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Preface

Expansive soils contain clay minerals named montmorillonites or smectites. In this type
of soils, significant deformations are associated with changes in suction and degree of
saturation. As expansive soils are widespread in nature, they constitute an important
challenge for geotechnical engineering. In the unsaturated zone well above the phreatic
groundwater level the soil moisture content varies significantly over the seasons and the
study of expansive soil behaviour is thus based on unsaturated soil mechanics and un-
saturated groundwater flow. At present unsaturated flow is getting increasing attention
in literature and so is the mechanical behaviour of unsaturated soils. Although the title
of this study refers to expansive soils, most of the developments reported are applicable
to unsaturated soils in general.

Being from Syria, a land with large areas of expansive soils, Ayman Abed came to
Stuttgart to study the mechanical behaviour of such soils. Being not a specialist in this
field, I was very pleased to have my colleague Professor Antonio Gens from Barcelona as
a co-advisor. No doubt, the Barcelona Basic Model represented the state-of-the-art in the
elastoplastic modelling of unsaturated soils in the year 2004 when Ayman Abed came to
Stuttgart, and a detailed description of this model is contained in the present study.

The main original contribution of this thesis to geomechanics is the extension or gener-
alisation of the Barcelona Basic Model from isotropic to anisotropic soil. Indeed unsat-
urated clays are mostly anisotropic and should thus be modelled within the framework
of anisotropic plasticity as presently also done for saturated clays.

This study represents a significant contribution to the subject of unsaturated soil me-
chanics that can be used as a spring board for further research in this challenging field
of geomechanics. To me it has been a great pleasure to work with Ayman Abed and I am
very happy to congratulate him with this achievement of the doctoral thesis.

Pieter A. Vermeer

Stuttgart, February 2008
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Abstract

The mechanical behavior of unsaturated soils is one of the challenging topics in the
field of geotechnical engineering. The use of finite element technique is considered as a
promising method to solve settlement and heave problems, as associated with unsatu-
rated soil. Nevertheless, the success of the numerical analysis is strongly dependent on
constitutive model being used. Furthermore, solving unsaturated soil problems needs
the assessment of suction variation in time and space as a response to the variation of
environmental factors such as rainfall and evaporation rate. The well-known Barcelona
Basic model (Alonso et al., 1990) is considered to be a robust and suitable model for the
mechanical behavior of unsaturated soils and has thus been implemented into a finite
element code. The so-called Richard’s equation is solved to determine suction field as
associated with different initial and boundary conditions. Soil anisotropy is considered
as well through the development and the implementation of a new anisotropic model
for unsaturated soil. In addition to suction effects, this new model considers size and
rotational hardening to capture anisotropy.

This thesis begins with fundamental issues such as the definition of stress, strain, the
effective stress concept and elasticity in unsaturated soil. Subsequently, the basics of
elastoplasticity as used in the so-called critical state soil mechanics are reviewed placing
emphasis on the Cam Clay model as an example for an elastoplastic soil model. The
most important experimental observations concerning unsaturated soil mechanical be-
havior are also reviewed. The Cam Clay model is then extended in order to consider
unsaturated states, yielding the Barcelona Basic model. The extension goes further by
including the effect of anisotropy on soil response. In a special chapter, flow equations
as used in solving suction variations in time and space are illustrated and discussed in
details. After the theoretical development, the soil models are implemented into a finite
element code and then employed to analyze some boundary value problems. The analy-
ses include the study of soil plastic compression upon wetting and the simulation of soil
swelling and shrinkage.
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Zusammenfassung

Das mechanische Verhalten von ungesättigten Böden ist eines der faszinierendsten The-
menstellungen auf dem Gebiet der Geotechnik. Der Einsatz der Finite-Elemente-Methode
wird als vielversprechend betrachtet, um Problemstellungen wie Setzungen und Hebun-
gen, die mit ungesättigten Böden einhergehen, zu lösen. Nichtsdestotrotz ist der Erfolg
der numerischen Analyse stark abhängig vom verwendeten Bodenmodell. Außerdem
wird zur Lösung von Fragestellungen mit ungesättigten Böden die Abschätzung der
Saugspannungen als Funktion der Zeit und des Ortes als Reaktion auf die Änderung
von Umwelteinflüssen wie die Niederschlags- und die Evaporationsrate benötigt. Zur
Bestimmung der Saugspannungen wird die bekannte Gleichung nach Richard herange-
zogen.

Das Barcelona-Basic-Modell (BB-Modell) wird zur Modellierung der Auswirkung der
Saugspannungen auf das mechanische Verhalten von ungesättigten isotropen Böden
herangezogen und in ein Finite-Elemente-Programm implementiert. Zur Beschreibung
der Eigenschaften von ungesättigten anisotropen Böden wird das BB-Modell erweitert
und ebenfalls in ein Finite-Elemente-Programm implementiert.

Die vorliegende Arbeit gliedert sich wie folgt:

Kapitel 2 beinhaltet die Definitionen der Spannungen und der Dehnungen. Es zeigt
auch die Elastizitätsgleichungen im Falle von ungesättigten Böden und die experimentel-
le Bestimmung der mechanischen Parameter von ungesättigten Boden.

Kapitel 3 gibt einen Überblick über die grundsätzlichen Ideen der Elastoplastizität in der
Bodenmechanik mit Berücksichtigung der Fließfunktion, der Konsistenzbedingung, der
Fließregel, des Verfestigungsgesetzes und der elastoplastischen Steifigkeitsmatix. Das
modifizierte Cam-Clay-Modell wird als Einführungsbeispiel verwendet, um die oben
genannten Elemente zu erklären.

Kapitel 4 erweitert die elastoplastische Formulierung auf ungesättigte Böden. Hier-
bei wird das “Barcelona-Basic-Model” verwendet, welches ein Vertreter von konstitu-
tiven Modellen für ungesättigte Böden ist. Die Erweiterung wird durch experimentelle
Beobachtungen unterstützt.

Kapitel 5 gibt einen Überblick über die Grundlagen der Finite Elemente Methode für
ungesättigte Böden. Dieses Kapitel beinhaltet die Implementierung des “Barcelona-
Basic-Models” in einen Finite-Elemente-Code. Anschließend wird die Implementierung
anhand von numerischen Elementversuchen validiert.

Kapitel 6 behandelt die Grundwasserströmungs-Gleichung, die verwendet wird, um
die Variation der Saugspannungen in Abhängigkeit von der Zeit zu bestimmen.

vii



Zusammenfassung

In Kapitel 7 wird ein neues anisotropisches Stoffmodell für ungesättigte Böden vorge-
stellt, welches zusätzlich zu einer “size hardening” Regel eine “rotational hardening”
Regel enthält. In diesem Kapitel werden ferner die Implementierung des Modells in
einen Finite Element Code sowie dessen Validierung anhand exemplarischer Berech-
nungen behandelt.

In Kapitel 8 werden Randwertsprobleme anhand der implementierten isotropischen
und anisotropischen Stoffmodell diskutiert. Schwerpunkt liegt hierbei in der Betrach-
tung des Verhaltens einer Flachgründung bei Reduzierung und Erhöhung der Saugspan-
nungen sowie bei Belastung des Untergrunds bis zum Versagen. Außerdem wird die
Auswirkung der Anisotropie ungesättigter Böden auf das Verhalten des Untergrundes
behandelt.

Kapitel 9 enthält die Schlussfolgerungen dieser Dissertation und Vorschläge zu weiter-
führenden Forschungstätigkeiten.

viii



Chapter 1

Introduction

1.1 Unsaturated expansive soil

Natural soils are often humid implying the existence of multiple phases in the soil pore
space. In geotechnical applications, they are water and air. The expression unsaturated
soil is used to refer to such a state of the soil. The fully saturated soil is a special case
with water filling the entire soil pores. The ratio between the pore volume occupied
by water and that occupied by air determines the so-called degree of soil saturation. The
degree of saturation varies with time and is dependent on environmental factors such as
temperature, rainfall, and ground water flow.

From a mechanical point of view, a varying degree of saturation results in soil volume
change which is relatively small in magnitude. However, for particular types of mont-
morillonite rich soils the volumetric change is of a considerable order. These soils are
called expansive soils. The main reason for this phenomenon is the large specific surface1 of
the (flaky) soil particles which enables the porous media to either suck in or lose a large
amount of water during hydration or dehydration process. For shallow foundations soil
shrinkage and soil swelling may cause considerable problems.

Many financial loses are reported in literature due to the lack of correct understanding
of the behavior of expansive soils in foundation engineering. To close the knowledge
gap in this field, serious research on this topic began in the middle of 1960s. Since then,
seven conferences under the name ’International Conference on Expansive Soils’ took place
in 1965, 1969, 1973, 1980, 1984, 1987 and 1992. These conferences founded the so-called
’unsaturated soil mechanics’ as an independent science with extended rules as compared
to classical soil mechanics. Later, four additional international conferences were held
under the name ’Unsaturated Soil’; in 1995, 1998, 2002 and 2006. Today, studying the
expansive soil behavior can not be separated from studying unsaturated soil mechanics.

1the specific surface = the surface area of an individual soil particle / its volume or weight.
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Chapter 1 Introduction

1.2 Motivation

Expansive soil covers about 10% of the total area of Syria as can be seen in Figure 1.1.
Up to now, only limited research efforts have been undertaken to solve foundation prob-
lems related to expansive soils even though this potentially problematic soil is abundant
throughout the country. The problem extents to many other countries of the world like
Canada, the United States, Australia, China, Spain, India, South Africa, Sudan, Ethiopia
and Russia (Fredlund and Rahardjo, 1993).

For construction on expansive soil, pile foundations may be preferred, but they are often
too costly for low-rise buildings. Therefore heave and settlement of shallow foundations
on expansive clays will have to be studied in full detail. It is very common to use classical
methods, neglecting any effect of the degree of saturation, to design such type of foun-
dations. Even in the case of recognition of the expansive potential of the studied soil,
crude empirical correlation tend to be used to estimated the amount of possible heave or
plastic compression. These correlations relate the deformation to elementary soil index
properties such as Plasticity Index Ip, Liquid Index wl or the clay content. It is believed that
such empirical correlations give only satisfactory results as long as they are applied to
the same soils which were used to derive them. This reduces their use to a very narrow
group of soils. For a full revision of these methods the book by Nelson and Miller (1992)
is recommended. In contrast, this dissertation uses the unsaturated soil mechanics prin-
ciples to develop a suitable method to predict the deformation of a shallow foundation
supported by an unsaturated expansive soil.
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Figure 1.1: Expansive soil distribution in Syria after Abed (2003).
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1.3 Surface tension and suction

1.3 Surface tension and suction

The so-called soil suction plays a major role in the mechanical response of unsaturated
soil. It develops at the interface of two different soil phases. A water molecule inside
the water is in balance as it is exposed to equal forces in all directions. However, a water
molecule at the interface air-water experiences an unbalanced force towards the interior
of the water as can be seen in Figure 1.2. This leads to a tensile pull along the interface,
this pull is known as the surface tension. The surface tension causes the air-water interface
to behave like a membrane. This membrane is subjected to different pressures on each
side. Therefore, it shows a concave curvature towards the larger pressure and exerts a
tension in the membrane in order to be in equilibrium. By the help of Figure 1.3 and
using the balance equations, the pressure difference ∆u across the curved surface can be
related to the surface tension Ts and the radius of curvature Rs as:

∆u =
2 · Ts
Rs

(1.1)

In an unsaturated soil, the interface would be subjected to an air pressure ua greater
than the water pressure uw. The pressure difference ∆u = ua− uw is referred to as matric
suction s. Substitution of ∆u = ua−uw in Equation 1.1 gives the so-called Kelvin’s capillary
model equation (Fredlund and Rahardjo, 1993):

(ua − uw) =
2 · Ts
Rs

(1.2)

The above equation suggests that:

• a decrease in the the radius of curvature implies an increase of suction. This case
corresponds to the drying of soil where water retreats to smaller and smaller pores.

Molecule at 

the air-water interface

Molecule in the  

interior water

Figure 1.2: Intermolecular forces on a water molecule after Fredlund and Rahardjo
(1993).

3



Chapter 1 Introduction
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Figure 1.3: Pressures and surface tension acting on a curved interface after Fredlund and
Rahardjo (1993).

• an increase of the radius of curvature implies a decrease of suction. This case cor-
responds to the wetting of soil where water penetrates into larger pores.

A soil with high suction has a high potential to pull water into the soil matrix and vice
versa. The surface tension Ts is a temperature dependent constant of the air-water in-
terface. Furthermore, it is dependent on the chemical composition of the water. The
variation in water chemistry introduces another suction component known as the os-
motic suction. Throughout this report the word suction is used to indicate the matric
suction only, neglecting any effect of temperature or osmotic suction on the mechanical
behavior.

1.4 Objectives and scope

The aim of this research is to model the behavior of expansive soil in the framework of
unsaturated soil mechanics. The proposed model is used then to predict the displace-
ments associated with the changes in soil suction. The final focus is on response of shal-
low foundations. However, the scope of application could be easily extended to other
important problems such as slope stability. The finite element method is used to solve
the governing partial differential equations. The elastoplasticity framework is used for
constitutive modeling.

1.5 Layout of Thesis

In addition to this introduction, the thesis is arranged in 8 chapters as indicated below:

Chapter 2 includes the basic assumptions concerning the stress measures and the strain
definition. It also illustrates the elasticity equations in case of unsaturated soils
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1.5 Layout of Thesis

with the required experimental techniques to determine the soil mechanical pa-
rameters.

Chapter 3 reviews the fundamental ideas of soil elastoplasticity including the mean-
ing of a yield function, a plastic potential function, a flow rule, a hardening rule
and an elastoplastic stiffness matrix. The Modified Cam Clay Model is used as an
introductory example to explain the above mentioned concepts.

Chapter 4 extends the elastoplastic formulation to the case of unsaturated soil. The
extension is supported by experimental observations. The Barcelona Basic Model
is used as an example for a constitutive model of unsaturated soil.

Chapter 5 reviews the basics of the finite element method as applied to unsaturated
soil. This chapter includes the full implementation of the isotropic Barcelona Basic
Model into a finite element code. It ends with numerical examples to validate the
implementation.

Chapter 6 introduces the flow equation used to solve the variation of suction over time.
Finally the so-called Richard’s equation is introduced. The Soil Water Characteris-
tic Curve and the relative permeability function are also discussed in this chapter.

Chapter 7 introduces a new anisotropic model for unsaturated soil. The new model
includes a rotational hardening law in addition to a size hardening rule. The im-
plementation into a finite element code is discussed in full detail together with
validation examples.

Chapter 8 uses the implemented isotropic and anisotropic models to solve realistic bound-
ary value problems. It focuses on shallow foundation response to suction reduc-
tion, suction increase and loading the soil up to failure. It also discusses the effect
of unsaturated soil anisotropy on its behavior.

Chapter 9 includes the conclusions of this research and the proposals for further devel-
opments.
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Chapter 2

Fundamental Principles

2.1 Sign convention

This section discusses the stress concept based on continuum mechanics principles. Com-
pressive stresses and strains are considered to be positive for all cases, so that the sign
convention is in accordance with that being used in soil mechanics literature.

2.2 Stresses and equilibrium

Figure 2.1a illustrates the basic idea of mechanical equilibrium. If a body is in equilib-

external forces

(a)

external forces

δA

Fy

Fx

Fz

My

Mx

Mz

y

x

z

(b)

Figure 2.1: (a) External forces (b) Including internal forces.
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Figure 2.2: Stress components.

rium, six equilibrium equations can be formulated. These equations relate the external
forces affecting the body to one another. Three equations show that the sum of all forces
acting in the three orthogonal directions are zero. The other three state that the sum of
the moments produced by the acting forces about three orthogonal axes must also be
zero to satisfy equilibrium. If the body is in motion, mass times acceleration must be in-
cluded as body forces. However, this study focuses on quasi-static states of equilibrium.
Figure 2.1b shows a cross section of a body in equilibrium. Due to the fact that each
part of the body on either side of the section is in equilibrium, there should be internal
forces acting across the section plane to maintain the equilibrium state. Considering the
transmitted force across a small area δA of the section, one may define a measure of the
local intensity of the internal forces. This measure is known as the stress working inside
the material. Let us consider a plane perpendicular to the y axis. The stresses acting on
this plane are:

σyy = lim
δA→0

(−δFy/δA) ; τyx = lim
δA→0

(−δFx/δA) ; τyz = lim
δA→0

(−δFz/δA) (2.1)

To give a complete description of state of stress state at a point of the material, one
should consider the internal forces acting on three orthogonal planes at that point. So,
in additional to the stresses in Equation 2.1 there exist the stresses σxx, τxy, τxz working
on a plane perpendicular to x, and σzz, τzy, τzx acting on a plane perpendicular to z.
The equilibrium of the material infinitesimal cube in Figure 2.2a requires that τxy = τyx,
τxz = τzx and τyz = τzy. Hence there are six independent components of stress at a
material point. The stress state at a certain point is described by the so-called stress tensor
being written as:
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2.2 Stresses and equilibrium

σij =





σxx τxy τxz
τyx σyy τyz
τzx τzy σzz



 (2.2)

On varying the orientation of the cube, certain directions of the cube orthogonal sides
eliminate the shear stress τij acting on them. These directions are called principal direc-
tions and the acting stresses are known as principal stresses. On choosing the Cartesian
coordinates in the principal directions the stress tensor obtains the diagonal form:

σij =





σ1 0 0
0 σ2 0
0 0 σ3



 (2.3)

where σ1 , σ2 and σ3 are the principal stresses. The principal stresses are the eigenvalues
of the stress tensor 2.2. The principal stresses can be computed from the characteristic
equation:

σ3 − I1σ
2 + I2σ − I3 = 0 (2.4)

where the so-called stress invariants are defined as:

I1 = σii; I2 =
1

2

(
I2
1 − σijσji

)
; I3 =

1

6

(
2σijσjkσki − 3I1σijσji + I3

1

)
(2.5)

I1, I2 and I3 are the first, second, and third stress tensor invariants respectively.

Here it is assumed that the reader is familiar with the Einstein’s summation convention for
repeated subscripts.

The deviatoric stress tensor sij is defined as:

sij = σij −
I1
3
δij (2.6)

where δij is the Kronecker delta with δij = 1 for i = j and δij = 0 for i 6= j. The invariants
of the deviatoric stress tensor are:

J1 = sii = 0; J2 =
1

2
sijsji; J3 =

1

3
sijsjkski (2.7)

In Soil Mechanics slightly modified versions of I1 and J2 tend to be used. These are the
mean stress p, and the deviatoric stress q, being defined as:

p = I1/3 and q =
√

3J2 (2.8)
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Figure 2.3: The invariants interpretation in principal stress space.

A state of stress can be visualized by a stress point in principal stress space, as shown in
Figure 2.3. The value of p is directly related to the distance from the origin to the devi-
atoric plane in which the stress point lies. The value of q is related to the perpendicular
distance between the stress point and the space diagonal. To complete the definition of
the stress point by invariants, the third invariant is needed. This is done through the
Lode angle θ which is a measure of the angular position of the stress point within the
deviatoric plane. The Lode angle is defined as:

θ =
1

3
· arcsin






−3
√

6 · J3
(√

2/3 · q
)3




 (2.9)

The principal stresses can be expressed in terms of invariants (Smith and Griffiths, 1998):

σmax = p + 2
3
· q · sin

(
θ − 2π

3

)
; σmid = p+ 2

3
· q · sinθ; σmin = p + 2

3
· q · sin

(
θ + 2π

3

)

(2.10)

where σmax, σmid and σmin stand for major, intermediate and minor principal stress re-
spectively.

Figure 2.4 shows the active stresses in the y direction in a field of varying stresses. By
knowing the stress components σyy, τxy and τzy at a given position, it is possible to use
the Taylor series to predict the stresses in the vicinity of the previous position at incre-
mental distances δy, δx and δz. Summing the forces in y direction and taking the limit
for δx, δy and δz to zero results in the following equation:
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y

x

Figure 2.4: Stresses working in the y direction.

∂τxy
∂x

+
∂σyy
∂y

+
∂τzy
∂z

+ Y = 0 (2.11)

where Y is the body force component in y direction. Considering the other directions
and the equilibrium of the infinitesimal cube of soil as shown in Figure 2.2, one ends up
with the following equilibrium equations:

σij,i + bj = 0 with σij,i =
∂σij
∂xi

(2.12)

where bj stands for the body force components. In absence of any accelerations, bj rep-
resents a gravity force.

2.3 Displacements and strains

Corresponding to the stress state the strain tensor is defined consisting of three axial
strains εii and three shear strains εij. The strain tensor is written as:
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Chapter 2 Fundamental Principles

εij =





εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



 (2.13)

where the axial strains εii are defined as:

εxx = −δux
δx

; εyy = −δuy
δy

; εzz = −δuz
δz

and the shear strains εij are defined as:

εxy = −1

2

(
δux
δy

+
δuy
δx

)

; εxz = −1

2

(
δux
δz

+
δuz
δx

)

; εyz = −1

2

(
δuz
δy

+
δuy
δz

)

The symbols δux, δuy and δuz stand for the displacement increments in the directions x, y
and z respectively.

It is also possible to derive the invariants of the strain tensor. However, only the work
conjugates of the stress measures p and q will be introduced here as they are frequently
used in the rest of this report. The work conjugate of p is the volumetric strain εv. For
small strains as considered in this study, it is defined as:

εv = εxx + εyy + εzz (2.14)

whereas the work conjugate of q, as defined by Equation 2.15, is known as the deviatoric
strain εq:

εq =
1

3

{
2
[
(εyy − εzz)

2 + (εzz − εxx)
2 + (εxx − εyy)

2]+ 3
(
γ2
yz + γ2

zx + γ2
xy

)}0.5
(2.15)

where γij = 2ij is the so-called engineering strain. On using invariants instead of general
stress and strain tensors, care should be taken in conserving the energy and work input.
This explains the expression work conjugates introduced previously which means that
the work input δW produced by stressing a unit volume of the soil element should be
the same no matter if one uses the general tensors or the invariants. Mathematically this
implies:

δW = σxx ·δεxx+σyy ·δεyy+σzz ·δεzz+τxy ·δγxy+τxz ·δγxz+τyz ·δγyz = p ·δεv+q ·δεq (2.16)

For the same reason of energy conservation, γij is used instead of simple εij in the For-
mula 2.16.
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2.4 Stresses in unsaturated soil

2.4 Stresses in unsaturated soil

The mechanical behavior of soil can be described as a function of the stresses in the soil
body. This is reflected in constitutive modeling by using certain stress measures. These
measures must be independent of the physical properties of the soil (Fung, 1965) and
their number are directly related to the number of soil phases considered in the analysis.
One example is the effective stress σ′

ij = σij − δijuw or in simple form σ′ = σ − uw as
used in saturated soil mechanics, where σ is the total stress and uw is the pore water
pressure. This stress measure is applicable for all types of soils because it is independent
of the physical properties of the considered soil. The experiments show that the effective
stresses can be used to describe the mechanical behavior of fully saturated soil.

The situation seems to be more difficult when considering unsaturated soil. In the past
the idea of possible extension of the effective stress concept to include the unsaturated
state has prevailed. Many stress measures have been proposed, but all of them share
the fact that they include soil physical properties in the formulation which may lead to
difficulties. Later experimental studies showed that in many cases such type of stress
variables did not yield a single unique value for the effective stress. In other words,
the physical properties as used in the stress measures have different values for different
problems (volume change, shear resistance), for different stress paths and for different
soil types. Many researchers put considerable effort in developing a single-value stress
measure to describe the unsaturated soil behavior. Table 2.1 gives some of the proposed
formulas.

