution is assumed for plotting the 

bearing capacity function in Fig. 5.6.  

   In this Figure the curve for 0
ctan

=ρ
′ϕ′

 taking into account the lognormal 

cohesion c´ as input variable is also plotted. Comparing this curve to that 

obtained considering the normal variable lnc´ instead of c´, a clear divergence is 

seen. The curve referred to c´ is in fact wider because of the higher standard 

deviation. Furthermore, it is shifted more to the left because of the extremely 

higher positive skewness coefficient.  

   Summarising it is possible to conclude that the choice of a negative correlation 

between soil parameters is reasonable, because the uncertainty in the 

probabilistic analysis is effectively reduced.  
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In addition it is shown in Table 5.8 and Fig. 5.6 that, depending on the weights 

formula applied for benchmark 2 with uncorrelated soil variables, the bearing 

capacity results are different, particularly in terms of skewness coefficient, thus 

producing some difficulty in the interpretation of the outcome.  

   As already mentioned in chapter 3, ROSENBLUETH (1981) noted that when 

multiple random variables are taken into account in the application of the PEM, 

the value of the skewness coefficient can only be reliably calculated using Eq. 

(3.17) if the variables are uncorrelated. Also CHRISTIAN and BAECHER 

(1999) pointed out that the PEM should not be applied for evaluating the 

skewness coefficient for non-linear functions, as in the case of the bearing 

capacity formula.  

   Moreover, they observed that the larger the variation coefficient of the input 

variables, the larger is the error in the estimates. In this study a variation 

coefficient of 80% is considered for the cohesion. This value is higher than the 

values usually found in the literature, thus introducing some inaccuracy in the 

probabilistic results of the bearing capacity.  

 

 

Figure 5.6: Influence of the correlation coefficient variation on the probability  

                     distribution of the bearing capacity  
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Finally, these authors stated that one should be careful when applying the PEM 

to cases in which the transformation of an input variable changes its 

distributional form, as it was done for the cohesion, for which important 

information on the correlation coefficient between shear strength parameters is 

lost. All these facts are confirmed in this chapter. 

   Thus, before applying a certain formula for evaluating the associated weights, 

one should be aware of the characteristics of the input variables, i.e. if these are 

symmetrically distributed or not and if a certain correlation exists between them. 

 

5.4 Comparison of PEM, MCS, FOSM and SOSM results  

The scope of this section is to compare PEM results for benchmark 1 and 2 

already shown in chapter 4 to those of FOSM and SOSM methods, using the 

Monte Carlo approach as a reference for the comparison. 

   In chapters 3 and 4 it has been shown that MCS are too time consuming for 

practical purposes, which means consequently too expensive. Moreover, the 

FOSM and SOSM methods do not provide information about the skewness 

coefficient.  

   The PEM is chosen as alternative probabilistic method to be applied to the 

bearing capacity problem, instead of MCS, FOSM and SOSM methods, because 

it requires much less computational effort than MCS and it also provides 

information about the skewness coefficient. Furthermore this approach does not 

require the determination and evaluation of partial derivatives of the bearing 

capacity formula as FOSM and SOSM, thus being more straightforward to use. 

   Nevertheless, as already discussed in section 5.3, the PEM has also some 

drawbacks. These are highlighted in this section when the skewness coefficients 

of MCS and PEM methods are compared. 

 

5.4.1 Comparison of results for benchmark 1 

In Table 5.9 the statistical values of the bearing capacity for benchmark 1 found 

by applying the probabilistic methods PEM, FOSM, SOSM and MCS are listed. 

Mean values, standard deviations and, consequently, variation coefficients are 

quite similar, while a significant difference is observed between the skewness 

coefficients. In fact the FOSM and SOSM method do not provide any skewness 

coefficient, while the PEM provides a nil value. Thus the PEM is more accurate 

than FOSM and SOSM methods, giving the additional information about the 

shape of the bearing capacity distribution. However this value is extremely 

different from the skewness coefficient found by MCS, which is 1.008. 



5.4  Comparison of PEM, MCS, FOSM and SOSM results 

89 

Assuming a standard lognormal distribution, the probability density function of 

PEM, FOSM and SOSM results can be drawn together with the results derived 

from 10000 MCS plotted pointwise, as shown in Fig. 5.7. 

   Actually, the PEM skewness coefficient suggests that a normal distribution 

should be assumed for approximating the bearing capacity statistical values. 

However, following the conclusions reported in section 5.1 about the variation 

coefficient and referring to Fig. 5.2, a standard lognormal distribution is 

preferred, because it seems to be more representative for the bearing capacity.  

   Despite the different skewness coefficient, the PEM curve matches very well 

the points indicating the MCS results, even if PEM distribution is a little bit 

skewed to the right and up. Hence PEM apparently seems to be insensitive to the 

skewness and gives virtually the same distribution as the computationally not so 

attractive MCS. 

   It is important to observe that PEM requires only two calculations, against the 

10000 simulations for Monte Carlo method, to get the results of Table 5.9. Thus, 

by applying PEM, the computational effort considerably decreases. 

   Considering Benjamin and Cornell’s formula (4.1) valid for a standard 

lognormal distribution, it is possible to assign fictitious skewness coefficients 

for the FOSM and SOSM results. These values are then compared with the 

skewness coefficient found by PEM and MCS, as shown in Table 5.9. These 

fictitious values are very similar to the skewness coefficient found by MCS, 

whereas they are extremely different from the value of PEM. Nevertheless, 

because a standard lognormal distribution is assumed as approximation for the 

PEM results, it is then possible to determine a fictitious skewness also for this 

method. The value is approximately 0.983 and it is similar to the fictitious 

skewness coefficients assigned to FOSM and SOSM methods and to the 

skewness coefficient of the MCS. For this reason the curves in Fig. 5.7 are in 

good agreement. However, the FOSM curve is skewed more to left due to the 

lower mean value. If another type of distribution were to be assumed for 

approximating the results of Table 5.9, then the fictitious skewness coefficients 

would also change. 

   For more detail about the assumption of different distribution functions as an 

approximation for the probabilistic results of the bearing capacity the author 

refers to section 5.5. For example, by assuming a Gaussian distribution, the 

skewness coefficients of all probabilistic approaches would be the same. The 

difference reported in Table 5.9 for the skewness would then disappear. 

   However, the author would like to point out that one of the goal of this work is 

to find the most suitable probability distribution which approximates MCS and 

PEM results best and not those of FOSM and SOSM methods. 
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fqµ
fqσ

fqCOV
fqν

MCS

SOSM

FOSM

PEM

Method

1.003*

303.851 kN/m
2

93.876 kN/m
2 0.309 0.956*

290.878 kN/m
2

93.876 kN/m
2 0.323

306.785 kN/m
2

97.167 kN/m
2 0.317 0

1.008306.562 kN/m
2

102.242 kN/m
2 0.333

 

 

 

 

 

 

 

 

 

 

*value found with BENJAMIN and CORNELL´s formula (1970) for a standard lognormal  

   distribution 

 

Table 5.9: Statistical values of qf found using PEM, FOSM, SOSM and MCS  

                    methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Comparison of PEM, FOSM, SOSM and MCS results in terms of  

                      probability density function 

 

 

From this results comparison it would seem that no real advantage exists by 
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meaningful skewness coefficient for benchmark 1 as compared with the MCS 

results. 

   However it will be seen in next sections that PEM, not only strongly decreases 

the number of calculations, but can give more significant skewness values when 

multiple input variables are considered, as for benchmark 2, where both 

cohesion and tanϕ´ are taken into account. 

   Nevertheless, some difficulty will be encountered in the evaluation of the 

skewness when correlated soil variables are considered. 

 

5.4.2 Comparison of results for benchmark 2 with uncorrelated soil 

parameters 

Table 5.10 summarizes the statistical values of the bearing capacity previously 

evaluated by PEM, FOSM, SOSM and MCS methods for benchmark 2 

considering uncorrelated soil parameters. Comparing these results, it can be seen 

that mean values and standard deviations are quite similar, while there is a 

difference between the skewness coefficients. However, when compared with 

the results of benchmark 1 in Table 5.9, the difference between MCS and PEM 

skewness coefficient is now decreased down to about 35%, instead of the earlier 

100%. 

   Considering a standard lognormal distribution and using again formula (4.1), 

fictitious skewness coefficients can be assigned to the FOSM and SOSM 

methods, which are listed in Table 5.10. In contrast to benchmark 1, these values 

are similar to the skewness coefficient of the PEM. This is certainly due to the 

introduction of the cohesion c´ as additional input variable, whose skewness 

strongly influences that of the bearing capacity. Of course if another distribution 

were to be assumed for approximating the FOSM and SOSM results, then other 

skewness values would be found. 

Assuming a shifted lognormal distribution for PEM and a standard lognormal 

distribution for FOSM and SOSM methods, then the results of Table 5.10 can be 

drawn in Fig. 5.8 together with MCS results plotted pointwise. When compared 

with benchmark 1, the PEM curve is now more skewed right down than those of 

FOSM and SOSM methods, due to the fact that a shifted lognormal, and not a 

standard lognormal distribution is assumed as an approximation. 

   If a standard lognormal distribution were to be assumed for plotting PEM 

results, then this difference would disappear. The fictitious skewness coefficient 

of the PEM of approximately 1.226 is very similar to the FOSM, SOSM and 

MCS values and all the fitting curves would be then in good agreement. 
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fqµ
fqσ

fqCOV
fqν

MCS

SOSM

FOSM

PEM

Method

306.805 kN/m
2

123.367 kN/m
2

0.402 1.387

1.247*

303.851 kN/m
2

114.931 kN/m
2 0.378 1.188*

290.878 kN/m
2

114.931 kN/m
2 0.395

306.786 kN/m
2

119.236 kN/m
2 0.389 0.912

fqµ
fqσ

fqCOV
fqν

MCS

SOSM

FOSM

PEM

Method

306.805 kN/m
2

123.367 kN/m
2

0.402 1.387

1.247*

303.851 kN/m
2

114.931 kN/m
2 0.378 1.188*

290.878 kN/m
2

114.931 kN/m
2 0.395

306.786 kN/m
2

119.236 kN/m
2 0.389 0.912

It is important to notice that, for this case, PEM requires only four calculations, 

against the 10000 Monte Carlo simulations, to get the results of Table 5.10.  

 

 

 

 

 

 

 

 

 

 

 
*value found with BENJAMIN and CORNELL´s formula (1970) for a standard lognormal  

     distribution 

 

Table 5.10: Statistical values of qf found using PEM, FOSM, SOSM and MCS  

                     methods with uncorrelated soil parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Comparison of PEM, FOSM, SOSM and MCS results in terms of  

                      probability density function with ρc´tanϕ´ = 0 
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fqµ
fqσ

fqCOV
fqν

MCS

SOSM

FOSM

PEM

Method

0.911297.848 kN/m
2

73.372 kN/m
2 0.246

0.798*

296.067 kN/m
2

75.761 kN/m
2 0.256 0.785*

290.878 kN/m
2

75.761 kN/m
2

0.26

299.255 kN/m
2

78.282 kN/m
2 0.262 0.394

fqµ
fqσ

fqCOV
fqν

MCS

SOSM

FOSM

PEM

Method

0.911297.848 kN/m
2

73.372 kN/m
2 0.246

0.798*

296.067 kN/m
2

75.761 kN/m
2 0.256 0.785*

290.878 kN/m
2

75.761 kN/m
2

0.26

299.255 kN/m
2

78.282 kN/m
2 0.262 0.394

5.4.3 Comparison of results for benchmark 2 with correlated soil 

parameters 

The statistical values of the bearing capacity found by applying PEM, FOSM, 

SOSM and MCS methods to benchmark 2 taking into account a negative 

correlation of ρc´tanϕ´ = -0.6 are listed in Table 5.11. Mean values and standard 

deviations are quite similar, even considering a correlation between input 

variables. On the other hand, a significant discrepancy exists between skewness 

coefficients.  

   In fact FOSM and SOSM methods do not provide any value, while the 

skewness coefficient of the PEM is about 60% lower than MCS value. This 

difference is due to the inconvenience of applying PEM formulas (3.13) to the 

non-symmetric variable c´, as described in section 5.3. In order to apply 

Christian’s formula to evaluate the associated weights, the normal variable lnc´ 

needs to be considered, thus influencing the correlation coefficient between 

cohesion and friction angle, because of the different mean value and standard 

deviation of lnc´ and c´. 

Assuming a shifted lognormal distribution for PEM and a standard lognormal 

distribution for FOSM and SOSM methods, then results of Table 5.11 can be 

plotted in Fig. 5.9 together with MCS results. Despite the different skewness 

coefficients, the curves are in good agreement. 

 

 

 

 

 

 

 

 

 

 

 

 
*value found with BENJAMIN and CORNELL´s formula (1970) for a standard lognormal  

     distribution 

 

Table 5.11: Statistical values of qf found using PEM, FOSM, SOSM and MCS  

                     methods with ρc´tanϕ´ = -0.6 
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Figure 5.9: Comparison of PEM, FOSM, SOSM and MCS results in terms of 

                      probability density function with ρc´tanϕ´ = -0.6 

 

 

Benjamin and Cornell’s formula (4.1) is applied to evaluate a fictitious value for 

the skewness coefficient of FOSM and SOSM methods, as reported in Table 

5.11. Thus the skewness coefficients of all methods can be compared. One notes 

that PEM skewness is around 50% lower than FOSM and SOSM fictitious 

values, while the value of MCS is less than 15% higher. If another distribution 

were to be assumed for approximating FOSM and SOSM results, then it would 

be possible to find other skewness coefficients, maybe more similar to the PEM 

or MCS values. 

   Also in this case, if a standard lognormal distribution were to be assumed for 

approximating PEM results, then the fictitious skewness coefficient of PEM 

would be approximately 0.804, which is very similar to the fictitious values 

found for FOSM and SOSM methods and slightly lower than the MCS value. 

 

5.5 Discussion of the assumption of the shifted lognormal distribution  

The use of a certain probability density function in preference to others plays an 

important role in the probabilistic analysis of the bearing capacity problem, as 

shown in this chapter.  
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From the results of Monte Carlo simulations reported in chapter 4, it is possible 

to define the shape of the bearing capacity density function.  

   Considering, for example, the frequency diagram of 10000 MCS in Fig. 4.10 

for benchmark 2 with uncorrelated soil parameters, it is reasonable to assume a 

positively (right) skewed probability distribution for the bearing capacity 

statistical values. Certain continuous probability distributions can be used to 

approximate these results, such as the lognormal, the beta or the Weibull 

distributions. 

   In geotechnical literature the normal and the standard lognormal distributions 

are frequently used, because of their mathematical simplicity. In addition, the 

necessary statistical information about these functions is widely available, 

including probability tables. 

   For this study the shifted lognormal distribution is chosen to represent the 

distribution of the bearing capacity. Not only it is strictly non-negative and can 

be treated mathematically straightforward, but it also matches very well all the 

three moments of the bearing capacity found by applying the Monte Carlo and 

the Point Estimate methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Different probability density functions assumed as approximation  

                      of 10000 MCS for benchmark 2 with ρc´tanϕ´ = 0 
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The pointwise results of 10000 MCS for benchmark 2 considering ρc´tanϕ´ = 0 are 

shown in Fig. 5.10 together with four possible fits using well-known probability 

density functions. 

   A large discrepancy exists between the Gaussian normal distribution assumed 

as approximation and the MCS results described pointwise. This is due to the 

fact that the skewness coefficient evaluated using the Monte Carlo method is not 

nil. Furthermore, as Fig. 5.10 shows, the Gaussian distribution allows negative 

bearing capacity values, which are physically unrealistic. Then the Gaussian 

distribution could only be seen as a rough approximation. 

   The Weibull distribution shows a good agreement with MCS results for values 

of the bearing capacity higher than around qf = 270 kN/m
2
. However this curve 

can not be a good fit because it does not describe the entire interval of the 

bearing capacity variability as Monte Carlo method does. This curve is truncated 

at about qf = 140 kN/m
2
.  

   The standard and the shifted lognormal distributions seem to approximate 

MCS results at best. In fact the curves found considering these two distributions 

match very well the points referred to the MCS results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Different probability density functions assumed as approximation  

                      for PEM results of benchmark 2 with ρc´tanϕ´ = 0 
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Moreover, looking at the first term of the bearing capacity formula (A.4) in 

Appendix A, this is given as the product of the two input variables c´ and tanϕ´. 

Hence, for the central limit theorem, the distribution of the bearing capacity 

should tend to a lognormal distribution. 

   Apparently, it seems to be that the standard lognormal distribution is more 

appropriate than the shifted one, especially around the peak of the curve. 

Nevertheless only the shifted lognormal distribution can match the skewness 

coefficient of the bearing capacity. This is why this function is preferred to 

others as an approximation of the results of this probabilistic analysis. 

   Fig. 5.11 shows possible probability density functions assumed for 

approximating PEM results of benchmark 2 considering uncorrelated soil 

variables. In this diagram the good matching of the standard and the shifted 

lognormal functions can be seen, while there is a high divergence between these 

two curves and the Weibull and the Gaussian distributions. 

   It should be pointed out that the differences showed in Figs. 5.10 and 5.11 

would become less important if the method of maximum likelihood would be 

applied. However its results could not be directly compared to the results of the 

other probabilistic methods considered for the bearing capacity problem, as the 

method of maximum likelihood is not moment oriented. 

   Figs. 5.12 shows the comparison of the shifted lognormal (a), standard 

lognormal (b), normal (c) and Weibull (d) distributions for MCS, PEM, FOSM 

and SOSM results referred to benchmark 2 taking into account uncorrelated soil 

parameters. 

   As the FOSM and SOSM methods do not provide any skewness, their results 

can not be approximated by a shifted lognormal distribution, as this function 

requires the knowledge of all the first three moments of the bearing capacity. 

Thus in Fig. 5.12 a) only the curves for MCS and PEM results are plotted. These 

have been already compared in section 5.4.2. 

   The fitting curves of Fig. 5.12 b) and c) seem to agree satisfactorily. However, 

the assumption of a standard lognormal and of a normal distributions is not the 

best choice. In fact the standard lognormal distribution does not match the real 

skewness coefficients evaluated using MCS and PEM. Instead, fictitious 

skewness values, estimated with formula (4.1), are assigned to these methods.  

   In addition, the Gaussian normal distribution allows negative bearing capacity 

values for every probabilistic approach, which are physically impossible. In Fig. 

5.12 c) these negative values do not appear, because the curves are truncated at 

the origin. 
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Figure 5.12: Comparison of different probability density functions for MCS,  

                        PEM, FOSM and SOSM results for benchmark 2 with ρc´tanϕ´ = 0:  

                        a) shifted lognormal, b) standard lognormal, c) normal and  

                        d) Weibull distributions 

 

 

Finally one can see in Fig. 5.12 d) how the Weibull distribution presents the 

largest discrepancy. In fact for FOSM and SOSM method, whose skewness 

coefficient does not exist, the curves seem to be very similar to a normal 

distribution, giving negative values for the bearing capacity, here truncated at 

the origin. 

   On the other hand the well-known shape of the Weibull distribution with a 

lower bound is clearer for MCS and PEM methods, for which the skewness 

coefficient is not zero. 

   The Weibull curve for PEM results is wider, meaning more variability of the 

bearing capacity, and with lower peak than the MCS function. This is mostly 

due to the lower skewness coefficient of PEM results, as already seen in section 
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5.5.2 and shown in Fig. 5.12 a), when the assumption of the shifted lognormal 

distribution is considered. 

   As described in Fig. 5.12, the probability density functions behaviour for the 

bearing capacity results of benchmark 1 is shown in Fig. 5.13. However some 

differences can be highlighted: 

 

- In Fig. 5.13 a) only the MCS fit can be plotted. In fact to find the three 

parameters of the shifted lognormal distribution using Eqs. (2.16), (2.17) and 

(2.18), the skewness coefficient should be different to zero. This is not the case 

for PEM results of benchmark 1, where the bearing capacity skewness is nil. 

- In Fig. 5.13 b) and c), the density function referred to the MCS results, for a 

lognormal and a normal distribution, is wider and has a lower peak when 

compared with the other methods. In fact, by neglecting the real skewness 

coefficient and because the standard deviation of MCS is larger than the values 

of PEM, FOSM and SOSM methods, the variability of the bearing capacity will 

be higher. 

 

- Finally, when compared to Fig. 5.12 d), in Fig. 5.13 d) the PEM approximation 

using the Weibull distribution seems to match well the  FOSM and SOSM 

curves. This is due to the value of the skewness coefficient, which is nil for 

benchmark 1. 

 

It should be pointed out that the differences showed in Figs. 5.10 and 5.11 

would become less important if the method of maximum likelihood would be 

applied. However its results could not be directly compared to the results of the 

other probabilistic methods considered for the bearing capacity problem, as the 

method of maximum likelihood is not moment oriented. 

   Figs. 5.12 shows the comparison of the shifted lognormal (a), standard 

lognormal (b), normal (c) and Weibull (d) distributions for MCS, PEM, FOSM 

and SOSM results referred to benchmark 2 taking into account uncorrelated soil 

parameters. 

   As the FOSM and SOSM methods do not provide any skewness, their results 

can not be approximated by a shifted lognormal distribution, as this function 

requires the knowledge of all the first three moments of the bearing capacity. 

Thus in Fig. 5.12 a) only the curves for MCS and PEM results are plotted. These 

have been already compared in section 5.4.2. 

   The fitting curves of Fig. 5.12 b) and c) seem to agree satisfactorily. However, 

the assumption of a standard lognormal and of a normal distributions is not the 

best choice. 
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Figure 5.13: Comparison of different probability density functions for MCS,  

                PEM, FOSM and SOSM results for benchmark 1: a) shifted  

                 lognormal, b) standard lognormal, c) normal and d) Weibull  

                         distribution 

 

 

In fact the standard lognormal distribution does not match the real skewness 

coefficients evaluated using MCS and PEM. Instead, fictitious skewness values, 

estimated with formula (4.1), are assigned to these methods.  

   In addition, the Gaussian normal distribution allows negative bearing capacity 

values for every probabilistic approach, which are physically impossible. In Fig. 

5.12 c) these negative values do not appear, because the curves are truncated at 

the origin. 

   To understand the influence of the skewness coefficient on the shape of the 

shifted lognormal distribution, different values of this coefficient are considered 

in Fig. 5.14. In this diagram PEM results for benchmark 2 with ρc´tanϕ´ = 0 are 

plotted keeping the mean value and the standard deviation constant. One can 

also see in this diagram the curve obtained by considering νqf = 0.912, which 
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gives the real shifted lognormal approximation of PEM results listed in Table 

5.10. 

   For skewness coefficients lower than 0.1 the curves practically do not change 

their shape, while for values higher than 0.1 the difference between the shape of 

these functions increases. In particular for skewness coefficients higher than 1.0 

this difference is very large. 

   As the PEM and the MCS mean values and standard deviations are very 

similar for all the benchmarks analysed, but the MCS skewness is always higher, 

it is now clear why MCS approximation curves are narrower and present a 

higher peak than PEM functions, as seen in Figs. 5.12 a). 

   The only exception are the PEM results of benchmark 1, for which is not 

possible to draw a shifted lognormal distribution, because the skewness is nil. 

This fact was already noticed in Fig. 5.13 a). 

   Summarising all these findings, it can be concluded that the shifted lognormal 

distribution is an important and useful density curve for fitting the results of a 

probabilistic analysis. As there is very little information about the application of 

this function in geotechnical literature, the author suggests that the shifted 

lognormal distribution should be considered in further studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Influence of the skewness variation on the shape of the shifted  

                   lognormal distribution with constant mean value and standard  

           deviation for PEM results of benchmark 2 with ρc´tanϕ´ = 0 
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5.6 Conclusions on the application of the PEM to the bearing capacity 

problem 

In this chapter the Two Point Estimate Method was applied to the bearing 

capacity problem and the results were then compared with those of MCS, FOSM 

and SOSM methods.  

   It has been shown that, in spite of some limitations, PEM proofs to be a 

simple, but powerful technique for probabilistic analysis, as it requires much 

less computational effort than Monte Carlo Simulations for a comparable degree 

of accuracy in terms of mean value and standard deviation. However, a high 

discrepancy is observed for the skewness coefficient. For this reason, 

mathematicians who are familiar with the principles and formulas of this method 

would emphasise that the PEM should be used only under the conditions 

mentioned at the end of section 5.3, for which the PEM is expected to give good 

results.  

   As an alternative to the PEM, the First Order Second Moment and the Second 

Order Second Moment methods were applied, which gave results similar to 

those of PEM. However they do not allow the evaluation of the skewness 

coefficient, and are therefore less accurate. 

   As already seen in chapter 4, when a negative correlation between strength 

parameters is considered, the variability of the bearing capacity is lower, as 

shown in Figs. 5.5 and 5.6, thus reducing the uncertainty in the final results. 

   Finally, another important finding of this chapter is that the probability density 

function of the bearing capacity can be well-approximated by a shifted 

lognormal distribution. In fact this function matches well not only the mean 

value and the standard deviation of the bearing capacity, as the standard 

lognormal function does, but also the skewness coefficient. In this way the final 

approximation is more precise and reliable. 
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Chapter 6 
 

The Advanced Point Estimate Method 

(APEM) for the reliability analysis 

Introduction 
The goal of a reliability-based design is the evaluation of the probability that a 

system is safe or unsafe over its expected lifetime, identified numerically 

respectively by the reliability index or the failure probability.  

   In recent years different attempts (e.g.: CHERUBINI, 1998; GRIFFITHS, 

FENTON and MANOHARAN, 2002; HONJO and AMATYA, 2005) have been 

made to estimate the reliability of the bearing capacity of shallow foundations 

using probabilistic analyses.  

   The results of the present chapter are meant as a further contribution to the 

probabilistic approaches, by which attempts are made to provide a rational 

framework to include the relevant uncertainties of a certain geotechnical 

problem consistently and to evaluate the corresponding failure probability. 

   For the reliability study only benchmark 2 with uncorrelated and negatively 

correlated soil parameters is considered, because this is of major interest from an 

engineering point of view. 

 

6.1 Basic problems concerning the evaluation of failure probabilities 

It was seen in chapter 2 that, traditionally, the reliability of engineering systems 

is achieved through the definition of a safety factor, adopting some conservative 

assumption on the available strength of the system and on the lifetime maximum 

load. However, this approach can not properly take into account uncertainties 

related to the system resistance and load. Consequently, a reliability level can 

not be assessed quantitatively. Thus reliability can only be assured in terms of 

probability, by modelling the system resistance and load as random variables.  

   Unfortunately, for most people it is difficult to interpret the meaning of a 

failure probability, especially if it is a small value. Since many parameters are 
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not usually considered in order to simplify probabilistic analyses, the computed 

failure probability could only be seen as a lower bound to the absolute 

probability of failure. A more elaborate probabilistic risk analysis would be 

needed to evaluate the absolute risk due to all unforeseen events. However, for 

most practical problems, the estimate of relative failure probabilities is sufficient 

to define the inability of a system to perform adequately.  

   In chapter 2 it has been shown that, considering the resistance and the load of 

a certain engineering system as random variables together with the 

corresponding probability density functions, the failure probability can be 

estimated from the convolution integral (2.22). This calculation requires the 

knowledge of the joint distribution shape of the input variables.  