A well-known example of the single-value stress measure for unsaturated soil is the so-
called Bishop’s stress (Bishop, 1959):

σ′ = (σ − ua) + χ · (ua − uw) (2.17)

where ua is the pore air pressure and χ is a factor dependent on the degree of saturation
Sr

1. It has the value of 1 at full saturation and 0 for dry soil. The relation between χ and
Sr was experimentally determined. Figure 2.5 shows such a relationship for compacted
soils as proposed by Fredlund and Rahardjo (1993). Bishop et al. (1963) reevaluated
Equation 2.17 and noticed that change in suction s = (ua − uw) did not produce the same
change in effective stress as that produced due to change in net stress σ� = (σ − ua). They
then gave a graph for the soil volumetric changes as a function of suction and net stress
separately. Burland (1964) discussed also the validity of Equation 2.17, and proposed
that the mechanical behavior of unsaturated soils should be treated by considering net
stress and suction separately. Matays et al. (1968) illustrated the volumetric changes as a
3D surface with suction and net stresses as stress measures, which strengthened the idea
of separated stress measures.

This reevaluation process led at the end to the acceptance of two separated stress mea-
sures in unsaturated soil mechanics by many researchers. Fredlund et al. (1977) con-

1Sr = Vw/Vv = volume of water/total volume of soil sample
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Table 2.1: Effective stress equations for unsaturated soils after Fredlund et al. (1977).

Equation Description of variables Reference
σ′ = (σ − ua) + χ · (ua − uw) χ =parameter related to degree of saturation Bishop (1959)

σ′ = σ − β́ua

β́ =holding or bonding factor, which is a
measure of the number of bonds under tension
effective in contribution to soil strength

Croney et al. (1958)

σ′ = σam + uaaa + uwaw + R−A

aa =fraction of total area that is air
am =fraction of total area that is mineral
aw =fraction of total area that is water
R, A =repulsive and attractive electrical forces

Lambe (1960)

σ′ = σ − β́p′
β́ =statistical factor determined
experimentally for each case
ṕ =pore-water pressure deficiency

Jennings (1961)

σ′ = (σ − ua) + χm (hm + ua) + χs (hs + ua)

χm =effective stress parameter for matric
suction
hm =matric suction
χs =effective stress parameter
hs =solute suction

Richards (1966)

σ′ = (σ − ua) + χ · (ua − uw) χ =the liquid phase degree of saturation Ehlers et al. (2003)
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Figure 2.5: The factor χ as a function of degree of saturation Sr after Fredlund and Ra-
hardjo (1993).

cluded that any combination of the following pairs can be used to describe the stress
state:

1. (σ − ua) and (ua − uw)

2. (σ − uw) and (ua − uw)

3. (σ − ua) and (σ − uw)

Recently, Khalili et al. (2004) reconsidered Bishop’s effective stress. They proposed to
retain Equation 2.17 in combination with:

χ =

[
s

sae

]−0.55

(2.18)

where sae is a constant depending on the considered soil. Using the Theory of Porous
Media which treats the unsaturated soil as a triphasic material, Ehlers et al. (2003) de-
rive an equation similar to the original one by Bishop with χ equals to the degree of
saturation Sr. For simulating soil contraction upon wetting with a Bishop-like single ef-
fective stress, Laloui and Nuth (2005) introduced an additional yield surface. The current
study follows the idea of two independent stress measures as proposed by Fredlund et
al. (1977). However, they are not the only combinations proposed in literature. It is still
an open question as to which combination is to be used. According to Gens et al. (2006)
most of the proposed stress measures can be written in the form:

(σ − ua) + µ1 (s, ...) ; µ2 (s, ...) (2.19)
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Chapter 2 Fundamental Principles

where µ1 and µ2 are functions of suction s and other variables. Depending on µ1 one
may distinguish between three different classes:

1. µ1 = 0

2. µ1 = function of suction

3. µ1 = function of suction and degree of saturation

After Gens et al. (2006) the first case, which represents the combination (σ − ua) and
(ua − uw), simplifies the modeling and offers the opportunity of tracing stress paths.
However, it has some difficulties in dealing with the transition from an unsaturated state
to full saturation and also in modeling hysteresis effects. The second class improves the
situation, but it does not remove all difficulties and complicates simple stress path pre-
dictions. The third class removes all the difficulties related to modeling, but it compli-
cates very much simple predictions because of the complicated stress paths. The choice
of the stress measure combination is a matter of convenience and is chosen respective to
the problem at hand.

In the current work, class 1 is used. The focus is not on hysteresis and neither on the
transition from an unsaturated state to full saturation. Furthermore, in order to better
understand the effect of each stress component on settlement and heave of footings, one
needs clear stress paths. Following this discussion one may describe the general state of
stress in case of unsaturated soil using two independent tensors:

σ?ij =





σxx − ua τxy τxz
τyx σyy − ua τyz
τzx τzy σzz − ua



 and

sij =





(ua − uw) 0 0
0 (ua − uw) 0
0 0 (ua − uw)



 (2.20)

where σ?ij is the so-called net stress. The total stress as used in equilibrium equation can
be written as:

σij = σ?ij + δij · ua (2.21)

2.5 Stress-strain relationship for unsaturated elastic soil

In numerical calculations, the stress and strain tensors are stored in 1-D matrices which
only contain the six independent components σi = (σxx, σyy, σzz, τxy, τxz, τ yz) and εi =
(εxx, εyy, εzz, γxy, γxz, γyz). Thus, Equation 2.21 can be reduced into the vector form:

σi = σ?i +mi · ua (2.22)
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2.5 Stress-strain relationship for unsaturated elastic soil

where mi = (1, 1, 1, 0, 0, 0). In this study the air pressure ua is assumed to be atmo-
spheric everywhere in the soil and the net stress σ? is simply equal to the total stress σ.
The stress invariants of the net stress have the symbols p? for the mean net stress and q for
the net deviatoric stress.

If both net stress and suction are applied on a soil element then the rate of total elastic
strain ε̇e is:

ε̇ei = ε̇e?i + ε̇suc−ei (2.23)

where ε̇e?i is the rate of elastic strain due to net stress and ε̇suc−ei is the rate of elastic strain
due to suction.

The Hooke’s law for elastic deformations of unsaturated soil then takes the form:

ε̇ei = Ce
ij · σ̇?j +mj · (u̇a − u̇w)/H (2.24)

where Ce
ij is the elastic compliance matrix and H is a suction dependent elastic modulus.

Equation 2.24 can be inverted to describe net stresses in terms of strains which is more
suitable for finite element coding. This yields:

σ̇?j = De
ij · ε̇ej −De

ij ·mj · (u̇a − u̇w)/H = De
ij · ε̇ej −De

ij ·mj · ṡ/H (2.25)

HereDe
ij is the elastic stiffness matrix formed in terms of net stresses. It is given as follows:

De
ij =

E?

(1 − 2νur)(1 + νur)











1 − νur νur νur 0 0 0
νur 1 − νur νur 0 0 0
νur νur 1 − νur 0 0 0
0 0 0 1/2 − νur 0 0
0 0 0 0 1/2 − νur 0
0 0 0 0 0 1/2 − νur











(2.26)

where E? is the soil Young’s modulus with respect to net stress and νur is the soil Pois-
son’s ratio for unloading-reloading.

For the purpose of considering data from triaxial tests with σ2 = σ3, the above elastic
constitutive relationship can consequently be written in the form:

(
ṗ?

q̇

)

=

(
K? 0
0 3 ·G∗

)

·
(
ε̇ev − ṡ

Ksuc

ε̇eq

)

(2.27)

where K? is the soil bulk modulus and Ksuc is the soil bulk modulus with respect to suction.
They are defined as:

17



Chapter 2 Fundamental Principles

K? = E?/3 · (1 − 2 · νur); Ksuc = H/3 (2.28)

The shear modulus G∗ is related to K? and νur according to the following relation:

G∗ =
3 ·K? · (1 − 2 · νur)

2 · (1 + νur)
(2.29)

In general the elastic soil bulk modulus K? relates elastic volumetric strain to change
in the mean net stress p? whereas Ksuc relates elastic volumetric strain to change in the
suction s implying:

K? = ṗ?/ε̇e?v ; Ksuc = ṡ/ε̇e−sucv (2.30)

The elastic model as expressed in Equation 2.27 is classified as the so-called incremental
elasticity or hypoelastic formulation. Such models are often non-conservative in the sense
that energy can be generated/dissipated in a closed elastic stress path (Zytynski et al.,
1978). An energy conserving model is said to be hyperelastic. The formulation of hypere-
lasticity is based on the existence of an energy function W (εei ) . For small deformations,
the Cauchy stress σi can be expressed in terms of W as:

σi =
∂W

∂εei
(2.31)

and

σ̇i = De
ij ε̇j with De

ij =
∂2W

∂εei∂ε
e
j

(2.32)

Energy-conserving elasticity models for sand have been presented by Vermeer (1978),
Lade and Nelson (1987) and Molenkamp (1988) among others. Borja et al. (1997) pro-
posed the following stored energy function for saturated clays:

W
(
εe
v, ε

e
q

)
= po · κ∗ · e

εe
v−εe

vo
κ? +

3

2
·G · εe2

q 

( 2 . 3 3 )

where κ? is a soil parameter, εevo is the elastic volumetric strain at a reference mean effec-
tive stress po and G is an elastic shear modulus being defined by the expression:

G = Go + α · po

εe
v−εe

vo
κ? ( 2 . 3 4 )

The elastic shear modulus G contains a constant term Go and a term that varies with the
elastic volumetric strain through the constant coefficient α. Although the hyperelastic
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2.6 Experimental determination of elastic soil parameters
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Figure 2.6: (a) Modified triaxial apparatus for testing unsaturated soil after Fredlund and
Rahardjo (1993) (b) Applied stresses during the test.

models have more sound thermodynamical basis, they did not find their way to practical
applications. This might be connected to the long tradition of using hypoelasticity. In
practice, this can be tolerated as long as soil elasticity contributes only little to the general
soil behavior. However, on considering cyclic loading problems and dynamic effects, the
use of a thermodynamically consistent model becomes a must (Benz, 2006). In the rest
of this work, the hypoelastic formulation is used to model the nonlinear elastic behavior
of the soil. This is acceptable as the elastic behavior is not the major focus of this study.

The elasticity moduli K∗ and Ksuc are directly related to constant soil properties. The
determination of these properties for unsaturated soil is similar to the case of fully sat-
urated soils. A very brief description of commonly used procedures is provided in the
following section.

2.6 Experimental determination of elastic soil parameters

Unsaturated soil is usually tested in a modified version of the classical triaxial cell [Fig-
ure 2.6]. The modifications include the possibility of applying suction on the tested soil
sample. Using the control board in Figure 2.7 and the modified cell in Figure 2.6 it is
possible to apply a pore water pressure uw, and a pore air pressure ua controlling them
in a separated manner. This implies that the difference (ua−uw) is also controlled which
explains the reason for calling such apparatus as suction controlled triaxial apparatus. The
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Figure 2.7: Schematic diagram of the control board and plumbing layout for the modified
triaxial apparatus after Fredlund and Rahardjo (1993).

valves A, C and D in Figure 2.6a are used for applying pore water pressure and pore
air pressure on the sample. By closing or opening them one controls the type of the test
being conducted. Table 2.2 lists the most common tests that might be done using this
apparatus. Both sample preparation and actual testing are complicated and time con-
suming. This topic is out of the scope of the current work and the interested reader is
referred to Fredlund and Rahardjo (1993) for further information.

Beside the modified triaxial apparatus, the suction controlled direct shear apparatus and the
suction controlled oedometer are used for testing unsaturated soils. All these devices are
modified versions of the conventional devices for testing saturated soils with special
configurations to apply suction.

2.6.1 Typical stress paths as used in triaxial tests on unsaturated soil

Using the stress invariants as introduced in Section 2.1, one may represent stress paths
in the p?-q-s space. Figure 2.8 shows a possible stress path for a standard triaxial test. The
test starts with a fully saturated soil with suction s = 0, and subsequently the difference
(ua−uw) is increased and the soil sample becomes more dry. Such a path is called suction
path. Subsequently, the suction is kept constant and an all around confining net pressure
(σ3 − ua) is applied, being referred to as an isotropic compression path. In the last phase
the soil sample is loaded to failure by applying an increasing vertical net stress (σ1 − ua)
which is the usual shearing path.
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2.6 Experimental determination of elastic soil parameters

Table 2.2: Common triaxial tests for unsaturated soil.

Test Consolidation phase Shear phase

Consolidated Drained test

All-around confining net stress (σ3 − ua) is

applied. The consolidation phase ends when the

sample reaches equilibrium. The equilibrium

means that there is no further tendency to change

the total volume or water flow out of the sample.

The vertical net stress (σ1 − ua) is

increased till failure. Valves A and C are

always open.

Constant Water Content test Similar to the Consolidated Drained test

The sample is sheared with undrained

water phase and drained air phase. This

implies that valve C is open but valves

A and B are closed.

Consolidated Undrained test Similar to the Consolidated Drained test

The sample is sheared with undrained

conditions for both water and air phases.

valves A, B and C are always closed.

Undrained test There is no Consolidation phase

The initial suction or water content is

kept constant during this kind of tests.

The conventional triaxial apparatus can

be used for this test.

Unconfined Compression test There is no Consolidation phase
Similar to the Undrained test but without

confining pressure.
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Figure 2.8: Stress path for standard triaxial test on unsaturated soil.

In the standard triaxial test, the confining net stress is kept constant during the shearing
phase. In p?-q plane this leads to a ratio q/p? = 3. Theoretically, the modern triaxial
apparatus allows for any stress path but the most common paths are shown in Figure 2.8
and Table 2.3.

Table 2.3: Common stress paths as used for unsaturated soil testing
Stress path Description

suction  s

net mean stress  p*




deviatoric stress q

suction reduction

Isotropic compression under a constant
suction followed by a suction reduction
under a constant net mean stress.

Continued on next page
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Stress path Description

suction  s

net mean stress  p*




deviatoric stress q

3 (1-Ko)

1 + 2.K
o

suction reduction

One dimensional compression under a
constant suction followed by a suction
reduction.

suction  s

net mean stress  p*




deviatoric stress q

3

1

suction reduction

Standard test followed by a suction
reduction.

suction  s

net mean stress  p*




deviatoric stress q

δp*= 0

suction reduction

Shear under a constant net mean stress
followed by a suction reduction.

Figures 2.9 and 2.10 show typical results from standard triaxial tests. The volumetric
deformations during isotropic compression are shown in terms of the soil void ratio, e2.
Figure 2.11 shows the results of soil drying as associated with suction increase under
constant confining net stress. By investigating Figures 2.9 - 2.11 many remarks can be
made with a view towards the basics of saturated soil mechanics. Figure 2.9 presents the
response of unsaturated soil for isotropic loading characterized by a stiff elastic behavior
until a certain loading level ppi, where the stiffness of soil changes markedly, idealized

2void ratio e = Vv/Vs = volume of voids /volume of solids in the soil sample
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Figure 2.9: Isotropic compression at two different suction values after Cui and Delage
(1996).

schematically by an abrupt change in the curve of e-lnp?. Such a point is known as a
preconsolidation point or simply a yielding point in terms of plasticity.

The unloading-reloading index κ describes the elastic soil stiffness during isotropic unloading-
reloading. The experimental results in Figure 2.9 suggests that κ is suction independent.
Indeed this assumption is widely accepted in the field of unsaturated soil modeling and
is also used in this work. However, reality is slightly different as many other experimen-
tal studies show some suction dependency during elastic loading (Wheeler, 1997).

The preconsolidation pressure as well as the post yielding stiffness are obviously suction
dependents. They will receive more discussion in Chapter 4 which is devoted for the
plastic behavior of unsaturated soil.

Figure 2.10 shows the dependency of the failure load upon suction. The higher the suc-
tion, the higher the soil resistance. In addition to that, the shearing path allows the deter-
mination of Young’s modulus with respect to net stress E? and the Poisson’s ratio νur as
indicated in Figure 2.10a and Figure 2.10b. As a consequence, the moduli K? and G? can
be determined using Equation 2.28 and Equation 2.29 respectively. Finally, by drying
the soil samples one can determine the soil stiffness with respect to suction, Figure 2.11
presents the result of such a test where the soil shows two different stiffness separated
by a yield point so on the suction path. The unloading-reloading index with respect to suc-
tion κs can be used to derive the soil elastic bulk modulus with respect to suction Ksuc as
follow:

Ksuc =
(1 + e) · s

κs
(2.35)

The post yielding stiffness and the plastic behavior are further discussed in Chapter 3.
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Figure 2.10: Results of standard triaxial test at different suction levels under a constant
confining net stress of σ?3 = 50 kPa after Cui and Delage (1996).
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Figure 2.11: Results of soil drying under a constant net mean stress after Chen et al.
(1999).
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Chapter 3

Elastoplastic Modeling of Soil

3.1 Introduction

The first sections of this chapter are devoted to the explanation of the general princi-
ples of plasticity used to develop the so-called critical state soil mechanics (Vermeer, 2006).
Figure 3.1 shows the results of the standard triaxial test as discussed in Section 2.6 but
with one unloading-reloading cycle. Up to some point A, the stress-strain relationship is
more or less elastic and linear. If unloading takes place at any point along OA the mate-
rial will follow the same path but in the opposite direction. Beyond point A unloading
will not show full reversibility of strain, i.e. a return to point O. Such a point A is known
as the yield point. If the sample is loaded up to B and then unloaded to C, permanent de-
formations OC will occur being known as plastic deformations. At point B the total axial
strain ε1 can be expressed as follows:

ε1 = εe1 + εp1 (3.1)
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Figure 3.1: Triaxial shear test with unloading-reloading cycle.
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Figure 3.2: (a) Perfect plasticity (b) Linear strain hardening or softening plasticity.

where εe1 is the elastic strain component and εp1 is the plastic strain component. This
decomposition of total strain into elastic and plastic components forms one of the basic
equations in elastoplasticity. Hence:

εi = εei + εpi (3.2)

where εi denotes a strain component.

On reloading starting from point C, the primary loading curve is reached at point D and
then follows the primary loading curve up to a maximum value qmax at point E where the
soil fails. Shear stress at point E is known as soil shear resistance under constant confining
pressure σ?3 .

During primary loading along the paths OABDE the so-called yield point is gradually
moved from A to E. This process of increasing the yielding point is known as hardening.
The increase of yielding stress is usually related to the plastic deformation experienced
by the soil or to the mechanical work applied on the material. This explains the expres-
sion strain-hardening or work-hardening as used to describe such type of behavior.

3.2 Plastic behavior modeling

By using soil plasticity it is possible to explain many geotechnical problems in a logical
manner. This includes among others the bearing capacity of a shallow foundation, slope
stability and tunnel stability. Furthermore, it allows for the full description of stress-
strain relationship. In other words, the strain can be predicted up to failure. In what
follows, the focus is placed on elastoplastic modeling as the most dominant framework
for plastic modeling of soil. For instance Figure 3.2a shows a linear elastic-perfect plas-
tic behavior where the material behaves elastically with linear stress-strain relationship
up to the yield point, afterwards the material shows continuous plastic yielding (plastic
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flow) under constant stress. In terms of plasticity, such a material shows no hardening
and the stiffness H of the material reduces to 0. Another type of plastic behavior is seen
in Figure 3.2b where the linear stress-strain is continuous in the plastic range but with a
lower stiffness H as compared to the stiffness E in the elastic range. If the plastic stiff-
ness H > 0, then the behavior is referred to as strain hardening behavior and it is called
strain softening behavior for H < 0. In comparison to Figure 3.1, one concludes that the
unsaturated soil behavior can be classified as elastoplastic involving nonlinear elasticity
and nonlinear strain hardening (or softening) plasticity. All subsequent discussions and
modeling of unsaturated soil behavior will be based on the principles of this framework.

To describe the stress-strain relationship within the framework of elastoplasticity, four
items should be discussed and clarified:

1. The yield function f is a function of the stress state and some state variables of the
material being modeled. It is formulated in a way that it takes negative values as
long as the material is elastic. The yield function will be zero when the material
yields. Values larger than zero are not possible, at least not in the framework of
elastoplasticity. For instance, point A in Figure 3.1 and all subsequent points of the
curve segment ABDE are points on a yield function with f = 0.

2. The plastic flow rule which determines the relative values of the plastic strain rate
components at yielding.

3. The hardening law which defines the relation between material hardening (or soften-
ing) and plastic strains that the material undergoes during yielding. A hardening
law may be considered as part of the yield function.

4. The so-called consistency condition.

The following sections serve to discuss each of the items in detail.

3.2.1 Yield function

The material state defining whether or not yielding occurs is dependent on all stress com-
ponents. In the special case in which the material is isotropic, the state can be described
based on principal stresses alone. One well-known yield criterion is that introduced by
the French engineer Coulomb (1773) during his work on retaining walls. His criterion
for failure of dry or saturated soil states that:

τf = c′ + σ′ · tanϕ′ (3.3)

where τf is the shear stress at failure i.e. the shear strength, c′ and ϕ′ are the effective
cohesion and effective friction angle respectively. The stress σ′ is the effective normal
stress at failure. Rewriting Equation 3.3 in principal stresses yields the Mohr-Coulomb
equation:
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Figure 3.3: Mohr-Coulomb failure surface (a) fully saturated soil (b) unsaturated soil.

σ′
max − σ′

min = sinϕ′ · (σ′
max + σ′

min + 2 · c′ · cotϕ′) (3.4)

where σ′

max and σ′

min are the maximum and the minimum principal stress respectively.
This equation can also be written as:

f = (σ′
max − σ′

min) − sinϕ′ · (σ′
max + σ′

min + 2 · c′ · cotϕ′) = 0

It is more convenient to express the function f by means of invariants as:

f = p′ · sinϕ′ + q

(
cosθ√

3
− sinθ · sinϕ′

3

)

− c′ · cosϕ′ (3.5)

where θ is the Lode’s angle with −π/6 < θ < π/6 as introduced in Section 2.1. For
f = 0, one obtains the Mohr-Coulomb failure criterion. Figure 3.3a shows the graphical
representation of the Mohr-Coulomb criterion for cohesionless soil with c′ = 0. It takes
the shape of an irregular hexagonal pyramid in principal effective stress space. The
Mohr-Coulomb yield function has been extended by Fredlund et al. (1978) in order to
consider unsaturated states. In principal net stress space it yields:

f ? = (σ?max − σ?min) − sinϕ′ · (σ?max + σ?min + 2 · c · cotϕ′) (3.6)

where σ?max is the major compressive net stress and σ?min is the minor one. In terms of
invariants this function is formulated as:

f ? = p? · sinϕ′ + q

(
cosθ√

3
− sinθ · sinϕ′

3

)

− c · cosϕ′ (3.7)
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In the above function, the cohesion c consists of two components: the effective cohesion,
c′ and the suction contribution to capillary cohesion. The effect of suction on the shear
strength will be discussed in more detail in Chapter 4. Plotting the failure criterion f ? = 0
in the principal net stress space results in Figure 3.3b. The extension of the surface on
the tension side mainly comes from the suction contribution, as the effective cohesion is
generally low for soils.

The Mohr-Coulomb criterion still offers one of the most reliable models for soil failure
prediction. The elastic perfectly plastic Mohr-Coulomb model, on the other hand, gives
an extremely incomplete picture for pre-failure deformations. It predicts elastic response
as long as the stress state lies inside the pyramid. However, experiments show that soil
experiences volumetric and shear plastic deformations well before stress points touch
the Mohr-Coulomb surface. This requires better description for the stiffness of the soil
being modeled.

Another well-known failure criterion is the Drucker-Prager yield criterion (Drucker and
Prager, 1952). In this model, the Mohr-Coulomb surface is replaced by a cone as shown
in Figure 3.4. The yield function is expressed mathematically as:

f = q −M · (p′ + c′ · cotϕ′) (3.8)

and for unsaturated soil:

f ? = q −M · (p? + c · cotϕ′) (3.9)

where M is the slope of yield surface boundary with respect to the hydrostatic axis and

σ'2

σ'3

hydrostatic axis

   σ'1=σ'2=σ'3




σ'1

Figure 3.4: Drucker-Prager failure surface.
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Figure 3.5: Strain increment direction.

c has the same meaning as the one in Equation 3.6.

For plane strain conditions the Drucker-Prager failure criterion may be used such that it
matches the Mohr-Coulomb failure criterion. This issue will be discussed later in Section
3.4.5.

3.2.2 Flow rule

The flow rule specifies the ratios of the plastic strain rates at yielding as a function of the
stress state. Thus the flow rule describes the relative sizes of individual strain rates, but
not their absolute values. The flow rule can be written as:

ε̇pi = Λ
∂g

∂σi
(3.10)

in this equation Λ is a plastic multiplier. The function g is the so-called plastic potential. The
plastic potential function is used to define the directions of plastic strain rates in stress
space. By taking the partial derivatives of the plastic potential function with respect
to stress one obtains a unique direction of plastic strain rate. For g = constant, one
obtains surface in stress space. If one draws the vectors of plastic strain rates they will
be normal to g as indicated in Figure 3.5. The shape of g function can be determined
experimentally, but for metals it turned out that the plastic potential function is similar
to the yield function f . For particular models with g = f , the condition of normality is
satisfied and the model is referred to as associated. For g 6= f the model is non-associated,
which is typical for soils.

It is worth mentioning that the principal directions of plastic strain rate tensor coincides
with the ones of the stress tensor. This so-called coaxiality is typical of isotropic elasto-
plastic models.
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Figure 3.6: Examples of hardening (a) isotropic hardening (b) rotational hardening.

3.2.3 Hardening law

The hardening law extends the concept of a strain-dependent yield stress increase as
introduced in Section 3.1 to general states of stress. Hardening of a material is an expan-
sion, translation or rotation of the yield surface in the stress space or a mixture of the
previous mechanisms. Figure 3.6 shows an example of a yield surface expansion and
a yield surface rotation in the invariants p?-q plane. If the yield surface keeps its initial
shape during plastic flow then it is named isotropic hardening. Hardening which causes
yield surface rotation is called rotational hardening.

The hardening rule can be integrated into the yield function by writing:

f(σi, θj) = 0 (3.11)

where θj stands for internal material variables known as hardening/softening parameters.
The hardening parameters define the current shape of the yield function (the size, the
degree of rotation, etc...). They are functions of plastic strain measures according to
specific rules which characterize the model being used. A stress state with f(σi, θj) < 0
is associated with elastic unloading-reloading of the material.

3.2.4 The consistency condition

During the time that the material is yielding, the condition 3.11 is always satisfied. In
elastoplasticity a stress state with f(σi, θj) > 0 is not possible. During plastic yielding it
also yields:

ḟ =
∂f

∂σi
σ̇i +

∂f

∂θj
θ̇j = 0 (3.12)

which is the so-called consistency equation.
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The consistency condition then provides the following loading criterion:

∂f

∂σi
σ̇i







> 0 plastic loading
= 0 neutral loading

< 0 elastic unloading or softening
(3.13)

Equation 3.12 can be written in the form:

ḟ =
∂f

∂σi
σ̇i −H · Λ (3.14)

with H = − ∂f
∂θj
θ̇j · 1

Λ
. The modulus H is know as a modulus of plastic hardening/softening.

For perfect plasticity with no hardening, H is simply zero. In the case of strain hardening
behavior with a single hardening parameter θ, the amount of plastic work done during
plastic deformation represents this parameter (Zienkiewicz and Taylor, 1994). Thus:

θ̇ = σ1 · ε̇p1 + σ2 · ε̇p2 + ... = σi · ε̇pi (3.15)

The plastic strain rate can be calculated using the flow rule 3.10. On doing so and sub-
stituting the result in the definition of H one can write:

H = −∂f
∂θ

· σi ·
∂g

∂σi
(3.16)

and in terms of invariants:

H = −∂f
∂θ

·
(

p · ∂g
∂p

+ q · ∂g
∂q

)

(3.17)

3.3 The stress-strain formulation in case of elastoplastic

model

This section summarizes the basic theoretical steps needed to describe the elastoplastic
behavior of material through the formulation of the so-called elastoplastic stiffness matrix.
The derivation is done using the standard incremental form of the constitutive equations
together with the consistency condition given in Equation 3.12. For stresses and strains,
the vector notation is used. In other words, only the independent stress and strain com-
ponent will be employed. This serves the purpose of simplicity for the implementation
in finite element code.

Assuming additive decomposition of small strains as introduced in Section 3.1, the total
strain rate can be written as:

34



3.3 The stress-strain formulation in case of elastoplastic model

ε̇i = ε̇ei + ε̇pi (3.18)

The associated stress rate during plastic loading is:

σ̇i = De
ij · ε̇ej = De

ij ·
(
ε̇j − ε̇pj

)
(3.19)

Using the flow rule to determine the plastic strain increments, it is found that:

σ̇i = De
ij ·
(

ε̇j − Λ
∂g

∂σj

)

(3.20)

During plastic straining the stresses should stay on the yield surface. To this end the
consistency condition:

ḟ =
∂f

∂σi
σ̇i −H · Λ = 0 (3.21)

must be satisfied.

Substituting Equation 3.20 into 3.21 results in:

∂f

∂σi
·De

ij ·
(

ε̇j − Λ
∂g

∂σj

)

−H · Λ = 0 (3.22)

Solving for Λ yields:

Λ =

∂f
∂σi

·De
ij · ε̇j

H + ∂f
∂σk

·De
kl · ∂g

∂σl

( 3 . 2 3 )

Substituting Λ as calculated in Equation 3.23 into Equation 3.20 one obtains:

σ̇i = Dep
ij · ε̇j (3.24)

where:

Dep
ij = De

ij − α ·
De

ik · ∂g
∂σk

· ∂f
∂σl

·De
lj

−∂f
∂θ

· σm · ∂g
∂σm

+ ∂f
∂σn

·De
nq · ∂g

∂σq

( 3 . 2 5 )

The factor α plays the role of a switch, it takes a value of α = 0 for purely elastic behav-
ior and α = 1 for elastoplastic behavior. For non-associative plasticity with g 6= f the
elastoplastic matrix, Dep

ij is generally non-symmetric.
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To this end, it is now possible to describe the whole stress-strain behavior for a given
model. The required elastoplastic equations for the model being used can be reproduced
by inserting in the suitable yield function, the plastic potential function, the hardening
parameters, and the hardening rule in the previous illustration. In the following section,
the elastoplastic matrix will be derived for the well known Modified Cam Clay model.
That is intentionally done as this model forms the bases for all other models that will be
discussed later.

3.4 Cam Clay model

The Cam Clay model was developed in 1960s. The model is oriented to capture the basic
features of normally consolidated clay as well as lightly overconsolidated clay. There are
two well known versions of this model. The first is the so-called Original Cam Clay model
(Roscoe et al., 1965) while the other is the Modified Cam Clay model (Burland, 1967). The
modified version is generalized to general states of stress by Roscoe and Burland (1968).
Cam Clay is a well established elastoplastic framework in geotechnical literature. Many
papers have been published on this model. Valuable information about Cam Clay model
can be found in the books by Schofield and Wroth (1968), Atkinson and Bransby (1978),
Atkinson (1981), Britto and Gunn (1987) and Wood (1990). The model is designed for
fully saturated soil and the stress measure used is the well known effective stress. The
following sections summarizes the basic features of soil behavior as reproduced by the
model.

3.4.1 Isotropic loading

One of the basic assumption in the Modified Cam Clay model is that for primary loading
there is a logarithmic relation between the mean effective pressure p′ and the void ratio
e. It is represented as a line in Figure 3.7. This line is known as the Normal Consolidation
Line (NCL). On representing this relation in the plane lnp′-e, NCL becomes a straight line
with a slope of λo, being denoted as the compression index. The ultimate stress level ever
reached on this line is called the isotropic preconsolidation pressure ppo. During unloading
and reloading up to the preconsolidation stress, a different line is followed with a differ-
ent slope κ, being known as the unloading-reloading index. Indeed, there is infinite number
of unloading-reloading lines in the plane p’-e each one corresponds to a particular value
of ppo.

By loading from A to B on the NCL, the change in the void ratio can be written as:

eB − eA = ∆e = −λo · ln
pBpo
pApo

(3.26)
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Figure 3.7: Typical saturated soil response in isotropic compression (a) normal scale (b)
semi-logarithmic scale.

For isotropic unloading to C and then reloading to B, the soil is considered to behave
fully elastic and the change in void ratio is:

eB − eC = ∆ee = −κ · lnp
′
B

p′C
(3.27)

Equations 3.26 and 3.27 can be rewritten in terms of the volumetric strains as:

∆εv = − ∆e

1 + e
= λ?o · ln

ppo + ∆ppo
ppo

; ∆εev = − ∆ee

1 + e
= κ? · lnp

′
o + ∆p′

p′o
(3.28)

with λ?o = λo/ (1 + e) and κ? = κ/ (1 + e). The symbol ∆εev represents the elastic volu-
metric strain change on reloading from p′o to p′o + ∆p′. In rate form, the above equations
yield:

ε̇v = λ?o ·
˙ppo
ppo

; ε̇ev = κ? · ṗ
′

p′
(3.29)

Following the elastoplastic rules, the volumetric plastic strain rate ε̇pv can be calculated
as:

ε̇pv = ε̇v − ε̇ev = (λ?o − κ?) · ṗpo
ppo

(3.30)
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3.4.2 Yield surface and flow rule

The rate of plastic work per unit volume of a triaxial sample with applied p′ and q stress
is given as:

Ẇin = p′ · ε̇pv + q · ε̇pq (3.31)

Roscoe and Burland (1968) gave the following expressing for the rate of plastic energy
dissipated at failure (at critical state):

Ẇdis = p′ ·
√

(ε̇pv)
2
+ (M · ε̇pq)2 (3.32)

where q/p′ = M at critical state. The energy conservation requires that at critical state:

Ẇin = Ẇdis

thus:

p′ · ε̇pv + q · ε̇pq = p′ ·
√

(ε̇pv)
2
+ (M · ε̇pq)2 (3.33)

rearranging Equation 3.33 yields:

ε̇pq
ε̇pv

=
2 (q/p′)

M2 − (q/p′)2 (3.34)

Adopting the normality concept, the following plastic potential appears:

g = q2 −M2 · p′ · (ppo − p′) (3.35)

The Modified Cam Clay model involves an associated model with f = g. The yield
function is an ellipse in p’-q plane as shown in Figure 3.8. The size of the ellipse is
controlled by ppo. Varying ppo and presenting the results in the space p’-q-e, the yield
surface as shown in Figure 3.9 is generated.

In the p’-q plane, the crest of the expanding ellipse generates a straight line with a slope
of M . This line starts at the coordinate origin as it shown in Figure 3.8. It is known as
the Critical State Line. The slope of this line determines the shape of the yield surface.
The generalization of the yield function to the general state of stress is achieved by sub-
stituting q and p′ by their value as defined in Equation 2.8. On doing so and plotting
the result in the general stress space, one gets an ellipsoid as a yield surface for the Cam
Clay Model similar to that in Figure 3.10.
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Figure 3.8: Modified Cam Clay yield surface in p’-q plane.
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Figure 3.9: Modified Cam Clay yield surface in p’-q-e space.
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Figure 3.10: Modified Cam Clay yield surface in principal stress space.

3.4.3 Modified Cam Clay hardening rule

The hardening parameters determine how the yield surface changes in size and position
with plastic straining. The size of the yield surface is determined by the isotropic pre-
consolidation pressure ppo which is in turn a function of the plastic strain. To be more
precise, it is a function of the volumetric part of the plastic strain. Recalling Equation
3.30 it can be shown that:

ṗpo =
ppo

λ?
o − κ?

· ε̇p
v; ppo = pinitial

p o 

· e∆ε 

p
v 

/ (λ?
o 

− κ 

? ) ( 3 . 3 6 )

which is the hardening rule within the Cam Clay model. It gives the evaluation of the
preconsolidation pressure and consequently the size of the yield surface as a function of
the volumetric plastic strain. In the above formula pinitialpo is the preconsolidation pressure
at the beginning of plastic loading.

3.4.4 Elastoplastic matrix for Cam Clay model

Section 3.3 defines the general steps as used to derive the elastoplastic stiffness matrix
model. Section 3.3 adopts the stress components in the derivation. Here the derivation
is done in terms of invariants. That is only done for the seek of completeness to show
how it is also possible to perform the derivation in p’-q plane.

Using the chain rule, the yield function derivatives with respect to stress components
can be expressed in terms of invariants as:
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∂g

∂σi
=
∂f

∂σi
=
∂f

∂p
· ∂p
∂σi

+
∂f

∂q
· ∂q
∂σi

(3.37)

with

∂f

∂p
= M2 · (2p− ppo) ;

∂f

∂q
= 2q (3.38)

∂p

∂σi
= (1/3, 1/3, 1/3, 0, 0, 0) ;

∂q

∂σi
=

3

2q
· (σ1 − p, σ2 − p, σ3 − p, 0, 0, 0)

The only missing term to fully define the elastoplastic matrix is the hardening modulus
as expressed in Equation 3.17. In Cam Clay the internal variable is the plastic volumet-
ric strain only. It affects the preconsolidation pressure ppo in a manner defined by the
hardening rule 3.36. Thus, for Cam Clay model, the term −∂f

∂θ
in Equation 3.25 is written

as:

−∂f
∂θ

= − ∂f

∂εpv
= − ∂f

∂ppo
· ∂ppo
∂εpv

with

∂f

∂ppo
= −M2 · p; ∂ppo

∂εpv
=

ppo
λ?o − κ?

(3.39)

By substituting the previous terms in Equation 3.25, the required elastoplastic matrix for
Cam Clay model can be obtained. The same procedure will be followed later on when
deriving the elastoplastic stress-strain relationship for other models.

3.4.5 On the failure criterion as used in Cam Clay

Figure 3.11 shows Modified Cam Clay surface together with Drucker-Prager failure sur-
face. By adding the Drucker-Prager failure surface, a possible soil softening will be cut-
off and the intersection of both surfaces resembles a circle of critical state in deviatoric
plane. For high friction angles, the Drucker-Prager criterion deviates noticeably from
the actual failure stress. For this reason it is better when dealing with stability problems
to adjust M value in such a way that Drucker-Prager circle (critical state circle) matches
Mohr-Coulomb hexagon at the right failure point. The adjustment is dependent on the
stress state at failure. In general, one may use the Lode formula (Nesnas, 1995) which
relates M to the friction angle ϕ′:

M =
3 · sinϕ′

√
3 · cosθo + sinθo · sinϕ′

(3.40)
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Figure 3.11: Cam Clay cap with Drucker-Prager failure surface in stress space.
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Figure 3.12: Drucker-Prager and Mohr-Coulomb Failure criteria in deviatoric plane.

where θo is related to θ in Figure 3.12 so that θo = θ − π/6. In the case of failure associ-
ated with the triaxial compression, Mohr-Coulomb and Drucker-Prager failure surfaces
should match at point A where θo = −π/6. This yields:

M =
6 · sinϕ′

3 − sinϕ′
(3.41)

In this case, the Drucker-Prager circle represents the outer bound of Mohr-Coulomb sur-
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Figure 3.13: Modified Cam Clay being improved by Mohr-Coulomb failure surface.

face. For triaxial extension the two surfaces should agree at point B where θo = π/6
giving;

M =
6 · sinϕ′

3 + sinϕ′
(3.42)

One of the most interesting cases in this study is the plane strain conditions. According
to Brinkgreve (1994), Nesnas (1995) and Griffiths (1989) the two criteria give similar re-
sults in such case when θo varies in the range −π/9 ∼ 0. This yields the following value
for M

M '
√

3 · sinϕ′ (3.43)

For general conditions of stress and strain, it would be much better to adopt the Mohr-
Coulomb failure criterion together with the Cam Clay cap. This means that one should
use a Lode’s angle dependent critical state concept. This is straight forward if Equation 3.40
is adopted directly in the formulation of the yield surface Equation 3.35. On doing so,
the revised Modified Cam Clay model with Mohr-Coulomb failure criterion results. The
model in three dimensional stress space has the form shown in Figure 3.13. Although
the adoption of Mohr-Coulomb has many benefits, it introduces numerical difficulties
as associated with the singularities at the intersections between the failure surfaces in
Mohr-Coulomb criterion as well as the intersection between Mohr-Coulomb failure sur-
face and Cam Clay Cap. This may be solved by using more advanced failure criteria
such as Lade and Duncan (1975) or Matsuoka and Nakai (1974). The coverage of the
latter criteria are out of the scope of this dissertation.
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3.5 On Modified Cam Clay parameters

The Cam Clay model requires six input parameters namely the initial void ratio e, the
Poisson’s ratio for unloading-reloading νur, the unloading-reloading index κ, the plastic
compression index λo, the isotropic preconsolidation pressure ppo and the friction angle
ϕ′. The first five parameters are used to simulate soil stiffness. The sixth parameter is
used to predict the shear strength.

3.5.1 Stiffness parameters as used in Cam Clay model

The initial void ratio e can be determined using a simple laboratory test (Bradet, 1997).
Its common values lies in the range 0.4 for very dense soil to 1.5 for very loose soil. How-
ever, its value can reach some very high values as much as 3.0 in case of very soft clay.
The Poisson’s ratio during unloading-reloading νur can be determined using a conven-
tional triaxial test [see Section 2.6]. The common values of νur range between 0.15 ∼ 0.2
for most of the soils. The experimental determination of κ, λo and ppo has been discussed
in Section 2.6 where an isotropic compression test in a triaxial cell can be conducted to de-
termine them. If no triaxial apparatus is available then a one-dimensional compression
results may be used. Assuming that Cs, Cc are the swelling index and the compression
index as determined from the one-dimensional compression test. Then the following
relations to convert them to Cam Clay parameters can be used:

κ ≈ 2Cs
2.3

; λo =
Cc
2.3

(3.44)

In the case no experimental data is available, the chart in Figure 3.14 for first estimation
may be applied. The chart contains intensive data which relates Cs and Cc to the soil
index of plasticity1 Ip. The ratio λo/κ for a certain soil usually varies between 5 to 10.

It would be better to use λ?o = λo/(1+ e) and κ? = κ/(1+ e) instead. In this way, the need
to provide a value for e can be removed, provided that λ?o and κ? are determined using
the plane lnp′ − εv instead of the usual lnp′ − e plane.

The isotropic preconsolidation pressure ppo is determined directly from the isotropic
compression test. The preconsolidation pressure σp as determined from the one-dimensional
test can be converted to a ppo value using the formula:

ppo = σp ·
[
1 + 2 ·KNC

o

3

]

·
[

1 +
9 ·
(
1 −KNC

o

)2

M2 · (1 + 2 ·KNC
o )2

]

(3.45)

The above equation is derived using Equation 3.35 bearing in mind that during one-
dimensional loading the ratio q/p′ = 3 ·

(
1 −KNC

o

)
/
(
1 + 2 ·KNC

o

)
. The symbol KNC

o

1Index of plasticity Ip = Liquid limit wl - Plastic limit pl
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s

Figure 3.14: One-dimensional stiffness indexes as a function of plasticity index after Kul-
hawy and Mayne (1990).

stands for the coefficient of earth pressure at rest for a normally consolidated soil. The
KNC
o value is well predicted by Jaky’s empirical formula (Jaky, 1944) which gives an

estimate for KNC
o based on the soil friction angle ϕ′ as follows:

KNC
o = 1 − sinϕ′ (3.46)

The above expression can be used if no information is available about the in-situ geo-
static stress state.

3.5.2 Strength parameter as used in Cam Clay model

The internal friction angle ϕ′ is the only strength parameter being used in Cam Clay. No
cohesion effect is incorporated in this framework. The ϕ′ value is used to determine the
slope M of the critical state line according to Equation 3.41. In case of no information
about the friction angle is known, the chart in Figure 3.15 can be used. The symbol φ̄cv in
the chart stands for the friction angle at the critical state. Its value is given as a function
of the soil index of plasticity, thus the chart is suited only for clay.

The Cam Clay model is suitable for modeling clays in the fully saturated state. Modeling
the unsaturated behavior needs some extra assumptions with respect to the effect of
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Figure 3.15: The friction angle at critical state as a function of plasticity index after Kul-
hawy and Mayne (1990).

suction on soil strength and stiffness. This issue will be discussed in detail in the next
chapter.
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Chapter 4

Elastoplastic Modeling of Unsaturated
Soil

4.1 Introduction

The focus in this chapter is on the Barcelona Basic Model (Alonso et al., 1990) as an elasto-
plastic model for unsaturated soil. In this study it is used to model isotropic behavior
of unsaturated soil. Before describing the model, some experimental observations are
given to clarify the assumptions that have been used to develop the model.

4.2 Experimental evidences

The development of suction has consequences for the mechanical behavior of unsat-
urated soil. Experimental data accumulated during the last four decades intersect at
some distinguishing points with respect to unsaturated soil stiffness and strength. In the
following the most important observations will be illustrated.

4.2.1 Effect of suction on soil stiffness

Much work has been done investigating the effects of suction on soil stiffness both in
elastic and elastoplastic states. Considering the two independent stress measures, most
of the experimental work has focused on studying the soil response towards two gen-
eral categories of stress paths. The first represents the variation of net stress while keep-
ing the soil sample under constant suction. The other category involves the increase or
the decrease of suction under constant net stress. Unsaturated soil consolidation and
undrained behavior where both suction and net stress vary simultaneously with time
are not discussed here.
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Chapter 4 Elastoplastic Modeling of Unsaturated Soil

4.2.1.1 Loading-unloading under constant suction

Loading-unloading behavior under constant suction is typically studied in one dimen-
sional compression or by using a suction-controlled triaxial cell. For the sake of clarity, a
sketch of the stress path as followed in the experiment is added to each result being pre-
sented. Figure 4.1 presents a typical result of isotropic loading-unloading under constant
suction. It shows that the elastoplastic behavior of an unsaturated soil resembles very
much that of a fully saturated soil. The similarity appears in the stiff reversible elastic
behavior during unloading-reloading and the existence of a yield point, where the soil
shows a sudden reduction in stiffness with irreversible plastic deformations. Iwasaki
(1978) repeated the isotropic loading at different suction values. The results are shown
in Figure 4.2a. According to these results, suction affects both the yield stress and post
yielding stiffness. Similar observations are reported by Wheeler and Sivakumar (1995)
as shown in Figure 4.2b.

It is widely accepted that suction increases the preconsolidation pressure pp according to
a certain rule. It is also accepted that suction has little effect on soil stiffness in the elastic
range. Speaking in terms of critical state soil mechanics, this means that the unloading-
reloading index κ can be considered as suction independent (Alonso et al., 1990; Wheeler
and Sivakumar, 1995; Cui and Delage, 1996). For primary loading there are many dis-
cussions about the way that suction affects the compression index λ. The data in Figure
4.2a and Figure 4.2b give contradictory conclusions. In the first figure, λ decreases with
increasing suction, which means increasing stiffness with suction, while in the second
figure stiffness decreases with suction increase. A lot of discussion can be found about
the modeling of this feature (Wheeler and Sivakumar, 1995; Josa et al., 1992). This topic
will be covered in the next paragraph.
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Figure 4.1: Isotropic loading-unloading for unsaturated soil after Zakaria (1995).
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Figure 4.2: Isotropic loading at different suction values (a) suction increases soil stiff-
ness after Iwasaki (1978) (b) suction decreases soil stiffness after Wheeler
and Sivakumar (1995).
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Figure 4.3: Typical results of one-dimensional compression under suction reduction after
Maswoswe (1985).

4.2.1.2 Wetting under constant net stress

A large amount of data can be collected from published studies about soaking unsat-
urated samples while keeping the applied load constant. In terms of unsaturated soil
mechanics this means reduction of soil suction under constant net stress (Zakaria, 1995;
Maatouk et al., 1995; Yudhbir, 1975; Sharma, 1998). Such type of tests are always men-
tioned in conjunction with the behavior of loess, being a so-called collapsible soil. Figure
4.3 presents results of three one-dimensional compression tests on similar soil samples.
In the first test the soil is compressed up to 2000 kPa. In the second and the third test, the
soil is firstly loaded up to 200 kPa and 400 kPa respectively followed by soaking under
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Figure 4.4: Collapse potential for different soils after Yudhbir (1975).

these constant loads. Upon wetting, the soil shows additional settlement, depending on
the applied load. The amount of additional compression is determined by the vertical
distance between the compression curve in the unsaturated state and the curve for full
saturation. This brings us back to the question of the relation between soil stiffness and
suction.