   However, in many cases, the available information may only be sufficient to 

evaluate the mean value and the standard deviation of load and resistance, but 

not the skewness coefficient, which describes the shape of a certain density 

function better. Additionally, even knowing the form of the required 

distributions, the exact evaluation of the failure probability using the integral 

(2.22) may be difficult. A practical alternative could be to consider equivalent 

normal distributions as approximation of the real density function. 

   In the next section the results of the reliability analysis of the bearing capacity 

problem by applying different probabilistic methods are presented, discussed 

and compared. Afterwards, the enhancement of the Point Estimate Method, here 

named Advanced PEM, or shortly APEM, is described. This approach 

represents the PEM improvement to solve the problem of evaluating low failure 

probabilities when a significant divergence exists between Monte Carlo results 

and the probability density function assumed as an approximation of the 

traditional PEM statistical values. Or, more specifically, when a high difference 

between the skewness coefficients of these methods exists. 

   Not all the probabilistic methods applied provide information regarding 

lifetimes or time-based probabilities of failure. In order to achieve a time-based 

reliability analysis other input variables should have a time basis such as some 

time random event. In this analysis the input soil variables c´ and tanϕ´ are 

considered time independent and the failure probability is referenced to the 

lifetime of the strip footing. 

 

6.2 Reliability analysis of the bearing capacity problem 

In this section the results of the reliability analysis of benchmark 2, considering 

both uncorrelated (ρc´tanϕ´ = 0) and negatively correlated (ρc´tanϕ´ = -0.6) soil 

variables, are illustrated and compared. The limitations of every approach in 
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estimating the failure probability of the bearing capacity are discussed. Finally, 

the necessity of an enhancement of the traditional PEM is stressed. This new 

method proves to be a more competitive alternative to MCS, especially when a 

large number of random variables has to be considered and when small failure 

probabilities need to be calculated. 

 

6.2.1 Failure probability from Monte Carlo simulations 

It has been seen in chapter 3 that, by applying the Monte Carlo method, the soil 

variables c´ and tanϕ´ are simulated according to their known probability 

density function and the system reliability is evaluated deterministically for each 

simulation.  

   Knowing all the bearing capacity values obtained by thousands of Monte 

Carlo simulations, the failure probability can then be evaluated as 

 

N

n
P f

f
=            (6.1) 

 

where nf is the number of trials for which failure occurs and N is the total 

number of realisations. The number nf depends on a certain value of the bearing 

capacity, for which a target failure probability should be evaluated. In this work 

the estimated mean value is considered as reference of the ultimate (i.e. at 

failure) bearing capacity value for finding the number nf.  

   The mean value should then be divided by the safety factor FS to evaluate the 

allowable bearing capacity value for the system safety. More precisely it should 

be 

 

FS
qwhichfortrialsofnumbern fq

ff

µ
<=      (6.2) 

 

For this work a factor of safety FS=2 is assumed, as usual for strip footings. 

   The failure frequency nf, however, gives an approximation of the target failure 

probability. If more accurate values are required then the number of simulations 

has to be increased. 

   In Tables 6.1, 6.2 and 6.3 the failure probability for 1000, 10000 and 100000 

MCS for benchmark 2 are reported. Two cases with correlation coefficient 

ρc´tanϕ´ = 0 and ρc´tanϕ´ = -0.6 are considered.  
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0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

306.451 kN/m2

297.327 kN/m2

3485

139

0.03485

0.00139

100000 Monte Carlo Simulations

PfnffqµCorrelation

0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

306.451 kN/m2

297.327 kN/m2

3485

139

0.03485

0.00139

100000 Monte Carlo Simulations

PfnffqµCorrelation

0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

306.805 kN/m2

297.848 kN/m2

496

14

0.0496

0.0014

10000 Monte Carlo Simulations

PfnffqµCorrelation

0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

306.805 kN/m2

297.848 kN/m2

496

14

0.0496

0.0014

10000 Monte Carlo Simulations

PfnffqµCorrelation

 

Table 6.1: Failure probability from 1000 MCS for benchmark 2 with  

                           uncorrelated and correlated soil parameters 

 

 

 

 

 

 

 

 

 

 

Table 6.2: Failure probability from 10000 MCS for benchmark 2 with  

                          uncorrelated and correlated soil parameters 

 

 

 

 

 

 

 

 

 

 

Table 6.3: Failure probability from 100000 MCS for benchmark 2 with  

                         uncorrelated and correlated soil parameters 

 

 

The corresponding bearing capacity mean value and the number of trials nf, 

which give failure, are also indicated. It is evident that the failure probability 

decreases with increasing the number of simulations, obtaining the highest 

accuracy at 100000 simulations. 
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Pf (1000 MCS)ϕ′′
ρ tanc Pf (10000 MCS) Pf (100000 MCS)

0 0.051 0.0496 0.0348

-0.1 0.030 0.0371 0.0214

-0.2 0.021 0.0292 0.0169

-0.3 0.014 0.0194 0.0122

-0.4 0.005 0.0125 0.0078

-0.5 0.003 0.0056 0.0044

-0.6 0.002 0.0014 0.0014

-0.7 0 0.0001 0.0002

-0.8 0 0 0

-0.9 0 0 0

-1 0 0 0

Pf (1000 MCS)ϕ′′
ρ tanc Pf (10000 MCS) Pf (100000 MCS)

0 0.051 0.0496 0.0348

-0.1 0.030 0.0371 0.0214

-0.2 0.021 0.0292 0.0169

-0.3 0.014 0.0194 0.0122

-0.4 0.005 0.0125 0.0078

-0.5 0.003 0.0056 0.0044

-0.6 0.002 0.0014 0.0014

-0.7 0 0.0001 0.0002

-0.8 0 0 0

-0.9 0 0 0

-1 0 0 0

To define the error referred to an estimated failure probability or, more 

essentially, the number of Monte Carlo simulations necessary to obtain a certain 

accuracy, the formula (6.3) after VRIJLING (1997) could be applied 

 

f

f

PN

P1
KE

⋅

−
⋅=           (6.3) 

 

where Pf is the estimated failure probability, N is the required number of 

simulations, K is the accuracy and E is the percent error associated with N.  

   Considering the failure probabilities of Table 6.2 for 10000 simulations with 

ρc´tanϕ´ = 0 and ρc´tanϕ´ = -0.6, the corresponding percent error found applying 

formula (6.3) with an accuracy of 95% will be, respectively, 4.2% and 25%. On 

the other hand, formula (6.3) can also be used to evaluate the number of 

simulations required for a higher accuracy. As an example, a percent error of 

10% is desired to get the same failure probability of Table 6.2 for the case with a 

negative correlation. Thus the number of simulations should be at least 

N ≈64000. 

   Table 6.4 shows how the failure probability of the bearing capacity is 

influenced by the correlation coefficient. These results show that much lower 

probabilities of failure are found when the correlation coefficient between c´ and 

tanϕ´ decreases from 0 to –1.0. In particular, for higher negative values of the 

correlation coefficient the system is apparently safe with Pf = 0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4: Influence of the correlation coefficient on the failure probability for  

                    benchmark 2 
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These facts are also shown in Fig. 6.1, where the failure probability is plotted 

against the correlation coefficient of the soil strength parameters for different 

Monte Carlo realisations. 

   If a certain density function is assumed as an approximation to plot MCS 

results, as shown in Fig. 6.2, then different failure probabilities can be found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Failure probability versus correlation coefficient for benchmark 2 

 

 

 

 

 

 

 

 

 

 

 

Table 6.5: Failure probability of qf assuming a standard lognormal and a shifted  

                  lognormal distribution as approximation of 10000 MCS with  

                  ρc´tanϕ´ = 0 and ρc´tanϕ´ = -0.6 
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Figure 6.2: Unsafe regions of the bearing capacity assuming a standard  

                           lognormal and a shifted lognormal distribution for 10000 MCS  

                           with ρc´tanϕ´ = 0 

 

 

Table 6.5 shows the failure probability values found by assuming a standard 

lognormal and a shifted lognormal distribution for 10000 MCS. The shifted 

lognormal distribution is the best choice, because it also matches the skewness 

coefficient of the bearing capacity.  

   In Table 6.5 it can be seen that the lowest values are those derived by the 

integration over the unsafe region described by the shifted lognormal 

distribution. This difference is clearly highlighted in Fig. 6.2, where the unsafe 

region given by the standard lognormal distribution is larger than that of the 

shifted lognormal density function. 

   The advantage of the Monte Carlo methodology is that it can be applied not 

only to linear, but also to non-linear performance functions, as in the case of the 

bearing capacity problem. 

   However, when the target failure probability is very small and a correlation 

between the input variables is taken into account, the number of simulations 

required to obtain an accurate result can be so large that it renders the 

application impractical.  
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6.2.2 Failure probability from FOSM and SOSM methods 

As already mentioned in chapter 4, the FOSM and SOSM methods provide 

approximations only for the mean value and the standard deviation. Thus, one 

must assume a certain distribution function for plotting the bearing capacity 

results beforehand in order to estimate any failure probability. This can then be 

evaluated by integrating over the unsafe region of the assumed bearing capacity 

density function. In this way estimates of failure probabilities, especially with 

low values of Pf, are highly sensitive to the assumed distribution. 

   In Fig. 6.3 it can be seen the unsafe region of the bearing capacity given by 

assuming a standard lognormal distribution for FOSM results of benchmarks 2 

considering uncorrelated soil variables. This region is found by taking into 

account values of the bearing capacity lower than the mean value divided by the 

safety factor FS=2.  

   In Tables 6.6 the failure probability values of the bearing capacity assuming a 

standard lognormal distribution to approximate FOSM and SOSM results, 

considering both uncorrelated and negatively correlated soil parameters are 

listed. If a negative correlation is considered much lower failure probabilities are 

found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Unsafe region of the bearing capacity assuming a standard   

                           lognormal distribution for FOSM results with ρc´tanϕ´ = 0 
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When there is no information on the shape of the probability distribution, as in 

the case of FOSM and SOSM methods, for which no skewness is provided, 

another way of evaluating the reliability of the bearing capacity is to consider a 

normal distribution and then calculate the reliability index, which only depends 

on the first two moments of the performance function. Thus Eq. (2.24) can be 

easily applied, considering the limit state function Z as 

 

2
qZ fq

f

µ
−=           (6.4) 

 

where qf represents the resistance of the system, or ultimate bearing capacity, as 

a random variable with a certain probability density function. While µqf/2 is the 

deterministic load, given by the mean value of the bearing capacity divided by 

the safety factor FS=2. For a more detailed description about the ultimate 

bearing capacity and the corresponding safety factor the author refers to 

Appendix A. 

   Instead of considering the load deterministically, it can also be considered as a 

variable following a Dirac Delta function, given by 
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It has been shown that, when the soil parameters are negatively correlated, then 

the failure probability is lower than when uncorrelated variables are considered. 

Thus the reliability index is obviously higher, as this parameter is inversely 

related to the failure probability.  

   However, if an appropriate form of the bearing capacity density function is 

prescribed, the corresponding failure probability can be estimated by 

transforming this function into an equivalent normal distribution using special 

transformation formulas, such as the well-known Rosenblatt´s transformation 

(ROSENBLATT, 1952). 

   Table 6.7 shows the reliability indeces of the bearing capacity by assuming a 

standard lognormal distribution for FOSM and SOSM results for uncorrelated 

soil parameters and for a negative correlation of –0.6. These values are obtained 

using Eq. (2.25), valid for a standard lognormal distribution and considering the 

limit state function Z as given by Eq. (6.4). The failure probability can then be 
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0.0516 0.0434

0.005 0.0043

lognormal distribution approximation 

Correlation Pf(FOSM) Pf(SOSM)

0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

0.0516 0.0434

0.005 0.0043

lognormal distribution approximation 

Correlation Pf(FOSM) Pf(SOSM)

0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

1.63 1.71

2.58 2.63

lognormal distribution approximation 

Correlation   (FOSM)   (SOSM)

0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

β β

estimated by using Eq. (2.23). The results found are exactly those of Tables 6.6 

and 6.7, thus confirming the failure probabilities estimated by integrating over 

the unsafe region of the bearing capacity plotted in Fig. 6.3. 

 

 

 

 

 

 

 

 

 

 

Table 6.6: Failure probability of qf assuming a standard lognormal distribution  

                  for FOSM and SOSM results considering ρc´tanϕ´ = 0 and ρc´tanϕ´ = -0.6 

 

 

 

 

 

 

 

 

 

 

Table 6.7: Reliability index of qf assuming a standard lognormal distribution for  

                  FOSM and SOSM results considering ρc´tanϕ´ = 0 and ρc´tanϕ´ = -0.6 

 

 

6.2.3 Failure probability from FORM 

The First Order Reliability Method is also applied to evaluate the reliability of 

the bearing capacity problem. 

   As already seen in chapter 3, an iterative solution is required for the FORM to 

find the design point useful to identify the most probable combination of the 

input variables at failure. This procedure can lead to time consuming 

convergence problems when highly non-linear limit state functions are 

considered. However for the bearing capacity problem the iterative process 

converges rapidly, because only two input random variables are involved. 
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0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

β

Gaussian normal distribution approximation 

0.0109

  (FORM)

1.63

2.3

Correlation Pf(FORM)

0.0515

 

 

 

 

 

 

 

Table 6.8: Failure probability and reliability index of qf from VaP application,  

                   assuming a  normal distribution for FORM results with ρc´tanϕ´ = 0  

                   and ρc´tanϕ´ = -0.6 

 

 

For FORM application the soil cohesion, which is lognormally distributed, 

needs to be transformed into a standard normal variable with zero mean and 

standard deviation equal to unity, as, for example, described in VRIJLING 

(1997). In this publication, the analytical “modus operandi” of the FORM is 

reported. Results derived by the analytical procedure are then compared with 

those of the numerical optimisation routine of the VaP 2.2 software, already 

mentioned in chapter 3. 

   An advantage of the numerical method is that it offers the possibility to input 

different correlation values directly in the form of a matrix, thus overcoming the 

difficulties of the analytical procedure.  