If one assumes an increase of soil stiffness with suction as suggested in Figure 4.2a, it
would imply an increase of wetting-induced collapse with increasing suction and net
stress. In contrast, the adoption of the assumption that stiffness decreases with suction
such as in Figure 4.2b means that the collapse is decreasing with increasing stresses. Au-
thors like Yudhbir (1975), however, reported that as the net stress increases there is a
maximum value of wetting-induced collapse, after which the magnitude of the collapse
decreases until becoming quite small at high confining pressures. Such a behavior is
clearly shown in Figure 4.4. Figure 4.5a shows two extreme cases. If the wetting takes
place at a relatively low confining pressure the soil swells as in the path FD. On the
contrary, when the confining pressure is high the soil reduces in volume upon wetting
as in path IG. An intermediate behavior is also likely to happen such that in Figure 4.5b
where the soil at first shows swelling up to a certain suction level. Afterwords, with a
continuous wetting the soil experiences compression. Modeling this behavior was the
biggest obstacle facing the concept of single effective stress measure. Such a measure
failed to explain this reversible behavior. It is established with time that capturing this
behavior is one of the fundamental requirements which should be satisfied by a success-
ful constitutive model for unsaturated soil.
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Figure 4.5: Soil response during wetting under constant net stress (a) pure swelling
or pure collapse after Josa et al. (1987) (b) swelling followed by a plastic
compression after Wheeler and Sivakumar (1995).

10 100 1000
5

4

3

2

1

0

suction  s [kPa]

vo
lu

m
et

ric
 s

tra
in

  ε
v 

[%
]

p*= 5 kPa
p*= 50 kPa
p*= 100 kPa
p*= 200 kPa

p*

s

200

500

followed stress paths

100 50  5

yielding point

elastic 


behaviour

elastoplastic


behaviour

Figure 4.6: Soil drying under different constant net stresses after Chen et al. (1999).

4.2.1.3 Drying under constant net stress

In another common stress path, the suction is increased under constant external load.
Typical results of such a test on clay samples are shown in Figure 4.6. These data show
the change in stiffness during shrinkage. The behavior in this path is marked by the
existence of a yield point, separating elastic reversible behavior from elastoplastic irre-
versible behavior. Even though such a behavior is not studied in depth in literature, it
is still an important feature in explaining the reason for stress path dependency in the
behavior of unsaturated soil (Alonso et al., 1990).
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Figure 4.7: Yield points for different stress paths and different suctions after Zakaria
(1995).

4.2.1.4 Yielding of unsaturated soil

Zakaria (1995) performed a number of suction-controlled triaxial tests on kaolin to in-
vestigate the shape of the yield surface. The samples were isotropically consolidated
and then sheared along different stress paths. Figure 4.7 shows the yield points as de-
termined at different suction values. Zakaria (1995) concluded that the cross section of
the yield surface at constant suction resembles an ellipse in p?-q-plane around the p?

axis. The ellipse apex lies on the suction dependent critical state line as indicated in Fig-
ure 4.7. The size of the ellipse increases with suction as can be seen in Figure 4.7. For
studying the critical state in unsaturated soil, Wheeler and Sivakumar (1995) conducted
shear tests at constant suction. Figure 4.8 presents the results for a suction of 200 kPa.
The unique critical state line as indicated by the dashed line is obvious at failure. Other
tests at different suction values show a similar behavior. These observations support the
idea of adopting a “modified” version of the Modified Cam Clay ellipse to describe the
yielding of unsaturated soil.

4.2.2 Effect of suction on soil strength

Experimental techniques as used in testing the strength of unsaturated soil vary between
a simple shear test with suction control and a triaxial shear test with suction control.
Figure 4.9 contains typical results of a direct shear test on unsaturated soil. Most data
show that suction has little effect on the friction angle ϕ′, as it is clear in Figure 4.9a, but it
does cause a nonlinear increase in soil cohesion. Indeed, suction creates a new cohesion
component which contributes to the shear strength. The cohesion component is known
as capillary cohesion. The capillary cohesion increases in an accelerated rate at low suction
values. The rate tends to decline with suction increase as it shown in Figures 4.9b and

52



4.2 Experimental evidences

net mean stress   p* [kPa]

d
e
v
ia

to
ri

c
 s

tr
e
s
s
  
 q

 [
k
P

a
]

0 100 200 300

100

200

300

400

critical state line


for s = 200 kPa

normal consolidation points

critical state points

σ3* constant path

p* constant path

undrained path

Figure 4.8: Critical state points for different stress paths under constant suction s = 200
kPa after Wheeler and Sivakumar (1995).

100 200 300 400 500 600 700
0

200

400

600

800

Normal net stress   σ* [kPa]

sh
ea

r s
tre

ss
   

τ 
[k

Pa
]

s = 0 

s = 50 kPa 
s = 100 kPa 
s = 500 kPa 
s = 750 kPa 

ϕ'

(a)

0 200 400 600 800
0

200

400

600

800

suction   s [kPa]

sh
ea

r s
tre

ss
   

τ 
[k

Pa
]

σ∗ = 120 kPa

σ∗ = 300 kPa

σ∗ = 450 kPa

σ∗ = 600 kPa

(b)
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(1986).
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Figure 4.10: Nonlinear increase of cohesion with suction (a) Glacial till after Gan et al.
(1988) (b) Madrid clayey sand after Escario and Saez (1986).

4.10 for different types of soil. Many authors (Fredlund and Rahardjo, 1993) argue that
shear strength reaches a maximum before it begins to reduce with further increase of
suction.

4.2.3 Summary on the experimental observations

Summing up the previous observations one concludes the following:

• Elastoplasticity is accepted as a possible framework for modeling unsaturated soil
behavior.

• Suction has little effect on the elastic behavior of soil, as observed in Figure 4.2.

• Suction increases the apparent preconsolidation pressure, as observed in Figure
4.2.

• Suction affects the elastoplastic behavior of soil by increasing the post yield stiff-
ness to a maximum followed by a stiffness reduction, as observed in Figure 4.4.

• Confining pressure has a major influence on the soil behavior upon wetting. Wet-
ting under low confining pressure results in soil swelling, whereas wetting under
high confining pressure leads to a soil compression. Soil might also show both
swelling and compression during wetting, as observed in Figure 4.5.

• Cam Clay type of ellipses can be used to model the yield surfaces of unsaturated
soil, as observed in Figure 4.7.

• Soil shows elastoplastic behavior upon suction increase, as observed in Figure 4.6.

• Suction has little effect on the friction angle, as observed in Figure 4.9a.

• Apparent cohesion nonlinearly increases with suction towards an asymptotic value,
as observed in Figure 4.10.
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Figure 4.11: Example of a state surface after Matays et al. (1968).

4.3 Early attempts to model unsaturated soil behavior

4.3.1 Volumetric and shear strains

One of the best-known ideas for describing volumetric changes in terms of net stress σ?

and suction s is the so-called ’state surface’ concept. Such a type of representation can
be traced back to Matays et al. (1968), who provided experimental data in e-σ?-s space
as shown in Figure 4.11. The wrapped shape of the void ratio surface has important
implications in relation to the volumetric changes happening upon wetting. It reflects
the fact that the soil swells (the volume increases) if the wetting is done under low values
of net stress. On the contrary, the soil reduces in volume1 if the wetting is done under
a high net stress value. Matays et al. (1968) sowed that these surfaces are unique for
monotonic loading. Fredlund (1979) gave the first mathematical description for this state
surface in the form:

e = eo − Ct · log σ? − Cm · log s (4.1)

where eo is the initial void ratio. The factor Ct is the compression index with respect
to net stress and Cm is the compression index with respect to suction. The above equa-
tion is graphically represented in Figure 4.12a. The problem of the above formula is that
the volumetric deformations due to suction are totally independent of σ?. This means
that the plastic compression as associated with wetting can not be captured by this ex-
pression. Lloret and Alonso (1985) gave the following improved expression for the state

1In unsaturated soil terminology this phenomenon is referred to as ’soil collapse’ [Fredlund and Rahardjo
(1993)]
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Figure 4.12: (a) State surface as proposed by Fredlund (1979) (b) State surface as pro-
posed by Lloret and Alonso (1985).

surface:

e = eo − a · ln σ? − b · ln s+ d · ln σ? · ln s (4.2)

where a, b, c and d are fitting parameters.

They also provided an expression for the degree of saturation state surface in the form:

Sr = a− tanh(b · s) · (c+ d · σ?) (4.3)

where tanh is the hyperbolic tangent function. Equation 4.2 is able to describe soil
swelling upon wetting under low net stress. The soil compression upon wetting un-
der high net stress is also captured by this surface. Figure 4.12b shows the surface with
possible stress paths. A major draw back of the state surface method is its confined use
to monotonic loading. Upon unloading and reloading, the soil follows another state sur-
face, being usually below the previous one. In addition no distinction between elastic
and plastic deformation can be made using this method. This generally leads to a less
accurate prediction for soil behavior.

The above mentioned concepts were used by Fredlund (1979). He gave an elastic stress-
strain relation somewhat similar to the one being discussed in Subsection 2.5 where:

εei = Ce
ij · σ?j +mj · s/H (4.4)

Lloret et al. (1987) adopted the state surfaces given by Equation 4.2 in order to arrive at
a model which is able to capture the swelling and collapse upon wetting. In the simple
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case of triaxial conditions, the rate of volumetric strain ε̇v and the rate of shear strain ε̇q
were expressed as follows:

ε̇v =
ṗ?

K?
+
ṡ

F
; ε̇q =

q̇

3G?
(4.5)

where K? and F are stress dependent stiffness modulus. They are calculated using the
state surfaces. Furthermore, Lloret et al. (1987) assumed a hyperbolic relationship for G?

of the form:

G? = (G?
o +m · s) ·

(

1 − (σ?1 − σ?3) ·R
(σ?1 − σ?3)f

)2

(4.6)

whereG?
o ,m andR are material constants. The value (σ?1 − σ?3)f stands for shear stress at

failure. The shear strength in the proposed model follows the extended Mohr-Coulomb
criterion as introduced in Equation 3.6. Alonso et al. (1987) gave the first qualitative
description of an elasto-plastic model for unsaturated soil. Later the full mathematical
formulation of the model was given by Alonso et al. (1990). The model was later referred
to as the Barcelona Basic Model. The basic assumptions and mathematical formulation of
this model are given in Section 4.4.

4.3.2 Shear strength

Fredlund et al. (1978) extended the well known Mohr-Coulomb failure criterion to the
case of unsaturated soil. According to this criterion, the shear strength at failure is given
as:

τf = c+ σ?n · tanϕ′ (4.7)

with:

c = c′ + s · tanϕb (4.8)

Hence, the soil cohesion has two components. The usual effective cohesion c′ and the
capillary cohesion, s · tanϕb, which is the suction contribution. This capillary (or ap-
parent) cohesion linearly increases with suction as in Figure 4.13a. The rate of increase
is determined by the angle ϕb, being known as soil friction angle with respect to suction.
The friction angle ϕb is usually determined using the suction controlled direct shear test.
Here samples are sheared under a constant vertical net stress, but at different suction
values (different water contents). Afterwards, a straight line is drawn to match the fail-
ure points. The slope of this line in the plane τ −s determines the angle ϕb. Table 4.1 lists
some typical ϕb values for different soils.
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Figure 4.13: Shear strength with (a) linear cohesion increase with suction (b) nonlinear
increase with suction.

Table 4.1: Experimental values of ϕb.

Soil type c′[kPa] ϕ′[o] ϕb[o] Reference

Compacted shale 15.8 24.8 18.1 Bishop et al. (1960)

Boulder clay 9.6 27.3 21.7 Bishop et al. (1960)

Madrid grey clay 23.7 22.5 16.1 Escario and Saez (1986)

Tappen-Notch Hill Silt 0.0 35.3 13.8 Ho and Fredlund (1982)
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Figure 4.14: Performance of Equation 4.9 in fitting the data by Gan et al. (1988).

Equation 4.8 has a drawback with respect to the linear increase of cohesion with suction.
The experimental observations in Section 4.2.2 show that cohesion nonlinearly increases
up to an asymptotic value. A more realistic failure envelope is shown in Figure 4.13b
with a nonlinear cohesion increase. In this case the cohesion is expressed as:

c = c′ + c? · (1 − e−ω·s) (4.9)

where c? represents the asymptotic maximum value of the apparent cohesion and ω is the
rate at which the asymptotic value is reached with suction increase. Figure 4.14 shows
the performance of such a function in fitting the data by Gan et al. (1988) with c′ = 0,
c? = 120 kPa and ω = 0.005.

Gens (1993) proposed a hyperbolic equation for c of the form:

c = c′ +
s

s+ c? · cotϕ′
· c? (4.10)

This formula ensures that the initial tangent to the failure envelope in Equation 4.7 is ϕ′.
A successful application of this formula is reported by Tarantino and Tombolato (2005).
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4.4 Barcelona Basic Model

The Barcelona Basic Model (BB-model) is an extension of the Modified Cam Clay Model
by adding the effect of suction on soil strength and stiffness. At full saturation, the model
coincides with the Modified Cam Clay Model. The BB-model uses the net stress σ? and
the suction s as the independent stress variables. More precisely, the basic model formu-
lation uses the stress invariants p? and q together with s. The strain conjugates are εv and
εq as previously introduced in Section 2.3. The following subsections are devoted to the
mathematical description of the model. The formulation develops gradually starting by
the isotropic state of stress.

4.4.1 Isotropic loading

Similar to the Modified Cam Clay Model, a logarithmic relation between the mean stress
and the void ratio holds in the BB-model. In the latter case, however, the Normal Con-
solidation Line is suction dependent as shown in Figure 4.15. A logarithmic relation
between suction and void ratio is also assumed. This relationship can be seen in Fig-
ure 4.16 with the curve being referred to as the Normal Consolidation Line with respect to
suction. On representing these relations in the e-lnp? and the e-ln s planes the Normal
Consolidation Lines have slopes λ and λs respectively. The first being known as the com-
pression index at a certain suction value and the latter as the compression index with respect
to suction. The ultimated stress level ever reached on these lines are named the isotropic
preconsolidation pressure at a certain suction level pp and the suction preconsolidation pressure
so.
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4.4.1.1 Net stress primary loading-unloading

For primary net stress loading at a certain suction level, the change in void ratio can be
expressed as:

∆e? ≡ e− eo = −λ · lnpp
p?o

(4.11)

or in terms of volumetric strains:

∆ε?v =
λ

1 + e
· lnpp

p?o
; ε̇?v =

λ

1 + e
· ṗp
pp

(4.12)

In Barcelona Basic Model, λ and pp are related to ppo and λo at full saturation according
to the formula:

pp = pc ·
(
ppo

pc

)λo−κ
λ−κ

; λ = λ∞ 

− (λ∞ 

− λo 

) · e− β ·s ( 4 . 1 3 )

where pc is a reference pressure. The compression index λ∞ represents soil stiffness at
very high suction and β is a factor controlling the rate of stiffness increase with suction.
Section 4.5 is devoted to study the effect of these parameters on Equation 4.13. Figure
4.17 shows a graphical representation of Equation 4.13 in p?-s plane. Hence for full sat-
uration with s = 0 it yields λ = λo and pp = ppo. The larger the suction, the smaller
the compression index λ. In the limit for s = ∞, Equation 4.13 yields λ = λ∞ . The
monotonic increase of soil stiffness with suction is associated with an increase of the pre-
consolidation pressure pp as shown in Figure 4.17. The curve generated by Equation 4.13
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is known as the Loading-Collapse curve.

In fact, this curve is a yield curve separating the elastic behavior from the elastoplastic
one.

On isotropic unloading-reloading the soil is considered to behave fully elastic and the
change in void ratio is:

∆ee? = −κ · lnp
?

p?o
(4.14)

in terms of volumetric strain:

∆εe?v =
κ

1 + e
· lnp

?

p?o
; ˙εe?v =

κ

1 + e
· ṗ

?

p?
(4.15)

Equation 4.14 resembles the usual Cam Clay expression for elastic response. The unloading-
reloading index κ is assumed to be suction independent. Thus its value is constant and
equal to that for a fully saturated condition.

4.4.1.2 Suction primary loading-unloading

For primary suction loading, the change in void ratio can be written as:

∆esuc = −λs · ln
so

so + patm
(4.16)
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The volumetric strains are written as:

∆εsucv =
λs

1 + e
· ln so

so + patm
; ε̇sucv =

λs
1 + e

· ṡ

s+ patm
(4.17)

where λs stands for plastic compression index with respect to suction. The atmospheric
pressure patm is used in Equation 4.16 to avoid numerical problems when approaching
full saturation with s = 0.

If water is added to the soil so that the suction is reduced to point G in Figure 4.16, the soil
experiences so-called “suction-unloading” with an elastic response. Similar expressions
to that in Equation 4.14 can be written. However a different unloading-reloading index
should be used. This index is denoted as κs. It reflects the elastic soil response towards
suction unloading-reloading. The rate of elastic strains with respect to suction is written
as:

ε̇e−suc =
κs

1 + e
· ṡ

s+ patm
(4.18)

The suction isotropic loading-unloading involves two additional soil parameters over
the usual Cam Clay constants, namely the unloading-reloading index with respect to
suction κs and the compression index with respect to suction λs. Information about
the suction preconsolidation pressure so is also required to determine the elastic region
boundary for suction increase. This preconsolidation pressure represents a new yield
line in s-p? plane being known as the Suction Increase (SI) yield line.

This yield function is a straight line in the plane s-p?. Figure 4.18 summarizes the role of
each stiffness parameter during isotropic loading-unloading.

4.4.1.3 General expression for isotropic stress state

For the general case of isotropic unloading-reloading, the change of the void ratio is
purely elastic and related to the net stress and the suction:

ė = ėe = −κ · ṗ
?

p?
− κs ·

ṡ

s+ patm
(4.19)

In terms of volumetric strain, Equation 4.19 yields:

ε̇ev = − ė

1 + e
= κ? · ṗ

?

p?
+ κ?s ·

ṡ

s+ patm
(4.20)

with κ? = κ/(1 + e) and κ?s = κs/(1 + e).

For the general case of isotropic primary loading on both suction and net stress paths,
the rate of volumetric strain is given as:
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Figure 4.18: Elastic zone boundaries according to Barcelona Basic Model.

ε̇v = ε̇?v + ε̇sucv = λ? · ṗp
?

p?p
+ λ?s ·

ṡ

s+ patm
(4.21)

with λ? = λ/(1 + e) and λ?s = λs/(1 + e). The plastic component of volumetric strain rate
is given by:

ε̇pv = ε̇v − ε̇ev = (λ? − κ?) ·
ṗ?p
p?p

+ (λ?s − κ?s) ·
ṡ

s+ patm
(4.22)

4.4.1.4 Isotropic plastic compression upon wetting

In case of yielding due to net stress loading or suction reduction (wetting), the plastic
volumetric strains takes the form:

ε̇pv = (λ? − κ?) ·
ṗ?p
p?p

(4.23)

The above equation is in accordance with critical state soil mechanics. The difference
with the critical state soil mechanics is the yield function:

f1 = p? − pp (4.24)
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with pp as introduced in Equation 4.13. In order to study Equation 4.23 in greater detail,
the consistency equation ḟ = 0 is to be considered, as it finally leads to Equation 4.23. In
terms of partial derivatives, the consistency equation yields:

ḟ1 =
∂f1

∂p?
· ṗ? − ∂pp

∂s
· ṡ− ∂pp

∂εpv
· ε̇pv (4.25)

with:

∂f1

∂p?
= 1;

∂pp
∂s

=
λ? − λ?

∞

λ? − κ?
· pp · β · lnpp

pc
;

∂pp
∂εpv

=
1

λ? − κ?
· pp (4.26)

It follows from the above equations that:

ε̇pv = − (λ? − λ?
∞

) · β · lnpp
pc

· ṡ +
λ? − κ?

pp
· ṗ? (4.27)

this equation is in full agreement with Equation 4.23, but instead of pp it involves the
stress measures s and p?. Equation 4.27 shows the so-called soil collapse upon wetting.
Indeed, upon wetting it yields ṡ < 0 and the above equation yields an increase of volu-
metric strain, i.e. ε̇pv > 0 even at constant load with ṗ? = 0. Figure 4.19 shows the soil
response for such a stress path where the stress point travels from one suction dependent
yield surface to another, finally reaching the normal consolidation line for fully saturated
conditions. It is worth noting that the amount of plastic compression is dependent on
the confining pressure being applied during wetting. The plastic compression increases
with the confining pressure.
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Figure 4.20: Possible stress paths during soil wetting (a) in the e− lnp? plane (b) in
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In the above derivation it is assumed that the stress point is already on the yield surface
LC. However, Figure 4.20 shows another possible cases as associated with a stress point
lying inside the elastic zone before wetting. In the first case, the stress point (1) is far
away from the initial position of LC. Wetting in such a case leads to a pure swelling. The
final position of the stress point is on the unloading-reloading line of the fully saturated
soil. In the other case, the stress point (2) lies inside the elastic zone but not far enough
from LC curve. Initially, the soil shows swelling with suction reduction. However, with
continuous wetting the stress point hits the LC curve which triggers the plastic compres-
sion. The stress point finally lies on the normal consolidation line of the fully saturated
soil as it shown in Figure 4.20a.

4.4.2 More general states of stress

4.4.2.1 Elastic behavior

For the sake of convenience, the elastic strains will not be formulated for rotating prin-
cipal axes of stress and strain. Instead, restriction is made to non-rotating principal
stresses. For such situation Equation 4.20 can be generalized as in Section 2.5 to become:

σ̇?i = De
ij ·
(
ε̇ej −mj · ṡ/3 ·Ksuc

)
(4.28)

where ε̇ei is a principal elastic strain rate, σ̇?i is a principal net stress, mj = 1 for j = 1, 2, 3
and
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Ksuc =
s+ patm
κ?s

(4.29)

the term mj · ṡ/3 · Ksuc in Equation 4.28 represents the contribution of suction loading-
unloading (drying-wetting) to the elastic strain rates, whereas the other term represents
the net stress loading-unloading contribution.

4.4.2.2 Plastic behavior

In formulating the plastic rate of strain, both the plastic potential and the yield function
have to be considered. For the BB-model there are two yield functions, the first is the
so-called Loading-Collapse yield surface which is related to the plastic compression that
occurs on increasing p? or q (loading) or decrease of suction (wetting). This yield function
is the generalized form of Equation 4.24, it reads:

f1 = q2 −M2 · (p? + ps) · (pp − p?) (4.30)

where M is the slope of the critical state line and

ps = a.s (4.31)

The term ps reflects the extension of the yield surface in the direction of tension part due
to apparent cohesion. The constant a determines the rate of ps increase with suction as it
clear in Figure 4.21. Indeed, the constant a can be related to the angle ϕb as introduced
in Section 4.2.2:

a = M · tanϕ
b

tanϕ′
(4.32)

The BB-model adopts the idea of linear shear strength increase with suction. However,
the experimental observations in Section 4.2.2 shows that the shear strength reaches a
maximum with suction increase. This suggests that an improvement should be intro-
duced to control the unlimited cohesion increase with suction.

The yield function 4.30 reduces to the Modified Cam Clay (MCC) yield function at full
saturation with s = 0. In contrast to the MCC-model, the BB-model has a non-associated
flow rule for f1 , which may be written as:

ε̇p−LCi = Λ1 ·
∂g1

∂σ?i
(4.33)

where ε̇p−LCi stands for a principal rate of plastic strain as associated with yielding on LC,
Λ1 is a plastic multiplier and g1 is the plastic potential function to be used in conjunction
with f1:
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g1 = α · q2 −M2 · (p? + ps) · (pp − p?) (4.34)

The flow rule becomes associated for α = 1, but Alonso et al. (1990) recommend to use:

α =
M · (M − 9) · (M − 3)

9 · (6 −M)
· λo
λo − κ

(4.35)

In this way, the crest of the plastic potential in p?-q plane is increased. Finally leading to
realisticKo-values in one-dimensional compression, whereas the associated MCC-model
has the tendency to overestimate Ko-values (Roscoe and Burland, 1968). However, Borja
(2004) recommends that α values must not be too different from unity to avoid numerical
difficulties.