   In addition, the level of accuracy of the VaP is very high. This is set at 10
-6

. 

This value can also be changed according to the accuracy required. 

   Because of the higher accuracy of the numerical procedure, only FORM 

results derived by the VaP application are listed in Table 6.8. As the FORM 

requires the transformation of a non-normal distribution into a Gaussian 

distribution, the results are referred only to this function.  

   Compared to the case with ρc´tanϕ´ = 0, an almost 80% lower failure probability 

and a 30% higher reliability index are found when a negative correlation of –0.6 

between cohesion and friction angle is considered. 

 

6.2.4 Failure probability from PEM 

It should be pointed out again that, contrary to the FOSM and SOSM methods, 

the PEM also provides the skewness coefficient of the bearing capacity. 

   This way it is possible to have an idea of the symmetry, or asymmetry, of the 

bearing capacity density function. 
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The results reported in Tables 5.4 and 5.7 show a positive skewness coefficient 

found using the PEM. Therefore a Gaussian distribution will not be assumed for 

approximating PEM results. In Fig. 6.4 the PEM results are plotted assuming 

both the standard lognormal and the shifted lognormal distributions.  

   The failure probability and the reliability index of the bearing capacity, 

evaluated considering the two approximation functions, can be therefore listed 

in Tables 6.9 and 6.10 and compared. The failure probability is estimated by 

integrating over the unsafe region of the assumed bearing capacity density 

functions. The reliability index is obtained by applying Eq. (2.25) for a 

lognormal distribution, where the limit state function Z is given by Eq. (6.4). 

   In Fig. 6.4 it is clear that the unsafe region given by the standard lognormal 

distribution is smaller than that given by the shifted lognormal distribution. This 

difference is confirmed by the failure probability and the reliability index values 

of Tables 6.9 to 6.10, when both uncorrelated and negatively correlated input 

variables are considered. 

   In fact, the highest failure probabilities are those referred to the shifted 

lognormal distribution, for which the lowest reliability index values obviously 

correspond. On the contrary, the lowest failure probabilities and the highest 

reliability index values are those related to the standard lognormal distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Unsafe regions of the bearing capacity assuming a standard  

                         lognormal and a shifted lognormal distribution for PEM results  

                           with ρc´tanϕ´ = 0 



6.2  Reliability analysis of the bearing capacity problem 

115 

0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

β

standard lognormal distribution approximation 

Correlation Pf(PEM)   (PEM)

0.0484 1.66

0.0052 2.56

0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

β

standard lognormal distribution approximation 

Correlation Pf(PEM)   (PEM)

0.0484 1.66

0.0052 2.56

0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

β

shifted lognormal distribution approximation 

Correlation Pf(PEM)   (PEM)

0.0651 1.56

0.0185 2.27

0tan =ρ
ϕ′′c

6.0tan −=ρ
ϕ′′c

β

shifted lognormal distribution approximation 

Correlation Pf(PEM)   (PEM)

0.0651 1.56

0.0185 2.27

 

 

 

 

 

 

 

 

 

Table 6.9: Failure probability and reliability index of qf assuming a standard  

                     lognormal distribution for PEM results considering ρc´tanϕ´ = 0 and  

                     ρc´tanϕ´ = -0.6 

 

 

 

 

 

 

 

 

 

 

 

Table 6.10: Failure probability and reliability index of qf assuming a shifted  

                       lognormal distribution for PEM results considering ρc´tanϕ´ = 0 and  

                       ρc´tanϕ´ = -0.6 

 

 

6.2.5 Comparison of failure probabilities and necessity of a new approach 

The aim of this section is to compare the failure probabilities of the bearing 

capacity previously estimated using Monte Carlo, PEM, FORM, FOSM and 

SOSM methods.  

   It is important to stress again that the MCS results do not need to be 

approximated by a certain probability density function, because this method 

already provides both the shape of the distribution curve and the failure 

probability for the bearing capacity problem. However different probability 

functions are considered here to show that one of these curves can more 

effectively approximate the results of the probabilistic methods applied. 
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The bearing capacity values representing the right extremes of the unsafe 

regions of the assumed probability density function, for which the target failure 

probability should be evaluated are listed in Table 6.11. As already mentioned, 

these values are estimated by dividing the bearing capacity mean values, found 

by applying different probabilistic methods, by a safety factor of 2. They are all 

very similar. The PEM values, however, are closer to those of MCS. Of course 

FOSM and FORM values are exactly the same, because they are found by 

applying the same formula, being the FORM an enhancement of FOSM. 

   Nevertheless, different right extreme values could be chosen to evaluate the 

failure probability, depending on the reliability level that one wants to achieve 

for the bearing capacity problem. In this section, only the values listed in Table 

6.11 are taken into account.  

The values 200 kN/m
2 

and 250 kN/m
2
 will be further considered for evaluating 

the failure probability of the bearing capacity by applying the advanced PEM. 

For more details, the author refers to section 6.3. 

   The unsafe regions found considering the right extremes of Table 6.11 and 

assuming a Gaussian normal, a standard lognormal and a shifted lognormal 

distribution as approximations of the bearing capacity results are plotted in Figs. 

6.5, 6.6 and 6.7. These diagrams are drawn for both uncorrelated and negatively 

correlated soil parameters.  

   In particular, in Figs. 6.5 and 6.6 the unsafe regions referred to the results 

derived from all the probabilistic methods analysed, except for the FORM, are 

shown. The iterative procedure of the FORM method does not provide proper 

mean values and standard deviations of the bearing capacity (i.e. they vary 

depending on the choice of the design point), which can be compared with the 

statistical values of other methods. Nevertheless it gives the failure probability 

and the reliability index. In Fig. 6.7 only the MCS and PEM results are 

considered in the plot of the unsafe regions of the bearing capacity by assuming 

a shifted lognormal function. This is because the FOSM, SOSM and FORM 

methods do not provide any skewness values. 

   From these diagrams it is possible to see how the unsafe region decreases 

when a negative correlation is taking into account, especially for the MCS 

results approximated by a shifted lognormal distribution in Fig. 6.7. 

   This fact is more clear when Tables 6.12, 6.13 and 6.14 are examined. Here 

the failure probability evaluated by considering all probabilistic approaches and 

all assumed probability distributions are shown.  

The analysis of the values of Tables 6.12, 6.13 and 6.14 illustrates, first of all, 

the importance of the correlation coefficient between c´ and tanϕ´ with respect 

to the failure probability (or conversely to the reliability index).  
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In fact when a negative correlation is considered in the calculation very different 

values of Pf, compared to the case with ρc´tanϕ´ = 0, are obtained, which are lower 

when ρc´tanϕ´ = -0.6. In other words, if the correlation is not considered, then the 

failure probabilities are higher than those actually observed when a negative 

correlation is imposed.  

   The real failure probabilities found by applying 10000 Monte Carlo 

simulations are those of Table 6.2. The fictitious failure probabilities in the 

hypothesis of assuming a certain probability distribution for the bearing capacity 

results of MCS are listed in Tables 6.12, 6.13 and 6.14.  

   An idea of the accuracy given by assuming different probability density 

functions when compared to the real values of the failure probability found by 

MCS is given in Table 6.15. 

 

 

 

 

 

 

 

 

 

 

Table 6.11: Right extreme values of the bearing capacity unsafe regions for  

                        which the failure probability is evaluated 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Unsafe regions of qf assuming a normal distribution for different  

                      probabilistic methods considering ρc´tanϕ´ = 0 and ρc´tanϕ´ = -0.6 
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From this Table, it is clear that the fictitious failure probabilities found by 

assuming a shifted lognormal distribution are more accurate than when a normal 

and a standard lognormal distributions are considered. This is an additional good 

reason for choosing the shifted lognormal distribution as an approximation of 

the bearing capacity results. In fact, the fictitious failure probability of MCS 

increases greatly when a Gaussian distribution is taken into account, thus 

showing how a probabilistic result can deviate from reality depending on the 

assumption considered. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Unsafe regions of qf assuming a standard lognormal distribution for  

                    different probabilistic methods considering ρc´tanϕ´ = 0 and  

                    ρc´tanϕ´ = -0.6 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Unsafe regions of qf assuming a shifted lognormal distribution for  

                     different probabilistic methods considering ρc´tanϕ´ = 0 and  

                     ρc´tanϕ´ = -0.6 
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A comparison of the FORM results of Table 6.12 with the MCS failure 

probabilities reported in Table 6.2 shows that the FORM method, based on the 

assumption of normal input variables, gives higher values than MCS. Two main 

causes of this discrepancy are: firstly, the bearing capacity is highly non-linear 

with tanϕ´, which is one of the input variables that play an important role in this 

analysis. In fact, it is well-known that a linear approximation in the FORM 

design point causes some serious error in the estimation of the reliability index, 

thus influencing also the value of the failure probability. Secondly, the input 

variable cohesion follows a distribution, which is far from the normal 

distribution, thus introducing additional uncertainties in the final results when 

this is transformed to a normal variable. 

 

 

 

 

 

 

 

 

 

 

 

Table 6.12: Failure probability of qf assuming a normal distribution for different  

                   probabilistic methods considering ρc´tanϕ´ = 0 and ρc´tanϕ´ = -0.6 

 

 

 

 

 

 

 

 

 

 

 

Table 6.13: Failure probability of qf assuming a standard lognormal distribution  

                    for different probabilistic methods considering ρc´tanϕ´ = 0 and  

                    ρc´tanϕ´ = -0.6 
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Table 6.14: Failure probability of qf assuming a shifted lognormal distribution  

                     for different probabilistic methods considering ρc´tanϕ´ = 0 and  

                     ρc´tanϕ´ = -0.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.15: Accuracy of the failure probability values found by assuming a  

                        normal, a standard lognormal and a shifted lognormal  

                        distribution to approximate MCS results 

 

 

One should therefore be very careful in applying the approximation procedure of 

FORM in the reliability analysis of a structure that has a highly non-linear 

performance function, such as a shallow foundation design. This fact is also 

valid for FOSM and SOSM methods, as already stressed in chapter 3. 

   When a standard lognormal distribution is considered, it seems to be that the 

failure probabilities evaluated using the PEM are apparently closer to MCS 

values of Table 6.2, especially for the case with uncorrelated soil parameters.  

   However, it has been previously shown that the shifted lognormal distribution 

approximates MCS results best. Then only the failure probabilities referred to 
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this function should be taken into account. These values are listed in Table 6.14, 

where PEM failure probabilities are given together with the fictitious ones of 

MCS. The PEM, as a direct non-iterative method, overcomes the convergence 

problem of FORM, thus being a more promising alternative. Unfortunately, in 

this case the PEM results are even higher than those of FORM method, when 

compared with the real failure probability values of MCS, shown in Table 6.2.  

In order to cope with the shortcoming of the PEM in evaluating low failure 

probabilities, a new method is proposed, referred to as the advanced PEM. The 

methodology of the proposed approach is described in detail in the next section. 

 

6.3 Application of the Advanced PEM to the bearing capacity problem 

In the previous section the necessity of developing a new probabilistic method is 

stated. The aim of this section is to describe this new methodology, called 

Advanced Point Estimate Method, or shortly APEM, which is not yet available 

in the literature, and to show its application to the bearing capacity problem. 

 

6.3.1 Short description of the Advanced PEM methodology 

The basic idea of the Advanced PEM is to focus on the critical values of the 

input data, i.e. cohesion and friction angle, which could cause bearing capacity 

failure. The reduced intervals of the soil parameters can be found using an 

iteration procedure or by experts opinion.  

   Then the PEM is applied to these reduced intervals and the bearing capacity 

statistical values are plotted in a graph by assuming the well-known shifted 

lognormal distribution. It is then possible to evaluate low failure probabilities of 

the bearing capacity more precisely. These values are then compared with the 

Monte Carlo failure probabilities of Table 6.2 to verify the accuracy of the 

APEM. 

 

6.3.2 The reduced intervals of the input soil parameters 

In chapter 4 it has been seen that the effective soil cohesion and friction angle 

are described respectively by a standard lognormal and a normal distribution 

with their corresponding statistical values, as shown in Figs. 4.1(a), (b) and 4.2.  

   For the new probabilistic method, i.e. the APEM, a reduced interval of both 

parameters should be considered. These intervals contain values of the cohesion 

and friction angle, which can most probably cause bearing capacity failure.  
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Figure 6.8: Reduced intervals of the soil input variables 

 

 

There are two different ways of establishing these ranges, either by choosing 

them on the basis of experts knowledge or using an iteration procedure: 

   - “experts” are geotechnical engineers who know the behaviour of the soil 

layer in question, thus being able to better judge which values of the shear 

parameters can be more dangerous for the stability of the strip footing 

considered; 

- the iteration procedure can be represented by an algorithm which considers 

different combinations of soil cohesion and friction angle values and finding 

those which give failure of the bearing capacity problem. 

 

For this study an algorithm, described in appendix C, has been implemented in 

MATLAB
® 

Version7.0 to determine the reduced intervals of the soil parameters 

c´ and tanϕ´.
 

   It has been observed that the cohesion has a negligible influence on the 

bearing capacity compared to the friction angle. For this reason a constant range 

of 0 - 3 kN/m
2
 is considered for this soil parameter. While for the friction angle 

the algorithm finds a value of 21°, i.e. tanϕ´≈0.384, if the right extreme value of 

the unsafe region of the bearing capacity is considered to be equal to its mean 

value divided by a safety factor 2. The reduced intervals are then plotted in Fig. 

6.8. The corresponding statistical values are respectively 

 

- for c´:     08.0;m/kN65.0;m/kN87.1
redc

2

redc

2

redc
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where “red” means “reduced intervals”. Comparing these values to those of 

Figs. 4.1(a), (b) and 4.2, the new ones are obviously different. The mean values 

and standard deviations are lower and the skewness coefficient negative because 

of the shape of the reduced probability density functions of the soil input data. 