According to Equation 4.23, a change in the plastic volumetric strain leads to a change
in the value of the preconsolidation pressure. The new preconsolidation pressure ppo can
be calculated analytically using the following formula:

ppo = pinitial
p o 

· e∆ε 

p
v 

/ (λ?
o 

− κ 

? ) ( 4 . 3 6 )

where pinitialpo is the initial preconsolidation pressure before yielding and ∆εpv is the plastic
volumetric strain increment during yielding. A new ppo value causes hardening or soft-
ening for the LC curve depending on the sign of the plastic volumetric strain increment.

The second yield function is the so-called Suction Increase (SI) yield surface. It is related
to the plastic volumetric strains that occur due to a suction increase (drying). It simply
represents a vertical plane in p?-q-s space as can be seen in Figure 4.21b. It is defined by
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the equation:

f2 = s− so (4.37)

The related flow rule is considered to be associated when f2 is active so that g2 = f2 and:

ε̇p−SIi = Λ2 ·
∂g2

∂s
(4.38)

where ε̇p−SIi is a principal rate of plastic strain as associated with suction increase and Λ2

is a plastic multiplier. The plastic volumetric strains ε̇p−SIi are associated with hardening.
A similar hardening law to that in Equation 4.36 can be derived to determine the new
suction preconsolidation pressure so:

so = sinitial
o 

· e∆ε 

p
v 

/ (λ?
s 

− κ 

?
s 

) ( 4 . 3 9 )

where sinitialo is the initial value of the suction preconsolidation pressure before yielding.

When both yield surfaces are active, the plastic strain can be expressed as:

ε̇pi = ε̇p−LCi + ε̇p−SIi = Λ1 ·
∂g1

∂σ?i
+ Λ2 ·

∂g2

∂s
(4.40)

If all stress component are considered then suction plastic strain are added only in the
normal directions.

4.4.2.3 LC and SI coupling

According to the BB-model formulation, yielding on the LC curve does not affect the
current position of SI. However, it would seem to be most realistic to associate yielding
on the SI yield surface with hardening for LC as well. The hardening mechanism in both
cases can be seen in Figure 4.22 for isotropic loading. The plastic volumetric strain as
associated with yielding on SI can be determined from Equation 4.38. This value is then
used to update both so and ppo according to the hardening laws 4.39 and 4.36 respectively.

4.4.3 Elastoplastic matrix for Barcelona Basic Model

In this section a general expression is derived for the elastoplastic matrix. The expression
considers the most complicated case when both LC and SI yield surfaces are active. All
other cases are derived from this particular case. If both LC and SI are active as in Figure
4.23, the rate of total strain can be written as:
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ε̇i = Ce
ij · σ̇?j +

mi · ṡ
3Ksuc

+ Λ1 ·
∂g1

∂σ?i
+ Λ2 ·

∂g2

∂s
·mi (4.41)

The consistency conditions requires that the stress state stays on both yield surfaces
which yields the following two equations:

ḟ1 =
∂f1

∂σ?i
· σ̇?i +

∂f1

∂s
· ṡ +

∂f1

∂εpv
· ε̇pv =

∂f1

∂σ?i
· σ̇?i +

∂f1

∂s
· ṡ+

∂f1

∂εpv
· Λ1 ·

∂g1

∂p?
= 0

ḟ2 =
∂f2

∂s
· ṡ+

∂f2

∂εpv
· ε̇pv =

∂f2

∂s
· ṡ+

∂f2

∂εpv
· Λ2 ·

∂g2

∂s
= 0 (4.42)

In combination with Equation 4.41 and Equation 4.33 these conditions yield the follow-
ing expression for the plastic multipliers:

Λ1 =
1

H
· ∂f1

∂σ?i
·De

ij · ε̇j +
1

H
·
[

∂f1

∂s
− ∂f1

∂σ?i
·De

ij ·
mj

3Ksuc
+

1

6
· ∂f1

∂σ?i
·De

ij ·mj ·
∂f2
∂s
∂f2
∂εpv

]

· ṡ (4.43)

Λ2 = −1

2
·
∂f2
∂s
∂f2
∂εpv

· ṡ+
1

2
· Λ1 ·

∂f1

∂p?
·
[
∂g2

∂s

]−1

(4.44)

with:

H = −∂f1

∂εpv
· ∂g1

∂p?
+
∂f1

∂σ?i
·De

ij ·
[

α1 ·
∂g1

∂σ?j
+
α2

6
·mj ·

∂f1

∂p?

]

(4.45)

Rewriting Equation 4.41 as a net stress rate in terms of strain and suction rates yields:

σ̇?i = De
ij ·
[

ε̇j −
mj · ṡ
3Ksuc

− α1 · Λ1 ·
∂g1

∂σ?j
− α1 · α2

3
·mj · Λ2 ·

∂g2

∂s

]

(4.46)

where the switch parameters α1 and α2 take the following values:

purely elastic behaviour → α1 = 0 and α2 = 0
LC curve is active → α1 = 1 and α2 = 0
SI is active → α1 = 0 and α2 = 1
LC and SI are active → α1 = 1 and α2 = 1

Inserting 4.43 and 4.44 into the above equation leads finally to the following explicit
stress-strain relationship:
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σ̇?i = Dep
ij ·
[

ε̇j −
mj · ṡ
3Ksuc

]

−

α1 ·Dep
ij ·











(

6 · α1 · ∂g1∂σ?j
+mj · α2 · ∂f1∂p?

)

· F + 6 · α2 ·mj ·H · ∂f2
∂s

· ∂g2
∂s

6 · ∂f2
∂εpv

·
(

6 ·H − 6 · α1 · ∂f1∂σ?j
·De

jk · ∂g1∂σ?k
− α2 ·mj ·De

jk · ∂f1∂p?
· ∂f1
∂σ?k

)






· ṡ





(4.47)

where the elastoplastic matrix has the following form:

Dep
ij =

[

De
ij −

De
ik

H
·
(

α1 ·
∂g1

∂σ?k
+ α2 ·

ml

6
· ∂f1

∂p?

)

· ∂f1

∂σ?l
·De

lj

]

(4.48)

and F is given as:

F = 6 · α1 ·
∂f1

∂s
· ∂f2

∂εpv
+ α2 ·mi ·De

ij ·
∂f2

∂s
· ∂f1

∂σ?j
(4.49)

Equation 4.47 may be simplified further by writing:

σ̇?i = Dep
ij · [ε̇j − gj · ṡ] (4.50)

with:

gj =
mj

3Ksuc
− α1 ·







(

6 · α1 · ∂g1∂σ?j
+mj · α2 · ∂f1∂p?

)

· F + 6 · α2 ·mj ·H · ∂f2
∂s

· ∂g2
∂s

6 · ∂f2
∂εpv

·
(

6 ·H − 6 · α1 · ∂f1∂σ?j
·De

jk · ∂g1∂σ?k
− α2 ·mj ·De

jk · ∂f1∂p?
· ∂f1
∂σ?k

)







(4.51)

The contribution of suction into net stress variation is now clear in Equation 4.50.

In the case when only LC curve is active with α1 = 1 and α2 = 0 the previous formulation
gives the following expressions for the stress-strain relation and the elastoplastic matrix:

σ̇?
i = Dep

ij ·



ε̇j −
mj

3Ksuc
· ṡ−

∂g1

∂σ?
j
· ∂f1

∂s

−∂f1

∂εp
v
· ∂g1

∂p?

· ṡ



 ( 4 . 5 2 )

where Dep
ij in this case is:
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Dep
ij =



De
ij −

De
ij · ∂g1

∂σ?
j
· ∂f1

∂σ?
j
·De

jk

H



 ( 4 . 5 3 )

and H is given as:

H = −∂f1

∂εpv
· ∂g1

∂p?
+
∂f1

∂σ?i
·De

ij ·
∂g1

∂σ?j
(4.54)

The implementation of this constitutive model will be discussed in Chapter 5.

4.5 On the parameters of Barcelona Basic Model

The BB-model has seven additional parameters in comparison to the Modified Cam Clay
model. Three of them control the soil stiffness as associated with yielding on the LC yield
surface, namely β, λ∞ and pc. The parameters κs, so and λs describes the soil stiffness
with suction variation. The parameter a is used to reflect the effect of suction on soil
cohesion.

4.5.1 Parameters β, λ∞ and pc

The effect of each parameter on the LC yield surface can be seen in Figure 4.24. For
simplicity, this discussion is restricted to isotropic state of stress, but the conclusions are
valid for general states of stress.

Figure 4.24a shows that the parameter β represents the rate at which the preconsolida-
tion pressure increases with suction towards a maximum asymptotic value. Its values
are typically in the range 0.01 − 0.03 kPa−1. The shape of yield surface is very sensi-
tive to λ∞ as can be seen in Figure 4.24b. A small variation in λ∞ leads to an obvious
expansion of the elastic range. The ratio λ∞/λo usually varies between 0.2 to 0.7. The
so-called reference pressure pc also affects the size of the elastic range. Indeed the ra-
tio ppo/p

c is the decisive factor. For ppo/pc > 1 the preconsolidation pressure increases
with suction. When ppo/pc = 1 the LC yield surface becomes a straight line as it clear in
4.24c. This eliminates any effect of suction on the preconsolidation pressure. In the case
of ppo/pc < 1 the preconsolidation pressure decreases with suction increase. The latter
case is highly unlikely to happen which suggests that the ratio ppo/pc should be always
higher than 1. To experimentally determine the above three parameters, two isotropic
compression tests at two different suction values are required to be conducted. The soil
parameters at full saturation are also required. Equation 4.13 can then be employed to
determine β and λ∞. The best way to determine pc is to back analyze the laboratory tests
using Equation 4.13.
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Figure 4.24: Effect of BB-model parameters on the shape of LC curve (a) effect of β
(b) effect of λ∞ (c) effect of pc.
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4.5.2 Suction stiffness parameters

One laboratory test should be enough to determine the parameters κs, so and λs. The test
involves drying the soil under constant load. The result are analyzed to determine the
suction preconsolidation pressure so, the compression index λs for primary suction load-
ing and the suction unloading-reloading index κs. The analysis procedure is identical to
that being used for isotropic compression test of a fully saturated soil.

4.5.3 Capillary cohesion parameter

A suction controlled shear tests is required to determine the friction angle with respect
to suction ϕb as being discussed in Section 4.3.2. Equation 4.32 is used to convert ϕb to
the associated a value. Typical values of BB-model parameters are listed in Table 4.2.
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Table 4.2: BB-model parameters as collected from published literature.

Soil type κ λo M ppo pc λ∞ β κs λs so a Reference

Silt 0.006 0.16 1.63 20 7 0.08 0.007 - - - - Maatouk et al. (1995)

Silty clay 0.0062 0.24 - 20 10 0.07 0.033 - - - - Futai et al. (2002)

Silt 0.012 0.16 - 240 197 0.07 0.0035 - - - - Cui and Delage (1996)

Clay 0.006 0.22 - 80 18.1 0.12 0.0215 0.008 0.108 150 - Compas et al. (1991)

Kaolin 0.015 0.14 0.82 55 43 0.04 0.0164 0.01 0.05 30 1.24 Josa et al. (1987)

Kaolin 0.011 0.06 - 40 10 0.05 0.02 0.005 0.025 70 - Karube (1986)

Kaolin 0.0077 0.07 1.2 20 12 0.02 0.02 0.001 - - 0.8 Maswoswe (1985)

Silty sand 0.0056 0.02 1.75 35 4.5 0.015 0.024 0.004 - - - Rampino et al. (2000)



Chapter 5

Finite Element Implementation

5.1 Introduction

In this study the Finite Element Method is used to solve the equilibrium equations. In
this method the subsoil is divided into many subregions called “finite elements”. They
are connected at a discrete number of points being known as “nodes” as shown in Figure
5.1. Such elements, which generally take simple shapes (e.g. triangular or rectangular)
are then assembled to represent a solution domain of arbitrary geometry. The unknown
variables to be solved are calculated at the nodes. Using special mathematical methods,
a matrix expression is developed to relate the nodal variables of each element. The re-
sulting matrix is commonly referred to as “element matrix”. The element matrices are
combined or assembled to form a set of algebraic equations that describes the entire
global system. The coefficient matrix of this final set of equations is called the “global
matrix”. Finally the set of algebraic equations is solved to get the nodal values of the un-
knowns. The above procedure is very general and can be applied for a wide variety of
problems. However, the current study adopts the displacement based Finite Element Method

finite 


element

nodes

Figure 5.1: a finite element mesh.
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where displacements play the role of the primary nodal unknowns to be determined. The
strains and stresses in the unsaturated soil body are secondary variables. The following
section illustrates the derivation of the “element matrix” and the “global matrix” in case
of unsaturated soil. It is assumed that the deformations are small in the sense that the de-
scription can always be done with respect to the original undeformed geometry. Matrix
notation is used in this chapter, as it is most convenient for numerical implementation.

5.2 Balance and kinematic equations

The static equilibrium equation 2.12 is expressed in matrix notation as:

LT σ + b̂ = 0 (5.1)

where σ is the stress vector, b̂ is a vector containing the body forces and LT is the trans-
pose of the so-called matrix of differential operator. It is defined as:

L =












∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x












(5.2)

The strain can be written at any point in terms of the spacial derivatives of the displace-
ment at that point. Such a relation between the strains and the displacements is called
the kinematic equation. In matrix form it reads:

ε = Lu (5.3)

where ε denotes the strain vector and u = [ux, uy, uz]
T is the displacement vector at the

considered point.

The equilibrium equation 5.1, the kinematic equation 5.3 and the constitutive equation
form continuous field equations. For solving a specific problem, given data about the
prescribed boundary displacements â, boundary tractions t̂ and body forces b̂ is needed.
The displacement u is the primary unknown to be determined. Depending on the cal-
culated values of displacement, the secondary unknowns are determined (strains and
stresses) using the kinematic and the constitutive equations. The boundary conditions
for the primary variables are called essential or Dirichlet boundary conditions while those
of the secondary field are named as natural or Neumann boundary conditions.
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5.3 Virtual work principle

The static equilibrium equation 5.1 is written in a strong form. This means that the equa-
tion is satisfied pointwise in every location in the soil body. The first step in finite element
mathematical formulation is to transform the equilibrium equation to the so-called weak
form so that equilibrium is satisfied only in certain discrete points inside the studied do-
main. These points are the nodes and such a procedure is called discretization. Indeed,
the equilibrium in Finite Element Method is satisfied globally instead of pointwise. This
idea will be clarified gradually with the development of this chapter.

Following Galerkin’s variation principle (Zienkiewicz and Taylor, 1994) the balance equa-
tion 5.1 can be reformulated in the weak form as:

∫

V

(

LT σ + b̂
)

· δu dV +

∮

S

(
t̂− σ · n

)
· δu dS = 0 (5.4)

where δu is a kinematically admissible variation of displacements. In mathematical lit-
erature it is common to call them test functions. The vector n is the unit normal on the
boundary of the considered body S. Using Gauss-Divergence-Theorem it can be shown
that:

∫

V

LT σ · δu dV =

∮

S

σ · n · δu dS −
∫

V

σ · LT δu dV (5.5)

Insertion of Equation 5.5 into Equation 5.4 yields:

∫

V

σ · LT δu dV =

∫

V

b̂ · δu dV +

∮

S

t̂ · δu dS (5.6)

Substituting δε = LT δu in Equation 5.6 one gets the so-called Virtual Work Equation:

∫

V

σ · δε dV =

∫

V

b̂ · δu dV +

∮

S

t̂ · δu dS (5.7)

The left-hand side of the above equation represents the internal work being done inside
the stressed body, whereas the right-hand side is the work done by the external forces,
i.e. body forces and surface tractions.
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Figure 5.2: The concept of a shape function.

5.4 Finite element discretization in case of unsaturated soil

Recalling Equation 2.22 which relates the total stress σ to the net stress σ? and the air
pressure ua:

σ = σ? + mua (5.8)

and plugging this equation into the virtual work equation one obtains:

∫

V

σ? · δε dV +

∫

V

mua · δε dV =

∫

V

b̂ · δu dV +

∮

S

t̂ · δu dS (5.9)

The displacement u can be interpolated from the nodal displacement vector a using the
following expression:

u = Na (5.10)

where N is the shape functions matrix being defined as:





N1
x 0 0 N2

x 0 0 ... Nn
x 0 0

0 N1
y 0 0 N2

y 0 ... 0 Nn
y 0

0 0 N1
z 0 0 N2

z ... 0 0 Nn
z



 (5.11)

For example, the interpolation function N2
y in Figure 5.2 is used to interpolate the contri-

bution of the node number 2 to the displacement in y direction of arbitrary points inside
a two dimensional element. The superscript n stands for the total number of nodes in
one element.
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The nodal displacement vector a is given as:

aT =
[
a1
x a1

y a1
z a2

x a2
y a2

z ... anx any anz
]

(5.12)

The use of these interpolation functions is the basic source of error in finite element
method. Therefore, increasing the order of these functions in general leads to a better
prediction of displacement in between the nodes.

By combining 5.12 and 5.3 the strains at a certain point in the element can be written in
terms of the nodal displacements as follows:

ε = Ba (5.13)

where B is the so-called strain interpolation matrix being given as:

B =
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(5.14)

Using Equation 5.13 and 5.10, the virtual work equation 5.9 can be written in terms of
nodal displacements as:

∫

V

BT σ? dV +

∫

V

BT mua dV = q (5.15)

with:

q =

∫

V

NT b̂ dV +

∮

S

NT t̂ dS

The force vector q appears due to the body forces and the traction forces being applied
on the body boundaries in addition to any other type of external forces.

To account for the nonlinear behavior of the soil in elastoplastic calculations, the loads
should be applied incrementally such that the balance equation is solved for each load
increment before moving to another load step. Therefore, it is more convenient to rewrite
Equation 5.15 in an incremental form. The stress state at a certain fictitious time t is de-
fined as:

σ?
i

= σ?
i−1

+ ∆σ?; ∆σ? =

∫

σ̇?dt (5.16)
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The air pressure is written as:

ua
i = ua

i−1 + ∆ua; ∆ua =

∫

u̇a dt (5.17)

where σ?
i

is the unknown actual stress state, σ?
i−1

is the previous known stress state and
∆σ? is the net stress increment being defined as the integration of net stress rate σ̇? over
the time increment dt. In the same way uia is the unknown actual pore air pressure, ui−1

a is
the previous known pore air pressure and ∆ua is the pore air pressure increment. Substi-
tuting in Equation 5.15 yields:

∫

V

BT ∆σ? dV = ∆q + ro −
∫

V

BT m∆ua dV (5.18)

with:

ro = qi−1 −
∫

V

BT σ?
i−1

dV −
∫

V

BT mui−1
a dV

The vector ro is the remaining unbalance at the very end of the previous load step. The-
oretically its value should be zero as full equilibrium should be reached during the last
loading but in numerical nonlinear calculation residual will always happen. Its value
depends on the tolerated equilibrium error being used to define convergence (Bonnier,
1993).

Equation 5.18 represents the discretized form of balance equation in case of unsaturated
soil. It shows that any change in the applied external tractions, the soil self weight, the
applied suction or the applied pore air pressure will violate the balance and leads to a
displacement increment. While the external tractions are prescribed values, an indepen-
dent procedure is required to evaluate suction and pore air pressure variation over time.
This is achieved by solving the flow equations. In Chapter 6 the unsaturated water and
air flow will be discussed in detail.

The change in external forces should be balanced by a net stress increment ∆σ?. The
basic question at this stage is to evaluate the unknown ∆σ? value as a response to a
known strain increment ∆ε and a known suction increment ∆s. For unsaturated soil the
stress-strain relation is nonlinear. As a consequence the direct determination of ∆ε is
not possible. A “global iterative procedure” is required to solve the equilibrium in Equa-
tion 5.18. The following section discusses the “local” integration of net stress increment
assuming for the time being that ∆ε is known. Later in Section 5.6 the global iterative
procedure will be discussed.
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Figure 5.3: Predictions based on explicit integration scheme.

5.5 Local integration of constitutive equation

There are two well-known approaches to locally integrate the stresses, namely explicit
and implicit methods. This section discusses both methods. It also highlights the benefits
and the shortcomings of each method.

5.5.1 Explicit integration

The rate of net stress is related to that of strain according to the constitutive equation
4.50. This rate equation might be explicitly integrated to obtain:

∆σ? = Dep · [∆ε− g · ∆s] (5.19)

This method has the major drawback that the stiffness matrix is evaluated using the
known stress value at the beginning of each loading step. This always generates a drift
from the accurate solution. This error accumulates with further loading. Therefore, very
small strain increments are required to insure acceptable accuracy. Typical predictions
using this method can be seen in Figure 5.3. Several remedies are proposed in literature
to solve this problem, e.g. (Sloan, 1987). This method also requires a distinction between
the pure elastic behavior and the elastoplastic one with a special procedure to treat the
transition from the elastic to the elastoplastic zone.

In the implicit integration scheme no prior assumption is made for soil stiffness. It re-
quires more implementation effort, but it has the major advantage that no constraint is
required for the strain increment size being used in the integration scheme.
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5.5.2 Implicit integration

The question is how to evaluate the values of ∆σ? and the increment of a set of hard-
ening parameters ∆θ corresponding to a given strain increment ∆ε and a given suction
increment ∆s. It is assumed that their initial values σ?

i−1, θi−1 and si−1 are known. The
problem to be solved is imposed using the following elastoplastic equations [see Chapter
3]:

∆σ? = De · [∆ε − ∆εp] ; ∆εp = Λ · ∂g
∂σ?

; ∆θ = Λ · h (5.20)

where θ is a vector of hardening parameters and h is a prescribed hardening function.

The above set of equations is subjected to the so-called Kuhn-Tucker conditions:

Λ ≥ 0; f (σ?, θ) ≤ 0; Λ · f = 0 (5.21)

which states that on yielding, the condition Λ > 0 is only possible if the stress state stays
on the yield surface f . This leads to the consistency condition ḟ = 0 with f = 0.

5.5.2.1 Elastic predictor

The trial elastic stress is calculated as:

σ?trial
i

= σ?
i−1 + De · ∆ε (5.22)

where it is assumed that the strain increment is purely elastic. Condition 5.21 is then
checked. If satisfied, then the prediction is correct with the trial stress is accepted as the
final new stress state σ?

i . In case the trial stress violates the condition 5.21 with f trial > 0,
the consistency should be recovered by solving the plastic corrector problem. Since the
aim of plastic correction is to map the trial stress back to the yield surface, the algorithms
performing such tasks are commonly referred to as return mapping algorithms (Tamagnini
et al., 2002). Figure 5.4 shows a graphical representation of the return mapping concept.

5.5.2.2 Plastic corrector with return mapping

The plastic correction is done by integrating the ordinary differential equations 5.20 us-
ing implicit backward Euler scheme considering the trial stress as the initial condition by
writing:

σ?
i = σ?trial

i − Λi · De · ∂g
∂σ?

i

; θi = θtriali + Λi · hi; fi (σ
?
i , θi) = 0 (5.23)
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Figure 5.4: Return mapping steps.