 

6.3.3 Application of the PEM to the reduced intervals of the soil parameters 

As in chapter 5, the PEM is now applied step by step to the reduced intervals of 

c´ and tanϕ´ of Fig. 6.8, considering first of all no correlation between them, 

then a correlation of -0.6. 

 

6.3.3.1 Case with ρρρρc´redtanϕϕϕϕ´red = 0 

 

1. The relationship (4.6) between the dependent variable qf and the input soil 

variables tanϕ´ and c´ is considered. 

 

2. Then the sampling point locations for tanϕ´ and c´ are computed. First of all 

the standard deviation units are evaluated for both soil parameters by applying 

Eqs. (3.6), thus leading to 
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Figure 6.9: Sampling point locations and weights of the reduced soil parameters  
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Hence the corresponding sampling point locations can be evaluated using Eqs. 

(3.7), which give 

 

309.0redtan =ϕ′
−

 

368.0redtan =ϕ′
+

 
2

m/kN503.2red´c =
+

 
2

m/kN192.1red´c =
−

. 

 

3. The weights Pi, giving each of the four point estimates of soil parameters 

considered as single random variables, are then determined using Eq. (3.8) valid 

for a single random variable, 
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=
+ϕ′

 

217.0P
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−ϕ′
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redc

=
+′

 

481.0P
redc

=
−′

. 

 

Figure 6.9 shows the locations of the sampling points of both soil parameters 

tanϕ´ and c´. The corresponding weights are also shown in this diagram.  Then 

the associated weights need to be found, considering the input parameters as 

multiple uncorrelated variables. For this aim Eq. (3.13) is here applied, which 

gives the following values 
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113.0PPP
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. 

 

4. The value of the bearing capacity at each sampling point can then be 

evaluated. The results are shown in Table 6.16. 
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0.113

2.503 kN/m
2 0.368 148.705 kN/m

2

1.192 kN/m
2 0.368 129.004 kN/m

2

2.503 kN/m
2 0.309 106.494 kN/m

2

0.105 1.192 kN/m
2 0.309 90.153 kN/m

2

0.406

0.376

0.113

2.503 kN/m
2 0.368 148.705 kN/m

2

1.192 kN/m
2 0.368 129.004 kN/m

2

 

 

 

 

 

 

 

 

 

 

Table 6.16: Associated weights, sampling points and bearing capacity values for  

                   the reduced intervals of tanϕ´ and c´ 

 

 

5. Now the mean value, variance and skewness coefficient of the bearing 

capacity can be determined using Eqs. (3.15), (3.16) and (3.17), where n = 2. 

The results of the statistical estimates of qf predicted by PEM considering small 

values of the input soil parameters are presented in Table 6.17. 

 

 

 

 

 

 

 

Table 6.17: Statistical values of qf predicted by PEM considering reduced  

                         intervals of the uncorrelated soil parameters 

 

 

The bearing capacity results reported in Tables 6.16 and 6.17 are clearly lower 

than those of Tables 5.3 and 5.4, due to the consideration of smaller values of 

the cohesion and friction angle. In addition, the skewness coefficient is negative, 

thus the probability density function of the bearing capacity should be 

negatively skewed. This distribution should be at the same time able to 

approximate the statistical results of Table 6.17 best and to give a failure 

probability similar to the MCS value of Table 6.2 for uncorrelated soil 

parameters.  
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±±
P

±
ϕ′tan ±±fq

±
′c

0.163 2.503 kN/m
2 0.368 148.956 kN/m

2

0.602 1.192 kN/m
2 0.368 129.244 kN/m

2

0.181 2.503 kN/m
2 0.309 106.695 kN/m

2

0.042 1.192 kN/m
2 0.309 90.342 kN/m

2

±±
P

±
ϕ′tan ±±fq

±
′c

0.163 2.503 kN/m
2 0.368 148.956 kN/m

2

0.602 1.192 kN/m
2 0.368 129.244 kN/m

2

0.181 2.503 kN/m
2 0.309 106.695 kN/m

2

0.042 1.192 kN/m
2 0.309 90.342 kN/m

2

0.163 2.503 kN/m
2 0.368 148.956 kN/m

2

0.602 1.192 kN/m
2 0.368 129.244 kN/m

2

0.181 2.503 kN/m
2 0.309 106.695 kN/m

2

0.042 1.192 kN/m
2 0.309 90.342 kN/m

2

The reason of choosing this particular density function the author refers to 

section 6.3.4, where a shifted lognormal distribution will be assumed to 

approximate the reduced bearing capacity results. 

 

6.3.3.2 Case with ρρρρc´redtanϕϕϕϕ´red = -0.6 

When negatively correlated soil parameters are considered then the steps 1 to 3 

lead to the same results as the case with uncorrelated soil parameters. The only 

difference is that the associated weights change because of the contribution of 

the correlation coefficient –0.6. The formula of Christian (3.13) can be easily 

applied here, thus giving 

 

( ) 163.06.01PPP
redcredtan

=−⋅⋅=
+′+ϕ′++

 

( ) 602.06.01PPP
redcredtan

=+⋅⋅=
−′+ϕ′−+

 

( ) 181.06.01PPP
redcredtan

=+⋅⋅=
+′−ϕ′+−

 

( ) 042.06.01PPP
redcredtan

=−⋅⋅=
−′−ϕ′−−

. 

 

4. The values of the bearing capacity at each sampling point are reported in 

Table 6.18. 

 

 

 

 

 

 

 

 

 

 

 

Table 6.18: Associated weights, sampling points and bearing capacity values for  

                   the reduced intervals of tanϕ´ and c´ with ρc´redtanϕ´red = -0.6 

 

 

5. Now the statistical values of the bearing capacity can be determined using 

Eqs. (3.15), (3.16) and (3.17), where n = 2. Then the results predicted by PEM 

considering small values of the input soil parameters are shown in Table 6.19. 

   The bearing capacity mean value and standard deviation reported in Tables 

6.19 are slightly lower than those of Table 6.17, due to the consideration of a 
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fqµ
fqσ

fqCOV
fqν

125.045 kN/m
2

14.656 kN/m
2 0.122 -0.190

fqµ
fqσ

fqCOV
fqν

125.045 kN/m
2

14.656 kN/m
2 0.122 -0.190125.045 kN/m

2
14.656 kN/m

2 0.122 -0.190

negative correlation between the soil parameters. On the other hand the 

skewness coefficient is higher, thus the bearing capacity density function should 

be less left skewed than for the case with ρc´redtanϕ´red = 0.  

 

 

 

 

 

 

 

Table 6.19: Statistical values of qf predicted by PEM considering reduced  

                         intervals of the soil parameters with ρc´redtanϕ´red = -0.6 

 

 

This fact will be seen in section 6.3.4, where a shifted lognormal distribution 

will be assumed as approximation of the bearing capacity statistical values. A 

comparison of the results reported in Tables 6.17 and 6.19 will be also shown 

graphically. 

 

6.3.4 Shifted lognormal approximation of the bearing capacity results  

In previous sections reduced intervals of c´ and tanϕ´, which can cause bearing 

capacity failure, have been considered and new statistical values of the bearing 

capacity have been evaluated, thus obtaining the results of Tables 6.17 and 6.19, 

for uncorrelated as well as for negatively correlated soil parameters. 

   Now it is necessary to choose a probability density function which can 

approximate these new results best and, at the same time can lead to failure 

probability values similar to those found by applying the Monte Carlo approach. 

   In chapters 4 and 5 it has been shown that, compared with other well-known 

probability distributions, the shifted lognormal distribution matches very well 

the results of PEM and MCS for the bearing capacity problem. Hence this 

function will be assumed here to approximate the reduced mean value, standard 

deviation and skewness coefficient of the bearing capacity and to evaluate the 

corresponding failure probability. 

   The aim of this section is to describe the procedure adopted to find the three 

parameters of the shifted lognormal distribution, which lead to a better 

approximation of the results listed in Tables 6.17 and 6.19 and to failure 

probabilities similar to those of 10000 Monte Carlo simulations, considering 

different values of the right extreme of the unsafe region.  
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It will be seen that, independent of Monte Carlo results, this procedure can also 

be useful to find different combinations of the shifted lognormal parameters 

which give different target failure probabilities, depending on the reliability 

level to be achieved. 

 

6.3.4.1 Procedure to find the shifted lognormal parameters 

In Figs. 5.10 and 5.11 bearing capacity results have been compared considering 

the entire curve of the shifted lognormal distribution for PEM and MCS 

estimates plotted pointwise. Now a reduced interval of the bearing capacity will 

be taking into account to compare the results of Tables 6.17 and 6.19 and to 

evaluate the corresponding failure probability. 

   For this reason one needs to evaluate the three parameters x0, µln(X) and σln(X) 

of the shifted lognormal distribution that approximate the reduced results of the 

bearing capacity best. As only small values of the bearing capacity are of 

interest to estimate the target failure probability, attention will only be paid to 

the shape of the curve describing the unsafe region for this reduced interval. 

   To find the parameters already mentioned the following procedure, described 

stepwise, is adopted: 

 

1. The shifted lognormal distribution fX(x) described by Eq. (2.15), depending 

on the three parameters x0, µln(X) and σln(X), is considered. For practical reason 

this function is shown again below. 
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2. The mathematical definition of mean value, variance and skewness coefficient 

given, respectively, by Eqs. (2.4), (2.5) and (2.9), are taken into account to link 

up the reduced statistical values of the bearing capacity, reported in Tables 6.17 

and 6.19, to the shifted lognormal distribution, as described by the following 

equations: 

 

( )

( )∫

∫

+

+

⋅

=µ
m

0

m

0

f x

x

X

x

x

X

redq

dxxf

dxxfx

                  (6.5) 
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3

redq

redq
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       (6.7) 

 

In Eqs. (6.5), (6.6) and (6.7), x represents the variable “bearing capacity” 

depending on the soil parameters c´ and tanϕ´; fX(x) is the probability density 

function of the shifted lognormal distribution. The left extreme 
+

0
x of the 

integration interval is given by the location parameter x0 summed up to a certain 

value. This value should be higher than zero because of the logarithm inside 

equation (2.15). For a practical solution a value of 10
-1

 is adopted, thus 
1

00
10xx

−+
+=  and Eqs. (6.5), (6.6) and (6.7) are then limit improprius integrals. 

The theoretical solution is given by considering the full integrals. 

   In addition, the value xm is the right extreme of the unsafe region of the 

bearing capacity. To compare failure probabilities of APEM and MCS, the value 

xm is first of all assumed for both methods equal to 150 kN/m
2
, which 

approximates the values listed in Table 6.11 for MCS and PEM. Then the 

bearing capacity values 200 kN/m
2
 and 250 kN/m

2
 are also taken into account to 

show that this procedure can be adopted to evaluate any target failure 

probability. 

 

3. It should be pointed out that, as opposed to Eqs. (2.4), (2.5) and (2.9), in Eqs. 

(6.5) to (6.7) mean value, variance and skewness coefficient are given for an 

area smaller than the unity. This area, also referred to as unsafe region, is given 

by the integral of the denominator of these equations and quantitatively 

corresponds to the failure probability, defined by the following formula 

 

( ) ( )dxxfqP
m

0

x

x

Xff ∫
+

=          (6.8) 
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4. So far four equations, i.e. Eqs. (6.5) to (6.8), with four unknowns, i.e. x0, 

µln(X), σln(X) and Pf are given, which constitute a linear system to be solved to 

find the shifted lognormal distribution for approximating APEM results.  

   To solve this system an algorithm has been implemented in MATLAB
® 

Version7, whose aim is to optimise the objective function F described by 

equation (6.9). 
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This optimisation problem consists basically in finding those values of the 

unknown parameters x0, µln(X), σln(X) and of the failure probability Pf which 

minimise the function F. For this reason initial values of the unknowns, 

delimited by lower and upper bounds, are input in the algorithm, which runs 

until the minimum of F is reached. Unfortunately this algorithm can lead to 

different local minima of the function F when different combinations of the 

initial values of the 4 unknowns are considered. To overcome this problem, one 

of the four unknowns should be fixed. The failure probability value obtained by 

the Monte Carlo method is then considered as known parameter for the 

optimisation. In this way the model finds the three shifted lognormal parameters 

which give the minimum of the objective function for the desired reliability 

level given in the form of a target failure probability.  

   In Appendix C a more detailed description of the routine used to find the 

shifted lognormal parameters and to evaluate the failure probability is given 

together with the results of this study for both uncorrelated and negatively 

correlated soil variables. 

 

6.4 Results comparison of MCS, traditional PEM and APEM 

In this section the failure probabilities evaluated using 10000 Monte Carlo 

simulations, the traditional PEM and the advanced PEM are presented and 

compared for different intervals and correlation values of the soil parameters. 

 

6.4.1 Case with ρρρρc´redtanϕϕϕϕ´red = 0 

The results of 10000 Monte Carlo simulations for uncorrelated soil variables 

together with those of the traditional PEM approximated by the shifted 
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lognormal distribution are shown in Fig. 6.10. These results are listed, 

respectively, in Table 4.5 for MCS and 5.4 for PEM. Furthermore the APEM 

results, reported in Table 6.17, are also drawn assuming a shifted lognormal 

distribution.  

 

 

 

 

 

 

 

 

 

 

Table 6.20: Bearing capacity range of APEM application for different friction  

                      angle intervals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Results comparison of MCS and PEM with those of APEM  

                            considering different intervals of the friction angle and  

                            ρc´redtanϕ´red = 0 
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To understand the influence of the friction angle on the behaviour of the bearing 

capacity, different intervals of this soil parameter are considered for APEM 

application, as described in Table 6.20. The interval of the cohesion is constant, 

always in the range of 0 - 3 kN/m
2
. 

   As a first impression it is clear that, considering the entire interval of bearing 

capacity values, the curve referred to the traditional PEM matches well the MCS 

results, while those approximating the APEM statistical values are very different 

to these results.  