Equations 5.23 represent a system of nonlinear equations with the unknowns σ?
i , θi and

Λi to be determined. This system can be solved by defining the unknown vector:

xi = [σ?
i , Λi, θi]

T (5.24)

The return-mapping requires the vanishing of the following residual vector:

ri (xi) =







σ?trial
i − σ?

i − ΛiD
e ∂g
∂σ?i

θtriali − θi + Λihi
fi






(5.25)

This can be done iteratively using for instance the Newton-Raphson method (Tamagnini
et al., 2002). In this study this procedure is used to integrate the net stresses in BB-
model. A slightly modified version of the above general procedure is used to perform
the correction in the stress invariant space. In BB-model there are two yield surfaces f1

and f2 given by Equations 4.30 and 4.37 respectively. The latter is called SI yield surface
with an associated flow rule and g2 = f2 while the first yield surface is the LC yield
surface. It has a nonassociated flow rule with a plastic potential function g1 as given in
Equation 4.34. The hardening parameters are the preconsolidation pressure θ1 = pp for
the LC and the suction preconsolidation pressure θ2 = so for SI. The hardening functions
h1 and h2 for each yield surface are given by Equations 4.36 and 4.39. On applying the
return mapping technique three possible cases may be distinguished for a stress state
satisfying the yield condition. The first is a point yielding on the Loading-Collapse yield
surface. The second is a point yielding on the Suction Increase yield surface and the last
case is a point yielding on the intersection between the previous two yield surfaces. Each
case will be discussed separately in the following sections. Routine 1 shows the basic
steps followed during the return mapping, where n̂ is the normalized deviatoric tensor.
The symbol ‖·‖ denotes the Euclidean norm of a second order tensor.
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Step1. Compute trial stresses σ? trial
i = σ?

i−1 + De · ∆ε

using σ? trial
i compute qtriali , p? triali , ξtriali and

n̂ = ξtriali /
∥
∥ξtriali

∥
∥where ξ is the deviatoric stress vector

Compute new suction value si = si−1 + ∆s and

use it to compute ps, λ and ptrialpi from Equations

4.31 and 4.13 respectively

Step2. Check the yield functions

f1

(
qtriali , p? triali , si, p

trial
pi

)
> 0?

f2 (si, so, ) > 0?

If NO. then σ?
i = σ? trial

i , ppi = ptrialpi , soi = so

and Exit

Step3. If f1

(
qtriali , p? triali , si, p

trial
pi

)
> 0 and

f2 (si, so, ) < 0. Solve f1 (Λ1) = 0 , see Routine 2.

Step4. If f1

(
qtriali , p? triali , si, p

trial
pi

)
< 0 and

f2 (si, so, ) > 0. Solve f2 (Λ2) = 0 , see Routine 3.

Step5. If f1

(
qtriali , p? triali , si, p

trial
pi

)
> 0 and

f2 (si, so) > 0. Solve LC and SI intersection , see Routine 4.

Step6. Plastic corrector: σ?
i = p?i · δ +

√

2/3 · qi · n̂

ppi =converged value from Newton-Raphson iterations in

Routine 2, Routine 3 or Routine 4.

soi =converged value from Routine 3.

Routine 1: Basic steps during the return mapping.
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5.5 Local integration of constitutive equation

5.5.3 Stress integration with LC is active

Following the previous section, integrating the net stress increment and the evaluation
of the internal variables requires the construction of the residual vector r1 and the un-
knowns vector x1 being defined as:

r1 =








qtrial
i − qi − 3 ·G? · Λ1 · ∂g1

∂qi

p? trial
i − p?

i −K? · Λ1 · ∂g1

∂p?
i

f1

ppi − ppi−1 · e4εp
v/(λ?−κ?)








; x1 =







qi
p?

i

Λ1

ppi





(

( 5 . 2 6 )

Using the Newton-Raphson iteration technique (Borja, 2004), one can solve the previous
system of four nonlinear equations. It is worth noting that 4εpv can be expressed as
4εpv = Λ1 · ∂g1∂p?i

in the last residual equation.

Routine 2, shows solution strategy following the Newton-Raphson method where k is
the iteration number. The Jacobian matrix J1 has the form:

J1 =









∂r1

∂qi

∂r1

∂p?
i

∂r1

∂Λ1

∂r1

∂ppi

∂r2

∂qi

∂r2

∂p?
i

∂r2

∂Λ1

∂r2

∂ppi

∂r3

∂qi

∂r3

∂p?
i

∂r3

∂Λ1

∂r3

∂ppi

∂r4

∂qi

∂r4

∂p?
i

∂r4

∂Λ1

∂r4

∂ppi









( 5 . 2 7 )

The adopted scheme is considered as a fully implicit one in the sense that all unknowns
are updated implicitly during iteration process. By checking Step 2 in Routine 1, it can
be seen that a suction reduction under constant net stress triggers the plastic correction
routine if the stress point was already on the yield surface. Thus, the suction increment
plays a similar role of a strain increment. This has important consequences on the suction
step being used. A big suction step leads to numerical difficulties. For accurate and
stable calculations the suction increment should not be higher than 1 kPa.

5.5.4 Stress integration with SI is active

In BB-model the Suction Increase yield surface is defined as:

f2 = g2 = s− so (5.28)

with s is the current suction value and so is the isotropic yield pressure with respect to
suction. Upon yielding, the current suction value should be the updated yield pressure
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Step1. Initialize k = 0, Λk
1 = 0, qi = qtriali , p?i = p? triali , ppi = ptrialpi

Err = 1 (stands for error tolerance)

Build the unknown vector xk1 .

Step2. Construct the residuals vector rk1 and check the convergence

Err = maximum absolute value in the residuals vector.

Step3. If Err ≤ 10−10 then Exit with the converged values in the

unknowns vector xk1 .

Step4. If Err > 10−10 then construct the Jacobian matrix J1 =
∂rk1
∂xk1

.

Calculate the updated unknowns vector xk+1
1 = xk1 − J−1

1 · rk1 .

Step5. Set k = k + 1. Goto Step 2.

Routine 2: Solving Λ1 when only LC is active.
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5.5 Local integration of constitutive equation

as the stress state always travels on the normal consolidation line with respect to suction.
This happens at a constant deviatoric stress q and a constant net mean pressure p�. An
explicit relationship for the plastic multiplier Λ2 can be derived depending on the initial
preconsolidation pressure so and the new updated preconsolidation pressure which is
indeed the current suction value s.

On yielding, the plastic volumetric strain is given as ∆εp
v = Λ2 · ∂g2/∂s = Λ2. At the

same time, the evaluation of the preconsolidation pressure in terms of plastic volumetric
strain is given as:

soi = soi−1 · e∆εp
v/(λ�

s−κ�
s) (5.29)

knowing that soi =current suction s and soi−1 = the initial preconsolidation pressure so,
the following formula for the plastic multiplier and the plastic volumetric strain for SI
yields:

∆εp
v = Λ2 = (λ�

s − κ�
s) · ln

s + patm

so + patm
(5.30)

Another way is to construct the following residuals and unknown vectors:

r2 =

[
s − soi

(soi + patm) − (soi−1 + patm) · e∆εv
p/(λ�

s−κ�
s)

]
; x2 =

[
Λ2

soi + patm

]

(5.31)

using the Newton-Raphson iteration scheme it would be possible to determine the up-
dated value of suction preconsolidation pressure so. To account for the coupling between
SI and LC, the above plastic volumetric value is plugged to Equation 4.36 to update the
normal preconsolidation pressure ppo. Routine 3 shows the calculation flow during plas-
tic correction in this case.

5.5.5 Stress integration when both LC and SI are active

This case is only possible for particular stress paths (Ledesma et al., 1995; Cui et al., 1995).
However, it is covered here for the sake of completeness. When both yield surfaces are
active the plastic volumetric strain is expressed as (Mandel, 1965):

∆εp
v = Λ1 · ∂g1

∂p�
+ Λ2 · ∂g2

∂s
(5.32)

To calculate the updated net stress and the preconsolidation pressure ppi the following
residuals can be written:
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Step1. Initialize k = 0, Λk
2 = 0, skoi = so

Err = 1 (stands for error tolerance)

Build the unknown vector xk2 .

Step2. Construct the residuals vector rk2 and check the convergence

Err = maximum absolute value in the residuals vector.

Step3. If Err ≤ 10−10 then Exit with the converged values in the

unknowns vector xk2 . Update ppi.

Step4. If Err > 10−10 then construct the Jacobian matrix J2 =
∂rk2
∂xk2

.

Calculate the updated unknowns vector xk+1
2 = xk2 − J−1

2 · rk2 .

Step5. Set k = k + 1. Goto Step 2.

Routine 3: Solving Λ2 when only SI is active.
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5.6 The global iterative procedure

Step1. Initialize k = 0, Λk
1 = 0, qi = qtriali , p?i = p? triali , ppi = ptrialpi

Calculate Λ2i using Equation 5.30

Err = 1 (stands for error tolerance)

Build the unknown vector xk3 .

Step2. Construct the residuals vector rk3 and check the convergence

Err = maximum absolute value in the residuals vector.

Step3. If Err ≤ 10−10 then Exit with the converged values in the

unknowns vector xk3 .

Step4. If Err > 10−10 then construct the Jacobian matrix J3 =
∂rk3
∂xk3

.

Calculate the updated unknowns vector xk+1
3 = xk3 − J−1

3 · rk3.

Step5. Set k = k + 1. Goto Step 2.

Routine 4: Solving Λ1 and Λ2 when both LC and SI are active.

r3 =








qtriali − qi − 3 ·G? · Λ1 · ∂g1∂qi

p? triali − p?i −K? · Λ1 · ∂g1∂p?i
−K? · Λ2 · ∂g2∂s

f1

ppi − ppi−1 · e4ε
p
v/(λ

?−κ?)








; x3 =







qi
p?i
Λ1

ppi







(5.33)

where ∆εpv is calculated using Equation 5.32. The plastic multiplier value Λ2 is given
in Equation 5.30. Again a Newton-Raphson iteration is adopted to determine the un-
knowns as in Routine 4. In each step the value of suction preconsolidation pressure so
should be updated to the current suction value.

5.6 The global iterative procedure

5.6.1 Global and element stiffness matrices

Using constitutive equations like 4.28 and 5.13, the incremental virtual work Equation
5.18 can be reformulated to obtain:
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Ki · ∆ai = ∆f i (5.34)

where ∆ai is the displacement increment for loading step i. The external force increment
vector ∆f i contains the contribution of the soil self weight, the tractions being applied
on the boundaries, the pore air pressure and the suction. The global stiffness matrix Ki is
defined as:

K =

∫

V

BTDB dV (5.35)

where D is a material stiffness matrix. The matrix K is the assembly of the “element stiff-
ness matrices” of all elements in the finite element mesh. The element stiffness matrix
has the same form as the global one but the integration is done on the element level.
The analytical evaluation of this integration is very difficult in general. Instead the in-
tegration is done numerically. It is quite common to use Gauss quadrature to perform
such integration. According to this theory the integration value can be approximated or
in some cases is equal to the sum of the integrated function weighted values at special
points. These points are known as Gauss integration points. They have special locations
and special weightsw assigned to each of them. Thus Equation 5.35 can be approximated
as:

K =

∫

V

BTDB dV ≈
i=n∑

i=1

BT
i DiBiwi (5.36)

the symbol n denotes the total number of Gauss integration points. In this study a six-
noded triangular element with three integration points per element is used. Figure 5.5
shows the element with the location of Gauss point and the weights. The integration
is usually done using the local coordinate system of each element before transferring it
to the global coordinate system. Finally these individual element stiffness matrices are
assembled to form the global stiffness matrix. Detailed explanation about this procedure
can be found in many text books.

5.6.2 Global Newton-Raphson iterations

Due to the nonlinear stress-strain relation, the soil stiffness matrix D is not known be-
forehand and as a consequence the global stiffness matrix K is not known. That requires
an iterative procedure to solve the equilibrium expressed in Equation 5.34. The global
iteration process can be written as:

∆ai =

j=n
∑

j=1

δaj ; Kj · δaj = ∆f j (5.37)
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Node

Gauss point

1.0 m

1.0 m

(1/6, 1/6) (2/3, 1/6)

(1/6, 2/3)

w = 1/3

w = 1/3 w = 1/3

y

x

Figure 5.5: Gauss points locations and weights for a six-noded element in local coordi-
nates.
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Figure 5.6: Global iteration process (a) Modified Newton-Raphson method (b) Full
Newton Raphson method.

where j refers to the iteration number and n is the number of iterations within step i. The
vector δa contains sub-incremental displacements, which contribute to the displacement
increments of step i. To begin the iteration process one needs an estimate for the matrix
D. The simplest case is to adopt a fixed D = De during iteration process. The elastic
stiffness matrix is only determined once at the beginning of each loading step. In this
case the iterative procedure is called the Modified Newton-Raphson iteration. Another
choice is to use the tangential stiffness matrix D = Dep. The method is then called as the
Full Newton-Raphson. Graphical interpretation of each method is shown in Figure 5.6. As
the tangential matrix gives better initial guess for the solution if compared to the elastic
matrix, it needs less iterations to converge as can be seen in Figure 5.6b. However it
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Figure 5.7: Geometry, finite element mesh and boundary conditions as used in the single
element tests (a) mechanical boundary conditions (b) hydraulic boundary
conditions.

requires the construction of the stiffness matrix at the beginning of each iteration within
the load step. Furthermore, the experience shows that the Modified Newton Raphson
is numerically more robust and stable. In PLAXIS finite element code (Vermeer and
Brinkgreve, 1995) the Modified Newton-Raphson method is used.

5.7 Validation of the BB-model implementation

The BB-model was implemented into the PLAXIS finite element code. To validate the
implementation, a series of the so-called single element tests are carried out. The results
are compared to those provided by Alonso et al. (1990). In that original paper about the
BB-model, the authors included the response of the model for several well defined stress
paths. Figure 5.7a shows the geometry, the mechanical boundary conditions and the fi-
nite element mesh being used for the validation. Axisymmetric conditions are assumed
for this problem with a mesh consisting of two six noded triangular elements with three
Gauss integration points. The material is considered to be weightless in order to have a
uniform stress field inside the geometry. On defining this simple geometry, the consti-
tutive law is directly targeted by reducing the error due to discretization to a minimum.
The hydraulic boundary conditions are shown in Figure 5.7b. The symbol h denotes the
total hydraulic head whereas ψ denotes the negative pore water pressure head. A con-
stant suction profile is generated in accordance to this boundary conditions. Its value is
dependent on ψ value. The BB-model parameters as used in these tests are listed in Table
5.1. The hardening parameters have different values for different tests. Their values will
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5.7 Validation of the BB-model implementation

Table 5.1: BB-model parameters as used in the single element tests.
κ λo G M pc β λ∞ a κs λs eo

[−] [−] [kPa] [−] [kPa] [kPa−1] [-] [−] [−] [−] [−]

0.02 0.2 10000 1.0 100 0.0125 0.15 0.6 0.008 0.08 1.03

be given in each separated test.

5.7.1 Test Number 1

The saturated preconsolidation pressure ppo has the initial value of 200 kPa in this test.
The suction preconsolidation pressure so has its initial value at 300 kPa. The soil is rela-
tively dry at its initial conditions with initial suction of 200 kPa. The initial configuration
of the yield surface is clear in Figure 5.8a. The soil sample is taken to the final state at
point F following three different stress paths. In the first stress path ABF , the soil is first
exposed to a suction reduction from point A to point B where it reaches a full saturation
with s = 0. The suction reduction takes place in the elastic region which results in a pure
elastic swelling. After that the sample is isotropically compressed up to 600 kPa. As
expected, the soil yields at an isotropic pressure equal to the isotropic preconsolidation
pressure of 200 kPa. In the second stress path ACDF , the dry sample is isotropically
compressed from point A to point C. The stress path hits the initial LC position at an
apparent preconsolidation pressure of pp = 250 kPa. The yielding on LC is accompanied
by a hardening of the yield surface. At point C, with net mean pressure of 300 kPa, the
soil is wetted to full saturation. Wetting is applied on a yielding stress point which leads
to an additional plastic compression on suction reduction. The final stress state lies on
the NCL at full saturation being marked by point D in Figure 5.8b. A further isotropic
compression from D to F gives a similar response to that of the fully saturated soil. In
the third stress path AEF , the soil is isotropically compressed under constant suction up
to 600 kPa. At point E the soil is wetted which leads to a plastic compression to the final
position F on the NCL of the fully saturated sample. This test clarifies three important
features of the model:

• Wetting in the elastic region leads to swelling.

• The preconsolidation pressure increases with suction.

• Wetting beyond the yield point leads to additional plastic compression where the
soil “collapses” down to the fully saturated NCL. The amount of additional com-
pression increases with the increase of the confining pressure. Figure 5.8b shows
a good agreement between the implementation results and the predictions as pro-
vided by Alonso et al. (1990). This test only involves yielding on the LC yield
surface.
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Figure 5.8: Test number 1 (a) The stress paths followed in the test (b) The implemen-
tation results compared to those given by Alonso et al. (1990).
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5.7.2 Test Number 2

The initial values of the hardening parameters are similar to that in the previous test.
The test is performed to show the effect of suction on the preconsolidation pressure pp.
It involves three stress paths namely AEF , ACDF and ABF as shown in Figure 5.9a.
For each path the soil is isotropically compressed up to p? = 600 kPa under different
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Figure 5.9: Test number 2 (a) The stress paths followed in the test (b) The implemen-
tation results compared to those given by Alonso et al. (1990).
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suction values. The results in Figure 5.9b clearly show the increase of pp with suction.
For p? = 600 kPa the samples are saturated which causes additional plastic compres-
sion. However, the amount of the additional settlement is dependent on the amount of
suction reduction. The sample at point B with suction reduction of 200 kPa shows more
settlement if compared to point D with ∆s = 100kPa.

Additional feature is highlighted in these tests concerning the dependency of additional
plastic compression upon the suction increment and the initial suction value before wet-
ting. The comparison between the implementation as being done in this thesis and that
provided by Alonso et al. (1990) is quite satisfactory and is shown in Figure 5.9b.

5.7.3 Test Number 3

This test resembles closely Test 2 but involves drying the soil instead of wetting it. Ini-
tially the soil is fully saturated. In the first path ABF , the sample is compressed up to
600 kPa , then it is dried to s = 200 kPa. This causes elastic shrinkage being shown as an
additional settlement. In the elastic region the sample which follows stress path ACDF
is dried up to s = 100 kPa followed by isotropic compression up to 600 kPa at point D.
Then the sample is dried again up to s = 200 kPa. In the last path, the soil is dried first to
s = 200 kPa then compressed up to 600 kPa. The three stress paths can be seen in Figure
5.10a. The model predictions according to the current implementation and Alonso et al.
(1990) original work are shown in 5.10b. The test is designed to show that the strains
produced by drying before subsequent p?-loading are stress path dependent (Alonso et
al., 1990). This is shown by the different final void ratios.

Up to this point, yielding takes place on the LC yield surface. The movement of LC is
totally independent from SI . Thus LC hardening does not affect the position of SI . The
following test shows how the SI hardening, however, affects the LC position.

5.7.4 Test Number 4

This test involves the two stress paths AB and ACDB as indicated in Figure 5.11a. The
initial suction preconsolidation pressure so = 25 kPa. Starting at fully saturated condi-
tions the soil is exposed to the stress path AB with isotropic compression up to 600 kPa.
As expected, the soil yields at the predefined value of ppo = 200 kPa. In the second path,
the soil is first dried up to s = 300 kPa. For this path, the stress point hits the SI yield
surface which initiates a hardening process of SI . The plastic yielding results in plastic
deformations controlled by the λs value. The LC also hardens due to coupling with SI
movement. After that, suction is reduced again to zero at point D. The soil shows elastic
swelling as a response. The swelling is controlled by the κs value. After this, the soil
is compressed up to 600 kPa. The coupling effect appears in the increased value of the
saturated preconsolidation pressure. The soil yields at ppo = 300 kPa which means an
increase of 100 kPa due to the coupling. Finally, both paths follow the NCL at full satu-
ration. Figure 5.11b shows the BB-model predictions with perfect matching between the
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Figure 5.10: Test number 3 (a) The stress paths followed in the test (b) The implemen-
tation results compared to those given by Alonso et al. (1990).
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implementation results and the published ones. The elastoplastic response on suction
path ACD can be seen in Figure 5.12.
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5.7.5 Test Number 5

To study the effect of suction on soil shear strength, an unsaturated soil sample is sheared
under three different suction values. The stress path as applied for each test is shown
in Figure 5.13a with initial hardening parameters ppo = 150 kPa and so = 400 kPa. The
results in Figure 5.13b illustrates the increase of strength with suction. It also illustrates
the good agreement between the implementation outcome and the published results.
The shear modulus used in the calculation is G = 3000 kPa. It is estimated from the
initial slope of the curves in 5.13b.

5.7.6 Test Number 6

The sample is exposed to a very interesting stress path as shown in Figure 5.14a. In this
path, the sample is brought to failure by suction loss. Such a path is very relevant to
the slope stability problems. Figure 5.14b shows the development of shear strains with
suction decrease. The sample reaches failure at suction s = 33 kPa. The implementation
prediction fits well the data given by Alonso et al. (1990).

In Chapter 8 the model will be used to analyze some boundary value problems. The
problems involve realistic variation of suction with time. To determine such a variation,
the flow equation needs to be solved in addition.
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5.7 Validation of the BB-model implementation
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Figure 5.13: Test number 5 (a) Stress path as followed in the test (b) The implementa-
tion results compared to those given by Alonso et al. (1990).
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Chapter 6

Unsaturated ground water flow

6.1 Introduction

Suction plays a central role in the mechanical response of unsaturated soil. Its variation
in time and space determines strains to a large extent. To determine the suction field the
unsaturated flow equation needs to be solved. The following sections discuss this issue
in detail.

6.2 Governing partial differential equation

Ground water flow is governed by the ground water head h = z + uw/γw , where z is
the geodetic head and uw/γw is the pressure head which will be denoted as ψ for the sake
of simplicity. The unit pore water weight is denoted as γw. The above definition of
the ground water head (or the hydraulic head) is valid for laminar flow with a low flow
velocity. The water head reflects the potential energy of a water particle at a certain point
in the space and at a certain time. Flow occurs as soon as a potential difference happens
between two points. Ground water flow happens in a fully saturated soil as well as
in unsaturated soil. Moreover, it could happen with fixed water heads in every point
or with varying head in time. The first is known as a steady-state flow while the latter
is known as a transient flow. In the following sections the governing partial differential
equation for each type of flow will be derived. The numerical techniques as used to solve
the flow equations are discussed in a later section.

6.2.1 Steady-state water flow

Consider an elemental control volume of soil as shown in Figure 6.1. The principle of
mass conservation in case of a saturated medium requires that the rate of fluid mass enter-
ing into the element control volume be equal to the rate of fluid mass that leaving it. The
equation of continuity presents a mathematical translation of the above principle which
yields:
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Chapter 6 Unsaturated ground water flow

∂ (nρwvx)

∂x
+
∂ (nρwvy)

∂y
+
∂ (nρwvz)

∂z
= 0 (6.1)

where n stands for the soil porosity. After applying the chain rule and recognizing that
ρw · vx · (∂n/∂x) and n · vx · (∂ρw/∂x) are much smaller than n · ρw · (∂vx/∂x), Equation 6.1
can be simplified to:

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0 (6.2)

Using the Darcy’s law vi = −ki · (∂h/∂xi), Equation 6.2 is rewritten in the form:

∂

∂x

(

kx ·
∂h

∂x

)

+
∂

∂y

(

ky ·
∂h

∂y

)

+
∂

∂z

(

kz ·
∂h

∂z

)

= 0 (6.3)

with k is the permeability. The solution is a function h(x, y, z) specifies the ground water
head value at any point in the flow field.