   However, to evaluate low failure probabilities, attention is paid only to the 

unsafe regions of the bearing capacity, as plotted in Fig. 6.11, and not to the 

entire probability density functions. In fact, looking at Fig. 6.11, it is clear that 

the APEM curves are effectively closer to Monte Carlo results than the 

traditional PEM when one focuses only on the unsafe regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: Results comparison of MCS and PEM with those of APEM  

                            considering different intervals of ϕ´, ρc´redtanϕ´red = 0 and  

                            focusing on the unsafe regions 
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250 kN/m
2

0.3656 0.3532 0.2565 - -

200 kN/m
2

0.1767 0.1798 0.134 0.1392 -

150 kN/m
2

0.0432 0.0598 0.0463 0.0437 0.0433

MCS PEM APEM(250) APEM(200) APEM(150)right extreme of qf

)0( tan =ρ
ϕ′′ redredcfP

250 kN/m
2

0.3656 0.3532 0.2565 - -

200 kN/m
2

0.1767 0.1798 0.134 0.1392 -

150 kN/m
2

0.0432 0.0598 0.0463 0.0437 0.0433

MCS PEM APEM(250) APEM(200) APEM(150)right extreme of qf

)0( tan =ρ
ϕ′′ redredcfP

 

 

 

 

 

 

 

 

 

Table 6.21: Failure probabilities of MCS, PEM and APEM for different bearing  

                    capacity right extreme of the unsafe region and considering  

                    ρc´redtanϕ´red = 0 

 

 

In particular, the prediction of the failure behaviour of the bearing capacity is 

remarkably improved by the optimisation on the shifted lognormal parameters, 

especially for the case defined as APEM(150), i.e. when smaller values of the 

friction angle are considered. This demonstrates how the assumed range of the 

friction angle can influence the final results of a bearing capacity reliability 

analysis.  

   Instead, when the shifted lognormal parameter µln(X) is considered fixed, then 

the model finds the failure probability values listed in Table 6.21 for different 

intervals of the friction angle. These values are here compared to the failure 

probabilities evaluated by means of the Monte Carlo and the traditional Point 

Estimate methods. 

   When a failure probability is evaluated for an unsafe region, whose right 

extreme is the value qf = 250 kN/m
2
, the traditional PEM seems to give a value 

closer to that of MCS. On the other hand, when smaller unsafe region are 

considered, then the APEM failure probabilities are more similar to those of 

MCS. They are practically the same for reduced interval of the friction angle and 

when considering the right extreme qf = 150 kN/m
2
. 

 

6.4.2 Case with ρρρρc´redtanϕϕϕϕ´red = -0.6 

For the case with negatively correlated soil parameters the results of 10000 MCS 

are plotted pointwise in Fig. 6.12 together with those of the traditional PEM and 

the APEM (applied for different friction angle intervals), approximated both by 

the shifted lognormal distribution. These results are given, respectively, in Table 

4.8 for MCS, Table 5.7 for PEM and Table 6.21 for APEM.  
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From Fig. 6.12 one can also see the divergence between the APEM 

approximation curves and Monte Carlo results, when the entire probability 

density function of the bearing capacity is taken into account. Thus the PEM is, 

apparently, more accurate than the APEM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Results comparison of MCS and traditional PEM with those of  

                         APEM considering different intervals of the friction angle and  

                         ρc´redtanϕ´red = -0.6 

 

 

On the other hand, when one concentrates only on the unsafe region of the 

bearing capacity, zoomed in Fig. 6.13, then APEM curves are closer to MCS 

results than the traditional PEM. In particular, when smaller values of the 

friction angle are considered, i.e. for APEM(150), the curve is in perfect 

agreement with MCS results. 

   When the shifted lognormal parameter µln(X) is considered as known instead of 

the failure probability and when a negative correlation exists between soil 

parameters, the improvement of the results using the APEM is even clearer, both 

graphically, as Fig. 6.13 shows, and quantitatively in terms of failure 

probabilities, as reported in Table 6.22. 
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Figure 6.13: Results comparison of MCS and PEM with those of APEM  

                            considering different intervals of ϕ´, with ρc´redtanϕ´red = -0.6  

                            and focusing on the unsafe regions 

 

 

On the other hand, when one concentrates only on the unsafe region of the 

bearing capacity, zoomed in Fig. 6.13, then APEM curves are closer to MCS 

results than the traditional PEM. In particular, when smaller values of the 

friction angle are considered, i.e. for APEM(150), the curve is in perfect 

agreement with MCS results. 

   When the shifted lognormal parameter µln(X) is considered as known instead of 

the failure probability and when a negative correlation exists between soil 

parameters, the improvement of the results using the APEM is even clearer, both 

graphically, as Fig. 6.13 shows, and quantitatively in terms of failure 

probabilities, as reported in Table 6.22. 

   The observations of the failure probability values calculated for uncorrelated 

soil variables are valid also when ρc´redtanϕ´red = -0.6, except that now the failure 

probability given by APEM(150) considering the right extreme qf = 150 kN/m
2
 

is exactly the same as the value estimated using 10000 MCS. 
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)6.0( tan −=ρ
ϕ′′ redredcfP

250 kN/m
2

0.2686 0.2885 0.1330 - -

200 kN/m
2

0.0601 0.0866 0.0345 0.0551 -

150 kN/m
2

0.0015 0.0117 0.0029 0.0016 0.0015

APEM(150)right extreme of qf MCS PEM APEM(250) APEM(200)

)6.0( tan −=ρ
ϕ′′ redredcfP

250 kN/m
2

0.2686 0.2885 0.1330 - -

200 kN/m
2

0.0601 0.0866 0.0345 0.0551 -

150 kN/m
2

0.0015 0.0117 0.0029 0.0016 0.0015

APEM(150)right extreme of qf MCS PEM APEM(250) APEM(200)

 

 

Table 6.22: Failure probabilities of MCS, PEM and APEM for different bearing  

                    capacity right extreme of the unsafe region and considering  

                    ρc´redtanϕ´red = -0 

 

 

Summarising all the findings about the APEM, it can then be concluded that this 

new promising probabilistic approach gives excellent predictions of the failure 

behaviour of the bearing capacity, especially when negatively correlated soil 

parameters and reduced friction angle intervals are considered. 

 

6.5 Applicability of the estimated failure probability of the bearing capacity 

After having estimated the failure probability of the bearing capacity problem in 

the previous chapter, the next step is to assess whether it is an acceptable value 

or not.  

   Typically, this is achieved through comparing the computed failure 

probabilities with a probabilistic design criterion or using diagrams usually used 

in decision-making, such as the one of BAECHER (1982) shown in Fig. 6.14. 

This kind of diagrams has proven to be a useful tool for describing the meaning 

of failure probabilities and risks in the context of other risks familiar to the 

society. 

   In Fig. 6.14 the annual failure probability of well-known engineering 

structures is plotted against the cost in dollars or the number of lives lost in a 

year. Both axes are in logarithmic scale.  

   This experimental diagram reveals the rates of failure and costs that the 

society finds acceptable, or, can live with nowadays.  

   In particular for foundations, the annual failure probability considered as 

acceptable by the society is included in the range 10
-2

 – 10
-3

, thus having, for 

example, a higher frequency of failure than dams, but lower annual lost of lives 

and money. 
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For the strip footing of the bearing capacity problem it has been seen in Tables 

6.21 and 6.22 that a magnitude order of 10
-1

 – 10
-3

 is found when the unsafe 

region has a right extreme of the bearing capacity equals to 250 kN/m
2
. Whereas 

this order of magnitude decreases down to 10
-2

 – 10
-3

 when the right extreme is 

150 kN/m
2
. Hence the failure probabilities evaluated for the bearing capacity 

problem seem to be realistic when compared with the annual failure rates 

indicated in the diagram of Fig.6.14. 

   In any case, whenever one is dealing with estimated failure probabilities, it 

must be clear that these values have to be considered as lower bounds of the real 

failure probabilities. This is due to the fact that some effects of important 

factors, which might cause failure, are perhaps ignored in the reliability analysis. 

Thus engineers should be careful not to be too confident in the computed failure 

probabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Annual failure probability versus annual risk cost in dollars and  

                        number of lives lost for various engineering structures  

                        (BAECHER, 1982) 
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Chapter 7 
 

Conclusions and further research 

Introduction 
The aim of this research was to give a further contribution to the application of 

well-known probabilistic methods to the study of the bearing capacity problem, 

showing that a probabilistic analysis does not require more effort than that 

needed in a conventional deterministic study, but it provides a very useful means 

of modelling uncertainties involved in the calculations.  

   It is fundamental for engineers to ensure safety and reliability of geotechnical 

structures. Another important aim of this work was to find a method able to 

evaluate small failure probabilities of the bearing capacity. As a consequence, 

the Advanced Point Estimate Method, described in chapter 6, was developed. 

This was a big challenge. For this reason the author hopes that this promising 

tool can be applied to a more comprehensive reliability analysis, helping 

engineers in interpreting the probabilistic results and, thus, representing a new 

perspective in the field of geotechnical engineering. 

   In the next sections the most important conclusions of the present thesis will 

be given, followed by some recommendations for further research. 

 

7.1 General conclusions 

In chapter 2 the primary sources and types of uncertainties, which strongly 

affect geotechnical engineering, were described. In spite of the advances in 

modern computational resources and information technology for dealing with 

uncertainties, the knowledge of engineers on uncertain parameters involved in a 

design remains imperfect. As CHRISTIAN (2004) pointed out, uncertainty can 

be ignored by applying the deterministic approach, with the risk of being too 

conservative, thus leading to too expensive projects. On the other hand 

engineers can decide to quantify uncertainties, thus contributing to a more 

rational reliability analysis. It was seen that probabilistic and statistical analyses 

are a powerful means for dealing with uncertainties, providing them with a more 

logical mathematical framework. In spite of the reluctance of experts in applying 

probabilistic concepts and methods, in recent years these techniques are finding 

increasing application in the geotechnical field.  
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In chapters 3 the methodology of the most widely known probabilistic methods 

were exhaustively illustrated and their advantages and limitations were 

discussed. 

 

7.2 Conclusions with respect to the probabilistic methods applied to the 

bearing capacity problem 

In chapter 4 well-known probabilistic methods were applied to the study of two 

benchmarks on the bearing capacity of a strip footing on a homogeneous soil 

layer, considering different correlation coefficients between the soil parameters. 

   It has been shown that the Monte Carlo approach requires only fundamental 

knowledge of statistics and probability theory to solve the bearing capacity 

problem. It is generally considered as the most accurate and reliable 

probabilistic method, because not only mean value, standard deviation and 

skewness coefficient of a certain performance function can be obtained, but also 

the corresponding probability distribution can be built up. However, as for 

practical problems this method is too time consuming, other approaches were 

considered. 

   The moments methods FOSM and SOSM were chosen as alternative 

approaches to replace the Monte Carlo simulations, because they involved a 

limited amount of calculations. In spite of the similar results in terms of mean 

value and standard deviation with MCS, these methods did not provide any 

skewness coefficient of the bearing capacity, as Monte Carlo did. Thus, no 

information was given about the shape of the probability density function of the 

bearing capacity. It had to be assumed to approximate the final results. In 

addition, these approaches are generally accurate only for linear functions, thus 

the accuracy diminishes as the non-linearity of a function increases. Since the 

bearing capacity is a highly non-linear function of the effective friction angle, 

then some inaccuracies were introduced in the final results of FOSM and SOSM 

methods. Consequently, it was necessary to choose another probabilistic 

alternative, which could be able to overcome the drawbacks of MCS, FOSM and 

SOSM methods, providing the skewness coefficient together with the other 

statistical estimates, but with less computational effort than Monte Carlo 

method. 
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7.3 Conclusions with respect to the Two Point Estimate Method 

In chapter 5 the Two Point Estimate Method after ROSENBLUETH (1975) was 

applied to the bearing capacity problem and the results were compared with 

those of MCS, FOSM and SOSM methods.  

   Similar results were obtained for all the probabilistic methods applied in terms 

of mean value and standard deviation of the bearing capacity. On the other hand, 

different conclusions can be drawn for the skewness coefficient. Actually, the 

First Order Second Moment and the Second Order Second Moment methods did 

not allow the evaluation of the skewness coefficient, thus being substantially 

less accurate than the Point Estimate Method. Moreover, a significant difference 

was observed between the skewness coefficients provided by the PEM and the 

Monte Carlo method. 

   However, it is important to stress that the PEM significantly decreased the 

computational effort of the probabilistic study of the bearing capacity problem. 

In fact, on one hand, the PEM did not involve the evaluation of partial 

derivatives of the bearing capacity formula, thus being more straightforward 

applied than FOSM and SOSM methods. On the other hand, when both soil 

cohesion and friction angle were considered as input variables (i.e. in 

benchmark 2), at least ten thousands of Monte Carlo simulations were necessary 

to get accurate statistical values of the bearing capacity, while only four 

calculations were required by the PEM to get results as accurate and reliable as 

those of the Monte Carlo method in terms of mean value and standard deviation. 

   In the last decades, the PEM is finding increasing application in practical 

problems and efforts are carried out to implement this method in finite elements 

codes. However experts, who are familiar with the mathematical background of 

this method, suggest the use of the PEM only under special conditions, for 

which it is expected to give good results. These conditions were mentioned in 

chapter 5 and are summarised here: 

a) in order to reduce the error in the PEM results, the variation coefficient of the 

input random variables should not be large. For the probabilistic analysis of the 

bearing capacity problem a variation coefficient of 80% was taken into account 

for the soil cohesion, which is larger than the values usually found in the 

literature; 

 

b) when multiple input random variables are considered, the skewness 

coefficient can only be reliably calculated by applying formula (3.17) of the 

PEM after ROSENBLUETH if the variables are uncorrelated and if the 

performance function is linear, which is not the case for the bearing capacity 

formula; 
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c) to cope with the problem of condition b), different formulas are available in 

the literature to evaluate the sampling point weights of the PEM for correlated 

input parameters, such as those proposed by CHRISTIAN et al. (1999) and 

shown in chapter 3. Unfortunately these formulas are valid only for symmetrical 

input variables. Thus, one should be careful in applying them to cases in which 

the transformation of an input variable changes its distributional form. In this 

research, in fact, in order to apply CHRISTIAN’s formula, the lognormal soil 

cohesion c´ had to be transformed into the normal variable lnc´. So doing, the 

correlation coefficient between the input soil variables cohesion and friction 

angle changed, because of the different mean value and standard deviation of c´ 

and lnc´, thus influencing the evaluation of the sampling point weights.  

 

These three conditions influenced the probabilistic results of the bearing 

capacity problem, thus being the primary reason of the difference between the 

skewness estimates of the PEM and the MCS. Despite its limitations, the PEM 

was shown to be a simple, but powerful technique for probabilistic analysis, as it 

required less computational effort than MCS for a comparable degree of 

accuracy.  

 

7.4 Conclusions with respect to the shifted lognormal distribution 

In chapter 5 the importance of assuming a certain probability density function as 

opposed to others to approximate and plot the results of the probabilistic 

analysis of the bearing capacity problem were discussed.  

   Considering the Monte Carlo results, it was possible to define the shape of the 

bearing capacity density function. In fact, from these results it was clear that a 

reasonable assumption for the bearing capacity estimates should be a positively 

(right) skewed probability distribution.  

   Different continuous probability distributions are available in the literature to 

approximate these results. In Geotechnics the Gaussian normal and the standard 

lognormal distributions are frequently used, because of their mathematical 

simplicity. Furthermore, the necessary statistical information about these 

functions is widely available, including probability tables. 

   In this research, the shifted lognormal distribution was chosen to plot the 

probability distribution of the bearing capacity, not only because it is strictly 

non-negative and can be treated mathematically straightforward, but especially 

because it matches well all the three moments of the bearing capacity, i.e. mean 

value, standard deviation and skewness. Hence, the final approximation is more 
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accurate and reliable than other probability density functions. This represents 

one of the most basic findings of this work. 

   Other good reasons for preferring the shifted lognormal distribution to other 

well-known continuous probability density curves are listed below: 

 

- the first term of the bearing capacity formula (A.4) after Terzaghi is given as 

the product of the soil parameters c´ and tanϕ´. For the central limit theorem, the 

distribution of the bearing capacity should then tend to a lognormal distribution; 

 

- generally the Gaussian distribution allows negative values of a certain 

performance function, which is physically unrealistic for soil parameters. For 

this reason this distribution could only be considered as a rough approximation; 

 

- the Weibull distribution presented a high discrepancy with the other functions 

considered in this work. In addition, as this distribution is usually truncated at a 

lower bound, it did not describe the entire interval of the bearing capacity 

results, as the others did; 

 

- for the reliability analysis of the bearing capacity problem, the shifted 

lognormal distribution showed to be the best fit-curve of all considered for 

approximating MCS results, leading to failure probabilities in good agreement 

with those evaluated using the Monte Carlo method. 

 

It can be concluded that the shifted lognormal distribution was shown to be an 

important and useful density curve for approximating the results of a 

probabilistic analysis. As there is little information about the application of this 

function in geotechnical literature, it is suggested that the shifted lognormal 

distribution has to be considered for further probabilistic studies. 

 

7.5 Conclusions with respect to the correlation between the soil parameters 

c´ and tanϕϕϕϕ´ 

Another important finding in this research refers to the correlation between the 

soil parameters cohesion and friction angle. In the literature some authors have 

often based their probabilistic studies considering uncorrelated parameters to 

simplify calculations, thus being more conservative. Other authors found 

negative correlation between cohesion and friction angle on the basis of 

experimental data. However, in geotechnical literature it is hard to find 
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probabilistic studies based on the assumption of a negative correlation between 

soil parameters.  

   In this work, different correlations between cohesion and friction angle was 

taken into account for the probabilistic analysis of the bearing capacity. 

   Independent of the probabilistic method applied, a lower bearing capacity 

variability was shown in chapter 5 and much lower failure probabilities 

(conversely, much higher reliability indeces) were found in chapter 6 when a 

negative correlation is considered, thus affecting the final results of the 

probabilistic and reliability analyses significantly.  

   It can be then concluded that the choice of a negative correlation between soil 

parameters is reasonable, because the uncertainty in the probabilistic analysis is 

effectively reduced and the reliability level strongly increased. 

 

7.6 Conclusions with respect to the reliability analysis  

In chapter 6 the results of the reliability analysis of the bearing capacity problem 

were shown in terms of failure probability and reliability index for both 

uncorrelated and negatively correlated soil parameters. All the probabilistic 

methods described in chapter 3 were applied and the corresponding results were 

then compared.  

   Since many parameters are not incorporated in the reliability analysis to 

simplify calculations, then the estimated failure probability, referred to the 

lifetime of the shallow foundation, should be considered as a lower bound to the 

absolute probability of failure. If a more elaborate probabilistic risk analysis 

would be executed, taking into account all the uncertain contingencies, then the 

absolute risk could be evaluated. 

   Initially the Monte Carlo method was considered to evaluate the failure 

probability of the bearing capacity. It was found that, increasing the simulations 

number, the failure probability decreased thus increasing the reliability level. 

The MCS were easily applied to the non-linear performance function “bearing 

capacity”. However, in practice, when the target failure probability is very small 

and a correlation between the input variables is taken into account, the number 

of simulations required to obtain an accurate result can be so large that it renders 

the application impractical.  

   For this reason, the PEM, FOSM, SOSM and FORM methods were also 

applied to evaluate the reliability of the bearing capacity. As these approaches 

did not provide any probability density function, one had to assume a certain 

distribution to plot the bearing capacity results and then estimate the 

corresponding failure probability by integrating over the unsafe region of the 
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assumed density function. In this way, estimates of the failure probability are 

highly sensitive to the assumed distribution. 

   Moreover, the approximation procedures FORM, FOSM and SOSM showed 

some additional drawbacks in the reliability analysis of the bearing capacity 

problem. First of all, the iterative procedure of the FORM method overestimated 

the failure probability when compared with MCS results. This is due to the fact 

that the bearing capacity is highly non-linear with tanϕ´, which is one of the 

input variables that play an important role in this analysis. In fact, it is well-

known that a linear approximation in the FORM design point causes some 

serious error in the estimation of the reliability index, thus influencing also the 

value of the failure probability. One should therefore be very careful in applying 

the approximation procedures of FORM, FOSM and SOSM in the reliability 

analysis of a structure that has a highly non-linear performance function, such as 

a shallow foundation design. In addition, the input variable cohesion follows a 

distribution, which is far from the normal distribution for which the FORM 

method can be applied, thus introducing additional uncertainties in the final 

results when this is transformed to a normal variable. 

   Furthermore, as all of these methods did not provide any skewness, then their 

results could not be approximated by the shifted lognormal distribution, which 

proved to be the best-fit curve for MCS results, also in term of failure 

probabilities.  

   The PEM, as a direct non-iterative method, overcomes the convergence 

problem of FORM, and provides a value for the skewness coefficient, thus being 

a more promising alternative. Hence, only the PEM failure probabilities were 

considered to be compared with those of the MCS. Unfortunately, these values 

were in this analysis even higher than those of FORM method, when compared 

with the real failure probability values of MCS.  

   It can be concluded that, apparently, the FORM method showed to give better 

failure probability results than PEM. However FORM estimates were found by 

considering a normal distribution, which is not the best-fit curve for 

approximating MCS results. 

 

7.7 Conclusions with respect to the APEM 

In order to overcome the drawback of the PEM for the assessment of low failure 

probabilities, a so called advanced PEM, or shortly APEM, was developed. This 

method is not yet available in the literature. 

   The basic idea of the APEM is to focus on the relatively small values of the 

cohesion and the friction angle, which could cause most probably bearing 
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capacity failure. The reduced intervals of the soil parameters were found using 

an iterative procedure. The PEM was then applied to these intervals and the 

results were approximated by the shifted lognormal distribution to evaluate a 

target failure probability.  

   It was seen that, reducing the interval of the friction angle, the failure 

probability decreased. On the other hand, the width of the cohesion interval was 

shown not to have a great influence on the bearing capacity results. 

   This new promising probabilistic approach was shown to give the best 

predictions of the failure behaviour of the bearing capacity when compared with 

the traditional PEM, FOSM, SOSM and SOSM methods and excellent estimates 

when compared with MCS, especially if negatively correlated soil parameters 

were considered. 

   The application of the proposed method on the bearing capacity problem was 

feasible, since the mathematical and probabilistic background required to 

understand its methodology is not very complicated. Furthermore, the idea of 

considering reduced intervals of the cohesion and the friction angle is in practice 

more logical for the evaluation of small failure probabilities of the bearing 

capacity. Therefore the APEM should be easily accepted by practical engineers. 

 

7.8 Recommendations for further research 

The application of well-known probabilistic methods to the bearing capacity 

problem showed the necessity of providing a mathematical framework for 

dealing with uncertainties in a more rational manner. Combining the traditional 

deterministic approach and the probabilistic analysis in further research can be 

beneficial to geotechnical engineering practice, supporting engineering 

judgement and improving the decision-making process. 

 

Also, the proposed APEM could in future be an important tool for evaluating 

small failure probabilities of geotechnical structures. Therefore, the next step 

should be an user-friendly implementation of this approach into finite element 

codes and its extension to some real case studies, such as the slope stability 

problem. This would improve its applicability in practical design and allow a 

more definitive judgement on its advantages and limitations. 

 

It must be clear that this research showed the results of a simplified probabilistic 

analysis of the bearing capacity problem, ignoring some important factors of 

uncertainties, such as the heterogeneity of soil properties. So doing the failure 

probability can be overestimated, leading to erroneous results. Thus the next 
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challenge is to include the APEM into more complex geotechnical models (e.g. 

highly non-linear; 3D) considering all significant sources of uncertainty, such as 

the inherent spatial variability of soil parameters. 
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Appendix  
 

A. The Terzaghi´s bearing capacity formula  
The function of a foundation is to transfer the load of a structure to the soil on 

which it is resting without overstressing it. Overstressing the soil can result in 

either excessive settlement or shear failure of the soil, both of which could 

damage the structure. Thus the bearing capacity of soils must be evaluated to 

avoid these problems.  

 

 

 

 

 

 

 

 

Figure A.1: Terzaghi´s failure mechanism for the bearing capacity analysis 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2: Forces acting on the soil wedge I 
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The failure mechanism assumed by TERZAGHI (1943) for determining the 

ultimate bearing capacity of a shallow foundation is shown in Fig. A.1. The soil-

zone I is an elastic zone, zones III are the radial shear zones and zones II are arcs 

of a logarithmic spiral, whose equation is given as 

 
( ) ϕ′⋅α−α

⋅=
tan

0

0err                   (A.1) 

 

The lines EF and GH are straight lines. If the load per unit area qf is applied to 

the shallow foundation and general shear failure occurs, the passive force P is 

acting on each of the faces of the soil wedge ABD. 

   Considering the soil wedge I and a unit length of the foundation, as in Fig. 

A.2, one has for equilibrium conditions 
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Kq, Kc and Kγ are earth pressure coefficients depending on the soil friction angle 

which are very tedious to evaluate. Introducing the values of Eqs. (A.3) in Eq. 

(A.2) the ultimate bearing capacity equation will be then given by 

 

γ
⋅⋅γ⋅+⋅+⋅= NB

2

1
NqNcq

q0cf
               (A.4) 

 

where c is the soil cohesion, q0 is the surcharge (or overburden stress), γ is the 

unit soil weight, B is the footing width and Nq, Nc and Nγ are the bearing 

capacity factors defined by the following equations: 
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Equation (A.4) shows in a simple way that the ultimate bearing capacity is a 

function of three contributions, i.e. the soil weight inside the failure surface, the 

soil cohesion acting along the failure surface and the surcharge applied at the 

surface.  

The bearing capacity factors depend on the friction angle of the soil. The 

equations (A.5) for evaluating Nq and Nc were first obtained by PRANDTL 

(1921), which are exact closed-form solutions obtainable using the limit 

analyses. In the German literature these two factors are denoted respectively as 

Nd and Nc. 

   On the other hand no closed-form solution exists for
γ

N and the equation (A.5) 

for this factor is only one of the approximations available in the literature. The 

difference between these solutions is up to a factor of two, depending on the 

wedge angle below the foundation. 

   The first solution for 
γ

N was obtained by CAQUOT and KERISEL (1953) and 

can be expressed in the form 

 

( ) ϕ′⋅−⋅=
γ

tan1N2N
q

                (A.6) 

 

Equation (A.6) is for example applied in the EUROCODE 7 (1994). This 

formula has been further extended by BRINCH-HANSEN (1970), as given in 

Eq. (A.5). This solution is considered in this work for the evaluation of the 

bearing capacity.  

   In the German literature the bearing capacity factor 
γ

N obtained by 

MEYERHOF (1963), denoted as Nb, is applied, which can be evaluated with the 

following equation 
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The scope of this study is not to demonstrate how to derive the bearing capacity 

factors. For more information, the reader could refer to TERZAGHI (1943), 

LANCELLOTTA (1993), LANCELLOTTA and CALAVERA, (1999). 

   Generally a factor of safety of about 2 or more is applied to the ultimate 

bearing capacity to reach the allowable value of qf. 