6.2.2 Transient saturated water flow

In this case mass conservation requires that the net flow rate into any element be equal
to the rate of change of water mass storage within the element. This is accounted for by
introducing a storage term on the right-hand side of Equation 6.1 so that:

x
y

z

Figure 6.1: Flow through an elemental control volume of soil.
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6.2 Governing partial differential equation

∂ (nρwvx)

∂x
+

∂ (nρwvy)

∂y
+

∂ (nρwvz)

∂z
=

∂ (ρwn)

∂t
= n · ∂ρw

∂t
+ ρw · ∂n

∂t
(6.4)

Considering compressible water ∂ρw/∂t is rate of pure water density. Following Verruijt
(1995), it is assumed that the density of water is dependent on the pore water pressure
uw according to the following equation of sate:

ρw = ρwo · eβw·(uw−uwo) (6.5)

where βw is the water compressibility, and ρwo and uwo are reference quantities. For pure
water the compressibility is about 0.5×10−9 m2/kN , but much higher values apply when
air is solved in water or when one has to account for the entrapped air. It follows from
the above equation that:

n · ∂ρw

∂t
= n · βw · ρw · ∂uw

∂t
(6.6)

The second term ρw ·∂n/∂t in the right hand side of Equation 6.4 is the mass rate of water
produced by the volumetric straining of soil as reflected by the change of porosity n. The
rate of volumetric strain is given as:

∂εv

∂t
=

∂εe
v

∂t
+

∂εp
v

∂t
= αs · ∂p′

∂t
+

∂εp
v

∂t
(6.7)

where εe
v and εp

v are the elastic part and the plastic part of the total volumetric strain εv

respectively. The symbol αs stands for the elastic soil compressibility, it is expressed as:

αs =
1

K
with K =

p′

κ
(6.8)

where K is the soil elastic bulk modulus. Bearing in mind that ∂p′/∂t = ∂p/∂t − ∂uw/∂t
the following expression yields:

∂n

∂t
= − (1 − n) · ∂εv

∂t
= −αs

(
∂p

∂t
− ∂uw

∂t

)
− ∂εp

v

∂t
+ n · ∂εv

∂t
(6.9)

Thus, imploying Equation 6.7 together with the Darcy’s law, Equation 6.4 can be rewrit-
ten in terms of ground water head h as:

∂

∂x

(
kx · ∂h

∂x

)
+

∂

∂y

(
ky · ∂h

∂y

)
+

∂

∂z

(
kz · ∂h

∂z

)
= Ss · ∂h

∂t
−

(
αs · ∂p

∂t
+

∂εp
v

∂t

)
(6.10)
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Chapter 6 Unsaturated ground water flow

The above equation is the so-called storage equation (Verruijt, 1995), with Ss = g · ρw ·
(αs + n · β) being called the specific storage. The symbol g stands for acceleration due to
gravity. This equation describes the transient flow in anisotropic saturated soil. The
solution h(x, y, z, t) specifies the ground water head value at any point in the flow field
at any time. Equation 6.10 is coupled to the mechanical equilibrium equation through the
term αs ·∂p/∂t+∂εpv/∂t which shows that the solution is varying with the variation of the
total mean stress p. If the total mean stress p is assumed to remain constant during the
flow process and on neglecting the rate of plastic volumetric strain, the coupling term
drops out in the above equation and one gets the uncoupled formulation:

∂

∂x

(

kx ·
∂h

∂x

)

+
∂

∂y

(

ky ·
∂h

∂y

)

+
∂

∂z

(

kz ·
∂h

∂z

)

≈ Ss ·
∂h

∂t
(6.11)

For the most general boundary value problem with flow, i.e. consolidation and external
loading at the same time, it is obviously not appropriate to neglect a change of the total
mean stress. In practical engineering, however, external loads are often applied in rel-
atively short period of time during which flow can be disregarded. This is the (short)
period of so-called undrained loading, which may be analysed on the basis of equilib-
rium conditions alone. In the subsequent period of consolidation, external loads remain
constant and local variations of the total mean stress may be disregarded. In this study
such pure consolidation periods will be analysed on the basis of Equation 6.11, i.e. on
the basis of a so-called uncoupled analysis.

On using the equation Ss = g · ρw · (αs + n · β) for the storage coefficent, one would
also neglect plastic volumetric rates of strains, but this situation may be improved by
redefining the equation for Ss, or rather the soil compressibility coefficient αs. Indeed,
according to Equation 6.8 αs stands for the elastic soil compressibility, but this may be
extended to include some plastic compression when replacing κ by λ, at least in areas
where plastic yielding occurs. This will not capture all plastic compression, as this is also
influenced by deviatoric loading, but part of it will at least be captured.

Coupled formulation is more accurate but it is demanding on implementation and com-
putational level. The uncoupled formulation is adopted in the rest of this report, in the
sense that ground water flow calculation is done first to determine the pore water pres-
sure distribution. Then the deformation calculation is separately done using the previ-
ously calculated pore pressures. Previous experiences (Nesnas and Pyrah, 1998; Hung,
2002) show that coupled formulation has minor advantages over the uncoupled for-
mulation when studying drained deformations in shallow foundation. However, when
analysing soil consolidation, one should definitly consider the coupled formulation.
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6.2 Governing partial differential equation

6.2.3 Transient unsaturated water flow

The varying terms in this case are the soil water content and the soil storage. The net
flow rate into any unsaturated elemental control volume should be equal to the rate of
change of water content as well as the soil storage in time. On expressing the water
content using the soil degree of saturation Sr = θ/n Equation 6.4 becomes:

∂ (nρwvx)

∂x
+
∂ (nρwvy)

∂y
+
∂ (nρwvz)

∂z
=
∂ (ρw · n · Sr)

∂t
= n ·Sr ·

∂ρw
∂t

+ρw ·Sr ·
∂n

∂t
+n ·ρw ·

∂Sr
∂t

(6.12)

after some algebraic manipulation it yields:

∂

∂x

(

kx (ψ) · ∂h
∂x

)

+
∂

∂y

(

ky (ψ) · ∂h
∂y

)

+
∂

∂z

(

kz (ψ) · ∂h
∂z

)

= Sr · Ss ·
∂h

∂t
+
∂θ

∂t
(6.13)

Equation 6.13 is usually expressed in terms of the pressure head ψ. On doing so it be-
comes:

∂

∂x

(

kx (ψ) · ∂ψ
∂x

)

+
∂

∂y

(

ky (ψ) · ∂ψ
∂y

)

+
∂

∂z

(

kz (ψ) ·
(
∂ψ

∂z
+ 1

))

= (Sr · Ss + C (ψ)) · ∂ψ
∂t

(6.14)

where C (ψ) = ∂θ/∂ψ is the so-called specific moisture capacity. It reflects the soil capacity
to take or lose moisture under a unit reduction in pressure head ψ. Equation 6.14 is
mostly known as Richard’s equation for single phase flow. To solve the equation suitable
boundary conditions, initial conditions, a defined relationship between soil permeability
and the pressure head k (ψ) and a defined relationship between the soil water content
and the pressure head θ (ψ) are needed. One of the fitting functions introduced in Section
6.2.6 might be used for this purpose.

6.2.4 Multiphase flow

In the previous illustration it has been assumed that water is the only active phase in soil
porous. In some practical cases, however, one should include the effect of other possible
active phases. Applying the mass conservation principle yields the following partial
differential equation in case of multiphase flow (Helmig, 1997):

∂ (nαραv
α
x )

∂x
+
∂
(
nαραv

α
y

)

∂y
+
∂ (nαραv

α
z )

∂z
=
∂ (ρα · nα)

∂t
(6.15)
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Chapter 6 Unsaturated ground water flow

where ρα is the density of the phase α and vαi is the flow component in direction i. The
symbol nα stands for the porous space ratio being filled by a phase α. It can be linked to
the porosity n as:

nα = Sαr · n (6.16)

where Sαr is the degree of saturation with respect to the phase α. Substituting Equation
6.16 in Equation 6.15 yields:

∂ (nαραv
α
x )

∂x
+
∂
(
nαραv

α
y

)

∂y
+
∂ (nαραv

α
z )

∂z
=
∂ (ρα · Sαr · n)

∂t
(6.17)

The time derivative term is expanded as:

∂ (ρα · Sαr · n)

∂t
= n · Sαr · ∂ρα

∂t
︸ ︷︷ ︸

I

+ ρα · Sαr · ∂n
∂t

︸ ︷︷ ︸

II
︸ ︷︷ ︸

accounts for compressibility

+ ρα · n · ∂S
α
r

∂t
︸ ︷︷ ︸

III
︸ ︷︷ ︸

only appears inmultiphase flow

(6.18)

this part is similar to the right-hand side of Equation 6.12 being applied for each inde-
pendent phase α. Term I accounts for phase compressibility whereas term II accounts
for soil matrix compressibility. The third term is known as saturation term and only
appears in a multiphase system.

Darcy’s law can be also adopted for multiphase flow. It is expressed as:

vαi = −kαi (Sr) ·
(
∂uα
∂xi

+ ρα · g
)

(6.19)

where uα is the phase pressure and kαi (Sr) is the saturation dependent permeability.
Equation 6.17 is reformulated as:

∂

∂x

(

kαx (Sr) · ρα ·
∂uα
∂x

)

+
∂

∂y

(

kαy (Sr) · ρα ·
∂uα
∂y

)

+
∂

∂z

(

kαz (Sr) · ρα ·
∂uα
∂z

)

+
∂

∂z

(
ρ2
α · g

)
=

n · Sαr · ∂ρα
∂t

+ ρα · Sαr · ∂n
∂t

+ ρα · n · ∂S
α
r

∂t
(6.20)

The above equation represents the general partial differential equation for a multiphase
system. Equation 6.20 reduces to Equation 6.13 for water flow only. The most relevant
case in unsaturated soil mechanics is to having pore air as another active phase. If one
considers air as an ideal gas then its density is expressed as:
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6.2 Governing partial differential equation

ρa =
wa
R · T · ua (6.21)

where wa is the molar mass of air. Its average is 0.02897kg/mol. The symbol R stands for
the universal gas constant being equal to 8.314472J/mol · K. The absolute temperature
T is expressed in Kelvin. On substituting in Equation 6.20 for the air phase α = a the
expression 6.21 for ρa one obtains:

∂

∂x

(

kax(Sr) ·
∂u2

α

∂x

)

+
∂

∂y

(

kay(Sr) ·
∂u2

α

∂y

)

+
∂

∂z

(

kaz (Sr) ·
∂u2

α

∂z

)

+
∂

∂z

(

u2
α ·

wa · g
R · T

)

=

n · Sar
ua

· ∂u
2
α

∂t
− n · Sar · ua

2T
· ∂T
∂t
(6.22)

Equation 6.22 is the governing equation for air flow. To solve it the temperature variation
with time needs to be known. This requires the solution of another equation for the
temperature distribution. However, the temperature and the gravity effects on air flow
may be often neglected; especially in shallow foundation applications as studied here.
These simplifications lead to the following equation:

∂

∂x

(

kax(Sr) ·
∂u2

α

∂x

)

+
∂

∂y

(

kay(Sr) ·
∂u2

α

∂y

)

+
∂

∂z

(

kaz(Sr) ·
∂u2

α

∂z

)

=
n · Sar
ua

· ∂u
2
α

∂t
(6.23)

The above equation together with Equation 6.13 form a system of two partial differential
equations with six unknowns. They are the pore water pressure uw, the pore air pressure
ua, the water degree of saturation Sr, the air degree of saturation Sar , the unsaturated wa-
ter permeability k and the unsaturated air permeability ka. To solve them four additional
equations must be implemented. Two of them are constitutive relationships linking the
water and air phase permeability to the degree of saturation or suction. In addition, the
sum of air degree of saturation and water degree of saturation should be always equal
to 1. Finally, the capillary pressure or suction offers the fourth equation which links air
pressure to water pressure. Mathematically, the above mentioned additional equations
can be formulated as:

1. k = k(Sr); 3. Sr + Sar = 1
2. ka = ka(Sr); 4. s = ua − uw

(6.24)

This system of six equations is highly nonlinear due to the nonlinear dependency of satu-
ration on suction and permeability. The primary unknowns in the previous formulation
are the pore water pressure and pore air pressure, thus it is termed as pressure formula-
tion. Other forms like pressure-saturation and saturation-saturation formulations are also
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Figure 6.2: Soil water characteristic curve (a) normal scale (b) semi-logarithmic scale.

possible. The choice of which formulation to be adopted is highly dependent on the
problem being studied. The interested reader is advised to consult Helmig (1997) for a
detailed reading about each different formulation and their numerical implementation.
In the case of non-isothermal applications, the multiphase equations can be extended
further to include the moisture transferred in vapor form and the dissolved air in water
phase (Olivella et al., 1994).

In the current study air pressure is considered to be atmospheric. This reduces the prob-
lem to a single water phase flow as described in Equation 6.14. It will be used to illustrate
the numerical solution and all other numerical applications. Before discussing the nu-
merical solution of flow equation, the following section reviews some fitting functions
as used to link the phase permeability to the degree of saturation and the degree of sat-
uration to suction.

6.2.5 Fitting functions for soil degree of saturation

The relation between the degree of saturation and the suction is usually referred to as
the Soil Water Characteristic Curve (SWCC). It is used to determine the specific moisture
capacity C (ψ) for each suction value. The value of C (ψ) is directly related to the tangent
of the SWCC at current suction value. By definition C (ψ) = ∂θ/∂ψ with θ = n · Sr, thus:

C (ψ) =
∂ (n · Sr)

∂ψ
= n · ∂Sr

∂ψ
+ Sr ·

∂n

∂ψ
(6.25)

Usually the variation of the porosity n with suction is relatively small. Therefor, the
specific moisture capacity can be expressed in term of degree of saturation as C (ψ) ≈
n · ∂Sr/∂ψ. Figure 6.2 shows a typical SWCC. The experimental procedure for obtaining
this curve is expensive and time consuming (Fredlund and Rahardjo, 1993). Therefore
many fitting equations have been proposed in the literature to determine a continuous
SWCC depending only on few experimental data. Leong and Rahardjo (1997a) gave a
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6.2 Governing partial differential equation

full literature review about this topic. Table 6.1 lists the most common mathematical
expressions as frequently used in practice. Among them, the Van Genuchten equation
(Van Genuchten, 1980) gained wide spread use due to its flexibility and the relatively
little number of fitting parameters. The proposed functions relate the so-called effective
degree of saturation Se to the suction head ψ. The effective degree of saturation is defined
as:

Se =
Sr − Sresr

Ssatr − Sresr

(6.26)

where Sresr is the residual degree of saturation at very dry conditions and Ssatr is the degree
of saturation at full saturation being taken as 1 for most cases. Figure 6.3 shows the per-
formance of each different function in fitting the experimental data. The experimental
data was provided by Van Genuchten (1980) for a sandy silt. As can be seen, Fredlund
and Xing function is doing the best. However, it involves one additional fitting param-
eter over the Van Genuchten function. The air entry pressure head ψd as used in the
Brooks-Corey function is defined as the suction head required to to displace water from
the largest pore (Helmig, 1997). Lenhard (1989) provided the following correlations be-
tween Brooks-Corey and Van Genuchten parameters:

ς = (n− 1) ·
[

1 − Sres
n/(n−1)

r

]

S̄x = 0.72 − 0.35 · exp(−n4)

α =

[

0.1 · S̄x ·
(

S̄
n/(n−1)
x − 1

)1/n
]

/ψd

(6.27)

In summary, one needs the fitting parameters suited for the function being chosen as
well as Sresr and Ssatr as input data for fully fitting the SWCC.

Table 6.1: Some fitting equations for Soil Water Characteristic Curve.

Reference Equation Fitting parameters

Gardner (1958) Se = 1
1+α·ψn α, n

Brooks and Corey (1964)
Se = 1, ψ ≤ ψd

Se =
(
ψd
ψ

)ς

, ψ > ψd
ς

Van Genuchten (1980) Se = 1

[1+(α·ψ)n]1−1/n α,n

Fredlund and Xing (1994) Se = 1

{ln[exp(1)+(ψα )
n
]}m α, n, m
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Figure 6.3: The performance of some models in fitting SWCC data.

6.2.6 Fitting functions for soil water permeability

The SWCC equation can be used to derive the relation between soil permeability and its
degree of saturation. The mathematical details of such derivations can be found else-
where, for example in Van Genuchten (1980) and Fredlund et al. (1994). This leads to
a new set of fitting functions. These functions allow the definition of continuous rela-
tionship between permeability and suction. The value k (ψ) is needed for solving the
flow equations of both air and water flow as has been discussed in Section 6.2.4. It is
common in literature to express the actual permeability value at a certain suction level
as a fraction of its value at full saturation, for example:

ki (ψ) = kisat · kirel (ψ) (6.28)

where ki (ψ) is the suction dependent actual permeability in direction i, kisat is the soil
permeability at full saturation and kirel (ψ) is the so-called relative permeability which is
the ratio between actual permeability and the permeability at full saturation. Its value
reaches one at full saturation and approaches zero in a very dry soil. Table 6.2 lists
some well-known relative permeability functions. They are expressed as a function of
the effective degree of saturation which is in turn a function of suction head. The ef-
fective saturation must be calculated from the suitable formula in Table 6.1 before being
substituted in Table 6.2. For example, to calculate water permeability according to Van
Genuchten formula in Table 6.2, it is necessary to calculate the effective saturation us-
ing the Van Genuchten formula in Table 6.1. Figure 6.4 shows the performance of these
models in fitting the water permeability. In this example Fredlund and Xing function
also performs well with the additional fitting parameter. The experimental data are as-
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6.2 Governing partial differential equation

Table 6.2: Relative permeability functions for the water phase.

Reference Water phase Fitting parameters

Gardner (1958) krel = exp

[

−α ·
(

1−Se
α·Se

)1/n
]

α, n

Brooks and Corey (1964) krel = S
(2+3·ς)
e ς

Van Genuchten (1980) krel =
√
Se ·

[

1 −
(

1 − S
n/(n−1)
e

)1−1/n
]2

n

Fredlund and Xing (1994) krel = Spe p
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Figure 6.4: Performance of some fitting models for water relative permeability.
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Chapter 6 Unsaturated ground water flow

sociated with those in Figure 6.3 for a sandy silt. On considering two phase flow, an
evaluation for the water permeability and the air permeability as a function of suction
head is further required.

6.3 Finite element discretization in space

The Galerkin’s weighted residual approach is used to obtain the discretized form of
Equation 6.14. Using a trial function Wi one may write (Huyakorn and Pinder, 1983):

∫

V

Wi ·
[
∂

∂x

(

kx (ψ) · ∂ψ
∂x

)

+
∂

∂y

(

ky (ψ) · ∂ψ
∂y

)

+
∂

∂z

(

kz (ψ) ·
(
∂ψ

∂z
+ 1

))]

dV−
∫

V

Wi ·
[

(Sr · Ss + C (ψ)) · ∂ψ
∂t

]

dV = 0

(6.29)

The application of Green’s formula to the first part on Equation 6.29 allows the reduction
of the differentiation order as follows:

∫

V

Wi · kx (ψ) · ∂2ψ
∂x2

dV = −
∫

V

kx (ψ) · ∂Wi

∂x
· ∂ψ
∂x

dV +

∮

S

Wi · kx (ψ) · ∂ψ
∂x

· nx dS (6.30)

where nx is the unit normal vector on the domain boundary. Substitution of these equa-
tions for all three partial derivatives into Equation 6.29 yields:

−
∫

V

kx (ψ) · ∂Wi

∂x
· ∂ψ
∂x

dV −
∫

V

ky (ψ) · ∂Wi

∂y
· ∂ψ
∂y

dV −
∫

V

kz (ψ) · ∂Wi

∂z
· ∂ψ
∂z

dV+

∫

V

Wi · kz (ψ) · ∂Wi

∂z
dV −

∫

V

Wi ·
[

(Sr · Ss + C (ψ)) · ∂ψ
∂t

]

dV −
∮

S

Wi · q dS = 0

(6.31)

with:

q = −kx (ψ) · ∂ψ
∂x

· nx − ky (ψ) · ∂ψ
∂y

· ny − kz (ψ) · ∂ψ
∂z

· nz (6.32)

where q is the flux being applied on the domain boundaries. The q value can be directly
prescribed as a boundary condition. Putting q = 0 yields a closed boundary.

To express the pressure head ψ in term of nodal pressure head Ψ, the following approxi-
mation is used:
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6.4 Finite differences discretization in time

ψ = Ni · Ψi (6.33)

where Ni is the shape function. Assuming that the trial function Wi is equal to the shape
function Ni, Equation 6.31 can be written as:

KΨ + MΨ̇ = f (6.34)

with:

K =

∫

V

kx (ψ) · ∂Ni

∂x
· ∂Nj

∂x
dV +

∫

V

ky (ψ) · ∂Ni

∂y
· ∂Nj

∂y
dV +

∫

V

kz (ψ) · ∂Ni

∂z
· ∂Nj

∂z
dV

M =

∫

V

Ni · (Sr · Ss + C (ψ)) ·Nj dV (6.35)

f =

∫

V

Ni · kz (ψ) · ∂Ni

∂z
dV −

∮

S

Ni · q dS

The pressure head dependent values k (ψ) and C (ψ) can be also approximated in terms
of nodal pressure head as:

k (ψ) = Ni · k (Ψi) ; C (ψ) = Ni · C (Ψi) (6.36)

The primary unknown is the nodal pressure head Ψ. The nodal pressure head is varying
in time. This requires a time discretization to fully solve the equation in space and time.

6.4 Finite differences discretization in time

The unknown in Equation 6.34 is the pressure head Ψk+1 at the time level k+ 1. The aim
is to determine its value depending on its known value Ψk at the previous time level k.
Using finite differences method Equation 6.34 can be discretized in time as (Huyakorn
and Pinder, 1983):

Kk+δ
[
δ · Ψk+1 + (1 − δ) · Ψk

]
+

Mk+δ

∆t
·
[
Ψk+1 − Ψk

]
= fk+δ (6.37)

where k indicates the time level and δ is factor ranging between 0 and 1. Equation 6.37
corresponds to a system of algebraic equations. From it, various time-stepping schemes
can be obtained, depending on the chosen value of δ.

• Explicit scheme or Forward Euler scheme with δ = 0.
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Chapter 6 Unsaturated ground water flow

• Fully implicit scheme or Backward Euler scheme with δ = 1.

• Crank-Nicolson scheme with δ = 1/2.

Whichever time-stepping scheme is used, the solution of the transient problem starts
by using the initial conditions to represent values at the old time level. Of the three
time-stepping schemes, the explicit scheme may require less computational effort, but
is only conditionally stable. Unless the value of ∆t is less than a certain magnitude, the
solution obtained from the explicit scheme will have an uncontrollable exponential error
growth. On the other hand both the fully implicit and Crank-Nicolson schemes are un-
conditionally stable (Huyakorn and Pinder, 1983). In the PLAXFLOW finite element code
(Brinkgreve et al., 2003) as used in this study the fully implicit scheme is adopted for
time integration. Thus Equation 6.37 is written as:

Kk+1Ψk+1 +
Mk+1

∆t
·
[
Ψk+1 − Ψk

]
= fk+1 (6.38)

An iterative procedure is required to solve the resulted set of nonlinear equations 6.38.
One possible choice is the Newton-Raphson iteration scheme being discussed in Section
5.5.2. Another possibility is to use the so-called Picard iteration procedure as explained in
the following section.

6.5 Picard iteration method

Equation 6.38 can be reformulated as:

E∆Ψ = g (6.39)

where

E = Kk+1 +
Mk+1

∆t
; g = fk+1 − Kk+1 ·Ψk (6.40)

and
∆Ψ = Ψk+1 − Ψk (6.41)

This can be solved iteratively according to the recursion equation:

Er∆Ψr+1 = gr for r = i...imax (6.42)

To solve ∆Ψr+1 the values of gr and Er are determined using the pressure head value at
the previous iteration Ψr. After ∆Ψr+1 being determined, the new Ψr+1 value is calcu-
lated from:

118



6.6 Validation of the finite element code being used

Ψr+1 = Ψr + ∆Ψr+1 (6.43)

This new value is used in the second iteration till a convergence is reached. One of the
proposed criteria for convergence is to satisfy the following condition:

maxj |∆Ψr+1|
maxj |Ψr| ≤ Tol (6.44)

where Tol is a prescribed tolerances.