 

 

B. Derivatives of the bearing capacity for 

the FOSM and SOSM methods 
The first derivatives of the bearing capacity computed analytically with respect 

to the soil parameters c´ and tanϕ´ are given by Eqs. (B.1) and (B.2): 
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The second derivatives of the bearing capacity computed analytically with 

respect to the soil parameters c´ and tanϕ´ are given by Eqs. (B.3) and (B.4): 
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The second derivative of the bearing capacity with respect to both soil 

parameters c´and tanϕ´ is given by Eq. (B.5): 
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C. Algorithm to evaluate the reduced 

intervals of the input soil parameters  
In this appendix the routine implemented in MATLAB

®
 Version 7.0 to find the 

reduced intervals of the effective soil cohesion and friction angle are given. The 

reduced intervals are then considered when using the advanced Point Estimate 

method to the bearing capacity problem, as described in chapter 6. 

 

% finds the reduced intervals of the soil parameters 

I=1; 

par1=[]; 

par2=[]; 
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� The effective cohesion and friction angle range from 0 to their mean 

values, respectively 4 kN/m
2
 and 25°.  

 

     for c=0.0000001:0.004:4 

    for phi=0.0000001:0.025:25 

 

� The Terzaghi´s bearing capacity formula 

 

          qf=(c./(tan(phi*pi/180))).*(exp(pi.*tan(phi*pi/180)).*(tan(phi*pi/180)+ 

          (1+(tan(phi*pi/180)).^2).^0.5).^2- 1)+10.*(exp(pi.*tan(phi*pi/180)) .* 

        .*(tan(phi*pi/180)+ (1+(tan(phi*pi/180)).^2).^0.5).^2)+ 

         +22.5.*tan(phi*pi/180).*(exp(pi.*tan(phi*pi/180)).*(tan(phi*pi/180)+ 

          (1+(tan(phi*pi/180)).^2).^0.5).^2-1); 

 

� The qffailure can be any value considered as the right extreme of the 

unsafe region of the qf. Values of 150 kN/m
2
, 200 kN/m

2
 and 250 kN/m

2
 

and the mean value of the bearing capacity divided by a safety factor of 2 

are considered. The intervals of the friction angle found for these values 

of the bearing capacity at failure are reported in table 6.22. 

 

        if qf <= qffailure 

           par1(I)=c; 

           par2(I)=phi; 

           I=I+1; 

        end 

    end 

end 

 

� The right extreme values of the cohesion and friction angle intervals can 

then be found. 

 

maxc=max(par1) 

maxphi=max(par2) 
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D. Algorithm to evaluate the shifted 

lognormal parameters and the failure 

probability of the bearing capacity problem 
The aim of this appendix is to describe the algorithm implemented in 

MATLAB
®
 Version 7.0 to evaluate the three parameters of the shifted 

lognormal distribution and the failure probability of the bearing capacity 

problem by considering the results of the advanced PEM shown in tables 6.19 

and 6.21 of chapter 6.  

   The objective function F to be optimised is given by Eq. (6.8). 

 

D.1 Main routine for the estimation of the three shifted lognormal 

parameters 

In the main routine the parameters of the shifted lognormal distribution, 

described by Eq. (2.15), are indicated respectively as m=µln(X), s=σln(X) and u=x0, 

while the failure probability is simply given by Pf=Pf. 

 

% main program for the estimation of the shifted lognormal distribution 

parameters and the failure probability of the bearing capacity problem 

 

� Initial values of the 4 unknown parameters are input together with their 

corresponding lower (lb) and upper (ub) bounds to start the optimization 

problem 

 

% initial values are m, s, u, Pf 

par0 = [m0 s0 u0 Pf0]; 

 

� The optimset command creates an optimization option structure. More 

precisely, after for example 10000 runs, it displays the output of each 

iteration, checks whether the objective function F values are valid giving a 

warning when the function returns an invalid value (complex or not a 

number) and it displays the maximum number of function evaluations 

allowed.  

 

% options 



Appendix D  Algorithm to evaluate the shifted lognormal parameters and the failure probability 

157 

option = optimset('Display','iter','MaxFunEvals',10000); 

% lower and upper bounds of the input parameters m, s, u, Pf 

lb = [ml sl ul Pfl]; 

ub = [mu su uu Pfu]; 

 

� The gradient based solver fmincon finds the constrained minimum of the 

function F starting at initial bounded values par0. It returns a structure 

output with information about the optimization, i.e.: par indicates the 

results of the four unknowns, fval is the minimum of the function reached, 

exitflag describes the exit condition of fmincon. 

 

% minimiser of the function F 

[par,fval,exitflag,output] =fmincon(@integralmod,par0,[],[],[],[],lb,ub,[],opti); 

  

� The results of the optimization problem can be displayed 

 

% results of the shifted lognormal parameters m, s, u and of the failure 

probability Pf 

m = par(1) 

s = par(2) 

u = par(3) 

Pf = par(4) 

 

% extreme values of the integration intervals of the objective function F 

x0=par(3)+0.1 

xm=0.5*(par(3)+exp(par(1)+0.5*((par(2))^2))) 

 

% statistical values of the entire shifted lognormal distribution of the bearing 

capacity to be found 

mean_value=par(3)+exp(par(1)+0.5*((par(2))^2)) 

standard_deviation=((-1+(exp(par(2)^2))^0.5))*(exp(par(1)+0.5*((par(2))^2))) 
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skewness=3*(standard_deviation/(mean_value-par(3))) 

                  +(standard_deviation/(mean_value-par(3)))^3 

 

D.2 Subroutine for the evaluation of the integrals of the objective function   

% Subroutine for evaluating the integrals inside the objective function F 

function F = integralmod(par) 

 

� Different extreme values of the integration interval can be considered to 

evaluate the integrals of the objective function F. The case a) considers a 

certain value x of the bearing capacity, while cases b), c) and d) refer to 

specific bearing capacity values. All these values describe a certain unsafe 

region of the probability density function of the bearing capacity to be 

found. 

 

% a) extreme values of the integration interval of function F for a certain value 

x of the bearing capacity 

limx = [par(3)+0.1; 0.5*(par(3)+exp(par(1)+0.5*((par(2))^2)))]; 

 

% extreme values of the integration interval of function F for a bearing capacity 

of, respectively, b) 250 kN/m
2
, c) 200 kN/m

2
 and d) 150 kN/m

2
 

limx250 =  [par(3)+0.1; 250]; 

limx200 =  [par(3)+0.1; 200]; 

limx150 =  [par(3)+0.1; 150]; 

 

� The quad command means “quadrature”, which is a numerical method 

used to find the area under the graph of a function, that is, to compute a 

definite integral. 

 

 

 

 

 

 

 



Appendix D  Algorithm to evaluate the shifted lognormal parameters and the failure probability 

 

159 

% evaluation of the integrals of the objective function F for different values of 

the right extreme of the unsafe region of the bearing capacity 

 

% a) general formula 

qu = [quad(@Q1mod,limx(1),limx(2),[],[],par)  

          quad(@Q2mod,limx(1),limx(2),[],[],par)  

          quad(@Q3mod,limx(1),limx(2),[],[],par)  

          quad(@Q4mod,limx(1),limx(2),[],[],par)]; 

 

% b) right extreme value of the unsafe region given by qf= 250 kN/m
2 

qu250 = [quad(@Q1mod,limx250(1),limx250(2),[],[],par)  

                quad(@Q2mod,limx250(1),limx250(2),[],[],par)  

                quad(@Q3mod,limx250(1),limx250(2),[],[],par)  

                quad(@Q4mod,limx250(1),limx250(2),[],[],par)]; 

 

% c) right extreme value of the unsafe region given by qf = 200 kN/m
2 

qu200 = [quad(@Q1mod,limx200(1),limx200(2),[],[],par)  

                quad(@Q2mod,limx200(1),limx200(2),[],[],par)  

               quad(@Q3mod,limx200(1),limx200(2),[],[],par)  

              quad(@Q4mod,limx200(1),limx200(2),[],[],par)]; 

 

% d) right extreme value of the unsafe region given by qf = 150 kN/m
2 

qu150 = [quad(@Q1mod,limx150(1),limx150(2),[],[],par)  

                quad(@Q2mod,limx150(1),limx150(2),[],[],par)  

               quad(@Q3mod,limx150(1),limx150(2),[],[],par)  

               quad(@Q4mod,limx150(1),limx150(2),[],[],par)]; 

 

� Definition of the objective function according to Eq. (6.8). The mean 

value, standard deviation and skewness coefficient of the bearing capacity 

listed in Tables 6.19 and 6.21 can be input respectively for uncorrelated 
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� and negatively correlated soil parameters. Initially the failure probability 

is considered as unknown and equal to par(4). However in this way 

different parameters combinations, which minimize the function F, are 

found. As a consequence one of the four unknown parameters could be 

considered as known. Here the failure probability is taken into account as 

a known target failure probability target_Pf, depending on the reliability 

level to be reached.  

 

% Objective function F to be otpimised  

F = ((qu(2)./qu(1))-mean_value_qf_red).^2+((qu(3)./qu(1))-   

((standard_deviation_qf_red).^2)).^2+((qu(4)./qu(1))+skewness_qf_red).^2+ 

+(qu(1)-target_Pf)^2;  

 

� The integration results of the optimization problem can be evaluated. 

These results are useful to evaluate the low failure probability of the 

bearing capacity considering reduced intervals of the effective cohesion 

and friction angle. Additionally they can be used to estimate the mean 

value, standard deviation and skewness coefficient for the entire shifted 

lognormal function of the bearing capacity to be found 

 

% Integration results of the objective function useful for evaluating the failure 

probability of the bearing capacity considering a reduced interval for the soil 

parameters 

 

% general formula 

integrals=[qu(1) qu(2) qu(3) qu(4)] 

 

% Integration intervals considering specific right extreme values of the unsafe 

region of the bearing capacity, respectively 250 kN/m
2
, 200 kN/m

2
 and 150 

kN/m
2
 

integrals250=[qu250(1) qu250(2) qu250(3) qu250(4)] 

integrals200=[qu200(1) qu200(2) qu200(3) qu200(4)] 

integrals150=[qu150(1) qu150(2) qu150(3) qu150(4)] 
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D.3 Subroutines for the definition of the integrals of the objective function  

Using the following subroutines it is possible to define the integrals of the 

optimization function F to be estimated.  

 

1) Subroutine for defining the integral of the failure probability Pf, where 

f1=fX(x). The function fX(x) is the probability density function of the shifted 

lognormal function: 

 

function f1 =Q1mod(x,par) 

f1 = (1./(((2*pi)^0.5).*(par(2)).*(x-par(3)))).*(exp(-0.5.*(((log(x-par(3))-

par(1))./(par(2))).^2))) ; 

 

2) Subroutine for defining the integral of the mean value µqfred, where 

f2=x*fX(x): 

 

function f2 =Q2mod(x,par) 

f2 = x.*((1./(((2*pi)^0.5).*(par(2)).*(x-par(3)))).*(exp(-0.5.*(((log(x-par(3))-

par(1)).//(par(2))).^2)))); 

 

3) Subroutine for defining the integral of the variance σqfred
2
, knowing the mean 

value µqfred from the subroutine 2). The function f3 corresponds to (x-

µqfred)
2
*fX(x): 

 

function f3 =Q3mod(x,par) 

f3 = ((x-µqfred).^2).*((1./(((2*pi)^0.5).*(par(2)).*(x-par(3)))).*(exp(-0.5. 

*(((log(x-par(3))-par(1))./(par(2))).^2)))); 

 

4) Subroutine for defining the integral of the skewness coefficient νqfred, 

knowing the mean value µqfred and the variance σqfred
2
 respectively from 

subroutine 2) and 3). The function f4 corresponds to (x-µqfred)
3
*fX(x)/ σqfred

3
: 

 

function f4 =Q4mod(x,par) 

f4 = (((x-µqfred )./(σqfred)).^3).*((1./(((2*pi)^0.5).*(par(2)).*(x-par(3)))).*(exp(-

0.5.*(((log(x-par(3))-par(1))./(par(2))).^2)))); 
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D.4 Optimisation results for the bearing capacity problem 

D.4.1 Case with ρρρρc´tanϕϕϕϕ´ = 0 

The results of the optimization problem previously described considering the 

bearing capacity results of Table 6.19 and the failure probability as known are 

listed above: 

 

- the parameters of the shifted lognormal distribution 

m = 5.905 kN/m
2
 

s = 0.233 kN/m
2
 

u = -95.868 kN/m
2
 

 

- the low failure probability of the bearing capacity considering as right extreme 

value of the unsafe region, respectively, 150 kN/m
2
, 200 kN/m

2
 and 250 kN/m

2
 

Pf150 = 0.043 

Pf200 = 0.0437 

Pf250 = 0.0463 

 

- the extreme values of the integration interval of the objective function 

x0 = -95.768 kN/m
2 

xm = 140.477 kN/m
2
 

 

- the statistical values of the entire shifted lognormal distribution of the bearing 

capacity 

mean_value = 280.954 kN/m
2
 

standard_deviation = 10.392 kN/m
2
 

skewness = 0.083 

 

- the minimum value of the objective function  

Feval = 0.00005 
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D.4.2 Case with ρρρρc´tanϕϕϕϕ´ = -0.6 

For the bearing capacity results of Table 6.21 the optimization problem earlier 

described leads to the following results, considering the failure probability as 

known: 

 

- the parameters of the shifted lognormal distribution 

m = 5.478 kN/m
2
 

s = 0.251 kN/m
2
 

u = 36.456 kN/m
2
 

 

- the low failure probability of the bearing capacity considering as right extreme 

value of the unsafe region, respectively, 150 kN/m
2
, 200 kN/m

2
 and 250 kN/m

2
 

Pf150 = 0.0015 

Pf200 = 0.0016 

Pf250 = 0.0029 

 

- the extreme values of the integration interval of the objective function 

x0 = 36.556 kN/m
2 

xm = 141.814 kN/m
2
 

 

- the statistical values of the entire shifted lognormal distribution of the bearing 

capacity 

mean_value = 283.629 kN/m
2
 

standard_deviation = 7.941 kN/m
2
 

skewness = 0.096 

- the minimum value of the objective function  

Feval = 1.524 
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