6.6 Validation of the finite element code being used

The finite element code being used is based on a three noded triangular element with
one Gauss point and linear shape functions. In its recent version the code is designed
to solve Richard’s equation for single phase flow. It uses numerical schemes similar to
that explained in the previous section. Although the code is able to solve general two
dimensional flow problems, it is used in this thesis to do simple one dimensional vertical
infiltration/evaporation calculations. In case of one dimensional vertical flow Equation
6.14 reduces to:

∂

∂z

[

ksat · krel (ψ) ·
(
∂ψ

∂z
+ 1

)]

= [Sr · Ss + C (ψ)] · ∂ψ
∂t

(6.45)

which can be reduced further in case of steady-state to:

∂

∂z

[

ksat · krel (ψ) ·
(
∂ψ

∂z
+ 1

)]

= 0 (6.46)

The finite element solution will be validated by considering some available analytical
solutions.

6.6.1 Validation in case of unsaturated stationary ground water flow

Gardner (1958b) gave an analytical solution of the differential Equation 6.46 for infil-
tration or evaporation boundary conditions at a horizontal soil surface. The solution is
valid for a special relative permeability function of the form:

krel = e−α·ψ (6.47)

where α is a fitting parameter. The analytical solution is given as:
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Figure 6.5: Finite element mesh, boundary and initial conditions as used in the verifica-
tion example.

ψ =
1

α
· ln
[(

1 − q

ksat

)

· e−α·z +
q

ksat

]

(6.48)

The discharge rate q takes a positive sign for infiltration and negative sign for evapora-
tion.

A silty soil with a saturated permeability of ksat = 1m/day and α = 2m−1 is used to
generate the numerical results. Figure 6.5 shows the finite element mesh and boundary
conditions as used in the validation example. The closed vertical boundaries are used
to recover 1-D conditions. The ground water table is at 3.0m below ground surface.
A Neumann boundary condition is applied at the soil surface. The problem is solved
for three common practical situations. namely hydrostatic conditions with q = 0, evap-
oration with q = −0.002m/day and infiltration with q = 0.1m/day. The hydrostatic
conditions represent a pore pressure distribution in an unsaturated soil with a closed
soil surface. The soil located directly underneath a raft foundation is an example of this
category. Evaporation on an open boundary is typical for a hot and dry season. On con-
trast, the moisture increase due to rainfall for example is best captured by the infiltration
boundary condition. Figure 6.6 shows a very good agreement between the numerical
result and the analytical solution for this particular kind of problems. At the same time,
it gives an idea about negative pore water pressure profiles in such common cases.
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Figure 6.6: Analytical versus numerical results in case of steady water flow.

6.6.2 Validation in case of unsaturated transient ground water flow

An analytical solution of Equation 6.45 in the case of transient infiltration is given by
Srivastava and Yeh (1991). They derived the solution for the particular relative perme-
ability function as presented in Equation 6.47 and the water characteristic curve with the
equation:

Sr = Sresr +
(
Ssatr − Sresr

)
· e−α·ψ (6.49)

The corresponding curve is shown in Figure 6.5 for Sresr = 1 and Sresr = 0.23.

According to Srivastava and Yeh (1991), the negative pore water pressure head ψ at each
time t is given as:

ψ =
1

α
· ln (B) (6.50)

where:

B =
q

ksat
−
(

q

ksat
− 1

)

·e−z−4 · q
ksat

·e(L−z)/2·e−t?/4·
∞∑

i=1

sin (λi · z) · sin (λi · L) · e−λ2
i ·t
?

1 + (L/2) + 2 · λ2
i · L

(6.51)

and:

t? =
n · α · ksat · t
Ssatr − Sresr

(6.52)

121



Chapter 6 Unsaturated ground water flow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2.01.81.61.41.21.00.80.60.40.20.0

negative pressure head  ψ [m] 

el
ev

at
io

n 
  z

 [m
]

 numerical solution

exact solution 
 Gardner solution 

0.1
0.25 

0.5 
1.05.0

3.02.82.62.42.2

t = 0.0 day

Figure 6.7: Analytical versus numerical results in case of transient infiltration.

In the above equation λi represents the ith root of the characteristic equation:

tan (λ · L) + 2 · λ = 0 (6.53)

The symbol L stands for soil depth.

The same material properties, geometry and boundary conditions as used in Section
6.6.1 are used here. Hydrostatic suction distribution is taken as an initial condition. The
soil is exposed to infiltration rate of q = 0.1m/day. The analytical solution at different
time steps is presented by the solid line in Figure 6.7 whereas the numerical results are
presented by dots. Beside the good agreement, the figure shows that the steady-state
solution by Gardner is obtained after 5 days of continuous infiltration.

The numerical solution of unsaturated water flow determines the variation of suction in
time and space. These values are transferred to a code for deformation analysis. The
interaction between the two codes is explained later in Chapter 8.
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Chapter 7

Anisotropic model for unsaturated soil

7.1 Introduction

Shallow foundation are supported by a natural soil. It is quite recognized that natural
clays shows an anisotropic behavior. This means that the soil shows different stiffness
characteristics depending on the direction of loading. This fact has consequences with
respect to the modeling of mechanical behavior. This chapter discusses this issue and
proposes a new model to approach anisotropy in case of unsaturated soil.

7.2 Origin of anisotropy

Depending on the sources one may classify the anisotropy of soil into two general cate-
gories

1. Inherent anisotropy: which is an inherent physical property of the material. It is
totally independent from the applied strains (Casagrande and Carrillo, 1944). It
develops due to deposition process. This type of anisotropy is determined by the
grain size, grain form and the way that they deposit.

2. Induced anisotropy: The particles directions and the arrangement of contact points
between the particles are very anisotropic in natural soils. During subsequent load-
ing, the particles begin to redistribute and rearranging the contact points. The in-
duced anisotropy is directly related to grains rearrangement caused by strains as
associated with stresses. Soil particles tend to form an internal load-carrying paths
in the direction of major principal stress. The development of anisotropic structure
affects the soil stiffness and yielding characteristics.

In nature, most sediments are exposed to stress history due to gravity as well as some
other geological processes. Thus, the soil shows a combination of inherent and induced
anisotropy which is best known as initial anisotropy.
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Figure 7.1: Empirical data on yield surfaces of a Ko consolidated clay after Graham et al.
(1983).

7.3 Empirical observations and constitutive modeling of

anisotropy

Graham et al. (1983) provided important data on the mechanical response of natural clay
for different stress paths. In a special study about the yielding characteristic, the natural
clay is taken to failure by different stress paths. Before shearing phase the soil was nor-
mally consolidated following KNC

o stress path. Figure 7.1 illustrates the yielding points
where four separated yield surfaces are drawn through these points. Each yield surface
is associated with a different one dimensional preconsolidation pressure σp. The data
shows that the yield surfaces are not centralized around the isotropic p′ axes. Instead,
it is centralized around the KNC

o line. This anisotropic yielding characteristic are typical
for soil with a one-dimensional compression history. Similar observations are reported
by Mitchell (1970), Baracos et al. (1980) and Lew (1981). This suggests a modification on
the isotropic Cam Clay yield ellipses. One of the concepts being used is a rotated yield
surfaces as shown by the solid curves in Figure 7.1. Other frameworks being used to
model anisotropy are the Multilaminate Models (Zienkiewicz and Pande, 1977), Bounding
surface Models (Anandarajah and Dafalias, 1986) and Bubble Models (Al-Tabba and Wood,
1989). In addition to the concept of the inclined yield surfaces as adopted in this study
there is the concept of a fabric tensor (Kanatani, 1981) which is used to achieve a better
description of general states of stress and strain. The simple use of stress invariants is
not adequate in case of anisotropy.
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7.4 Models based on Cam Clay model

7.4 Models based on Cam Clay model

7.4.1 SANICLAY model

Dafalias (1986) proposed the following equation for the rate of dissipated plastic work
during yielding in the case of triaxial stress state:

Ẇdis = p′ ·
√

(ε̇pv)
2
+ (M · ε̇pq)2

+ 2 · α · ε̇pv · ε̇pq (7.1)

where α is a non-dimensional anisotropy parameter. Following the same methodology
in Section 3.4.2 the plastic potential is written as:

g = (q − α · p′)2 −
(
M2 − α2

)
· p′ · (pmo − p′) = 0 (7.2)

Dafalias (1986) used associated plasticity with yield function f = g. Figure 7.2 shows
a graphical representation of the yield function in the simple case of triaxial conditions.
The yield surface is a rotated and distorted ellipse where the degree of rotation and
distortion is determined by the value of α. The yield surface has two vertical tangents.
One at pointA corresponds to a preconsolidation pressure pmo with the stress ratio q/p′ =
α. The other is at point O, the center of coordinates. Furthermore, the yield surface has
two horizontal tangents at points C and Ć as associated with the critical state points.
On yielding at points A or O, the soil shows only volumetric plastic strains whereas on
yielding at points C or Ć the soil shows pure shear strain. This is typical for the critical
state. Yielding along the isotropic axis at point like D generates both plastic volumetric

q
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α

A

p
mo



D

O

C
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CSL

M

Figure 7.2: Anisotropic yield surface after Dafalias (1986).
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Figure 7.3: Hardening mechanisms in Dafalias’s model (a) size hardening (b) rota-
tional hardening.

strains and plastic shear strain. This characterizes the anisotropic behavior if compared
to isotropic model which yields only volumetric strains in such a stress path. For elastic
behavior, the model obeys the normal Cam Clay equation of nonlinear elasticity. The
above yield surface reduces again to isotropic Modified Cam Clay on putting α = 0.
In case of α = 0 Equation 7.1 reduces to Burland’s equation 3.32 as used for deriving
the isotropic Modified Cam Clay plastic potential. The value of α is positive for triaxial
compression and negative for extension. However, the condition |α| < |M | should be
always satisfied.

For plastic behavior the model has two hardening parameters. The first is the precon-
solidation pressure pmo which controls the size of the yield surface as in Figure 7.3a. The
second is the rotational hardening variable α which controls the degree of rotation and
distortion of the ellipse as in Figure 7.3b. In Dafalias’s model both hardening parameters
are only functions of the plastic volumetric strain εpv . They obey the following evaluation
equations:

ṗmo =
pmo

λ?o − κ?
· ε̇pv; α̇ =

(q − x · α · p′)
λ?o − κ?

· c

pmo
· ε̇pv (7.3)

Equation 7.3 exactly resembles the hardening rule being used in Cam Clay model for
preconsolidation pressure evaluation. The parameters c and x are new model constants.
The value of x controls the degree of anisotropy which can develop under a constant q/p′

loading. The parameter c controls the rate at which the anisotropy develops or demises.

In a later work by Dafalias et al. (2006) a non-associated plasticity is used where the plas-
tic potential is given as in Equation 7.2. The modified version is named the SANICLAY
model with a new yield function of the form:

126



7.4 Models based on Cam Clay model

q

p'

α
O

β

N

M

(po, βpo)

(pmo, αpmo)

εp

yield function  f

plastic potential  g

Figure 7.4: SANICLAY’s yield function and plastic potential in triaxial conditions after
Dafalias et al. (2006).

f = (q − β · p′)2 −
(
N2 − β2

)
· p′ · (po − p′) = 0 (7.4)

where po, β and N substitute pmo, α and M in the plastic potential function 7.2. Figure
7.4 shows both f and g in triaxial conditions. The evaluation equations for the rotational
hardening are updated to the form:

α̇ =
|η − x · α| ·

(
αb − α

)

λ?o − κ?
· c ·

(
p′

pmo

)2

· ε̇pv (7.5)

with:

η/x > α⇒ αb = Mc; η/x < α⇒ αb = −Me (7.6)

where η is the stress ratio q/p′. The symbols Mc and Me stand for the critical state line
slope in triaxial compression and extension respectively. During loading the value of α
changes towards an asymptotic value of η/x. However, if the value of η/x lies outside
the range [Mc,−Me] then α value will be bounded by the maximum possible value of αb.

The evaluation equation of β reads:

β̇ =
|η − β| ·

(
βb − β

)

λ?o − κ?
· c ·

(
p′

po

)2

· ε̇pv (7.7)

with:
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η > β ⇒ βb = N ; η < β ⇒ βb = −N (7.8)

again the value of β is bounded by βb value.

7.4.2 S-Clay1 model for anisotropic soil

Wheeler et al. (2003) used the plastic potential function 7.2 in the so-called S-Clay1 model.
The model is an associated elastoplastic model with similar features as discussed in the
previous section. However, Wheeler et al. (2003) changed the hardening rule with re-
spect to the rotational hardening parameter α. In S-Clay1 the rotational hardening is not
only dependent on the plastic volumetric strain εpv but it is also dependent on the plastic
deviatoric strain εpq . According to S-Clay1 formulation the evaluation equation for α is
given as:

α̇ = µ ·
[
(χv (η) − α) · 〈ε̇pv〉 + β · (χq (η) − α) ·

∣
∣ε̇pq
∣
∣
]

(7.9)

The soil constant β controls the relative effectiveness of plastic shear strains and plastic
volumetric strains in the evaluation of α. The constant µ has a similar meaning to the
constant x in Dafalias’s model in determining the speed of rotation of the yield surface.
The values χv (η) and χq (η) which are functions of stress ratio η represent bounding
values for α. Therefore, for a typical soil the value of α lies between χv (η) and χq (η). For
stress paths with dominant plastic shear strain the final α value will be closer to χq (η)
and the other way around, when the plastic volumetric strain is dominant the final value
will be closer to χv (η). Depending on experimental data on Otaniemi clay, Wheeler et
al. (2003) proposed the following formula in the simple triaxial conditions:

χv (η) = 3 · η/4; χq (η) = η/3 (7.10)

According to Wheeler et al. (2003) the modulus symbol is used for the rate of plastic
shear strain in Equation 7.9 to insure that ε̇pq trying to attract α towards the asymptotic
value χq (η) irrespective to the sign of ε̇pq . Furthermore, the Macaulay bracket functions
on ε̇pv to insure reasonable results in the dry side of yield surface with negative ε̇pv values
which implies dilation. The Macaulay bracket applies the following condition on ε̇pv:

〈ε̇pv〉 =

{
ε̇pv if ε̇pv > 0
0 if ε̇pv < 0

(7.11)

One of the significant improvement being introduced by S-Clay1 framework is that it
predicts a unique value for the yield surface inclination as associated with the critical
state. This inclination is independent of the initial inclination and the stress path being
applied to take the stress state to the critical state. At critical state with ε̇pv = 0 the
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evaluation of α is only a function of ε̇pq which drags α to a final value of M/3 in the case
of triaxial conditions in accordance with Equation 7.10.

If compared to the Modified Cam Clay Model, this model requires two additional soil
constants, namely β and µ. An initial value of the yield surface inclination is also needed.
A brief discussion of the procedure used for determining each parameter is given in the
next subsections.

7.4.2.1 The initial value of α

In the case of a normally consolidated soil with a one dimensional compression history,
the initial inclination αo can be related to the earth pressure factor at rest KNC

o . For
one dimensional compression the ratio ε̇pq/ε̇

p
v ' 2/3 assuming that the elastic strain is

negligible in comparison to the plastic one during plastic deformation. The flow rule
as associated with the plastic potential 7.2, yields ε̇pq/ε̇

p
v =2· (η − α) / (M2 − η2). Thus, in

one-dimensional compression it can be shown that:

2

3
=

2 · (ηo − αo)

(M2 − η2
o)

(7.12)

Solving for αo yields:

αo =
η2
o + 3 · ηo −M2

3
(7.13)

where the stress ratio ηo in one-dimensional case is given as:

ηo =
3 ·
(
1 −KNC

o

)

1 + 2 ·KNC
o

(7.14)

Thus αo can be related to the value of KNC
o which in turn can be related to the friction

angle ϕ′. One possible formula is the formula by Jaky (1944). Care should be taken in
the case of highly overconsolidated soil where the above procedure for determining αo is
not valid. In such a case the full loading-unloading history should be considered before
assigning a value to αo.

7.4.2.2 The constant β

This constant is used to match the KNC
o value without using non-associated plasticity.

Wheeler et al. (2003) gives the following explicit expression to estimate β for a normally
consolidated soil:

β =
3 · (4 ·M2 − 4 · η2

o − 3 · ηo)
8 · (η2

o −M2 + 2 · ηo)
(7.15)
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Bearing in mind that the stress ratio M at critical state is related to the friction angle, one
concludes that both β and αo might be related to ϕ′.

7.4.2.3 The constant µ

This parameter controls the speed of yield surface rotation as associated with plastic
straining. The best way to determine it is to do a back analysis to fit available exper-
imental data. In the absence of any experimental evidences Zentar et al. (2002) found
that the values of µ usually lies in the range 10/λo ∼ 15/λo. However, Leoni et al. (2007)
proposed the following analytical expression for µ based on a sound theoretical devel-
opment:

µ =
1

λ?o
· ln
[
10 ·M2 − 2 · αo · β
M2 − 2 · αo · β

]

(7.16)

in general the values of µ ranges between 10 to 70 with most common values lying in the
range 20 ∼ 30.

7.4.2.4 S-Clay1 in the general state of stress

Wheeler et al. (2003) generalized the yield function as introduced for the triaxial state in
Equation 7.2 to the general state of stress as:

f =
3

2
·
(

[σd − p′ · αd]
T

[σd − p′ · αd]
)

−
(

M2 − 3

2
· αT

d · αd

)

· (pmo − p′) · p′ = 0 (7.17)

where σd is a deviatoric stress vector being defined as:

σT
d =

[
σ′
x − p′, σ′

y − p′, σ′
z − p′,

√
2σxy,

√
2σxz,

√
2σyz

]
(7.18)

and αd is the vector form of the deviatoric fabric tensor which only includes the inde-
pendent components:

αT
d =

[
αx − 1, αy − 1, αz − 1,

√
2αxy,

√
2αxz,

√
2αyz

]
(7.19)

This specific form of fabric tensor is defined in such a way that:

1

3
· (αx + αy + αz) = 1 (7.20)

The term σd− p′ ·αd in Equation 7.17 is the so-called mixed invariant as it represents both
the stress tensor and the fabric tensor.
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7.5 Anisotropy in unsaturated soil

Finally the generalized forms of the flow rules are given as:

ṗmo =
pmo

λ?o − κ?
· ε̇pv (7.21)

for the yield surface size hardening. The rotational hardening rule is generalized as:

α̇d = µ ·
[
(χv (σd, p

′) − αd) · 〈ε̇pv〉 + β · (χd (σd, p
′) − αd) ·

∣
∣ε̇pq
∣
∣
]

(7.22)

where the functions χv (σd, p
′) and χd (σd, p

′) are given by Naatanen et al. (1999) as:

χv (σd, p
′) =

3 · σd

4 · p′ ; χd (σd, p
′) =

σd

3 · p′ (7.23)

The above formulation fully defines the model in the general stress space.

Wiltafsky (2003) implemented the S-Clay1 model into PLAXIS finite element code using
explicit stress integration scheme. The explicit form of the plastic multiplier as derived
by Wiltafsky (2003) is:

Λ =
−f

− ∂f
∂σ′

·De · ∂g
∂σ′

+ h
(7.24)

where h can be divided into two parts h1 and h2:

h1 =
∂f

∂pmo
· ∂pmo
∂εpv

· ∂g
∂p′

(7.25)

this part is the so-called standard part which appears due to yield surface size hardening.

h2 =
∂fT

∂αd

·




∂αd

∂εpv
·
〈
∂g

∂p′

〉

+
∂αd

∂εpq
·
√

2

3
· ∂g

T

∂αd

· ∂g

∂αd



 (7.26)

this second part is the so-called anisotropic part which accounts for the anisotropy in soil
fabric. S-Clay1 formulation is extended later to the case of unsaturated soil.

7.5 Anisotropy in unsaturated soil

To study unsaturated soil yielding properties, Cui and Delage (1996) did a series of triax-
ial shear tests starting by consolidation phases with different stress ratios η. This implies
shearing with initial anisotropic stress state. Figure 7.5 shows the experimental data
as provided by Cui and Delage (1996) concerning the yielding loci at different suction
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Figure 7.5: Data after Cui and Delage (1996) showing the anisotropy in case of unsatu-
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Figure 7.6: Anisotropic yield surface as proposed by Cui and Delage (1996).

values. Cui and Delage (1996) made use of the similarity between the anisotropic unsat-
urated soil behavior and the behavior of natural clays to suggest the following formula
for the yield surface:

f = b2 · (p? · cosθ + q · sinθ − c)2 + a2 · (−p? · sinθ + q · cosθ)2 − a2 · b2 = 0 (7.27)

where a , b and c are functions of the values ps, pk and po as defined in Figure 7.6. The
symbol θ stands for the degree of inclination of the yield surface. The proposed frame-
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7.5 Anisotropy in unsaturated soil

work does not include any rotational hardening. A comparison between model predic-
tions and some experimental data is provided. The stress path being followed in this
comparison is not very clear.

In another discussion about anisotropic unsaturated soil behavior Romero et al. (2002)
argued that rotational hardening might be a good choice to model such type of behav-
ior. Wheeler and Sivakumar (2000) proposed that the framework as used in natural clay
might be extended to the case of unsaturated soil. Following this line, the S-Clay1 formu-
lation as introduced in Section 7.4.2 is extended in this work to include suction effects.
On reviewing Figure 7.5 it is clear that suction increase affects the size of yield surfaces.
However, suction increase does not affect the degree of rotation. To be more precise, as
long as suction does not introduce any plastic deformation to the system it would only
develop capillary cohesion and increase the apparent preconsolidation pressure. These
two suggestions which are in agreement with the isotropic Barcelona Basic Model are
also valid for anisotropic case according to Figure 7.5. When plastic deformation takes
place, no matter the source of this deformation then the yield surface changes in size as
well as in the degree of inclination. In unsaturated soil the source of plastic deforma-
tion could be a net stress loading beyond the yield point or a wetting-induced plastic
compression. The following section explains how these features are reflected in a new
anisotropic model for unsaturated soil.

7.5.1 Anisotropic model for unsaturated soil

A modified version of the yield function as given by Dafalias (1986) and generalized
by Wheeler et al. (2003) is adopted to include the effect of suction. The proposed yield
function in triaxial state reads:

f = [q − α · (p? + ps)]
2 −

(
M2 − α2

)
· (pm − p?) · (p? + ps) = 0 (7.28)

where ps reflects the contribution of capillary cohesion as associated with suction in-
crease. The preconsolidation pressure pm is suction dependent in this formulation. Fig-
ure 7.7 shows a schematic representation of the modified yield surface. The yielding
curve has two vertical tangents one at point A with p? = pm and the other at point Á
with p? = ps. It has also two horizontal tangents at the points of critical state in triaxial
compression C and triaxial extension Ć. In this formulation the slope of critical state
line is independent of suction value and it is always passing through the point Á. The
degree of rotation and distortion is controlled by the value of α as in Dafalias’s formu-
lation. Figure 7.8 shows the shape of yield surfaces at two different suction levels and a
constant α value. The suction increase yield surface SI is neglected in this formulation.
As a consequence, a suction increase introduces only elastic deformations. Thus no rota-
tion is expected to take place in the absence of plastic strains. The only effect of suction
increase is seen in the increase of the preconsolidation pressure pm and in the additional
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Figure 7.7: The proposed anisotropic yield surface in triaxial conditions.

pm2 p*

q

pm1

ps2

M

α

at suction s2 > s1

suction s1

Figure 7.8: The yield surface at two different suction levels but with the same inclination.
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Figure 7.9: Three dimensional representation of the new yield surface.

capillary cohesion being reflected by ps. Barcelona Basic Model rules are used to link
these two values to suction:

pm = pc ·
(
pmo
pc

)λo−κ
λ−κ

; λ = λ∞ − (λ∞ − λo) · e−β·s; ps = a · s (7.29)

where the model constants pc, λ∞, β, λo, κ and a have exactly the same meaning as
discussed in Section 4.4 for Barcelona Basic model. A three dimensional representation
of the proposed yield surface can be seen in Figure 7.9. The representation is done in the
space q−p?− s with triaxial conditions. The preconsolidation pressure pm can be simply
related to the yielding pressure on isotropic stress path pp using the formula:

pm =
pp +

(
α
M

)2 · ps
1 −

(
α
M

)2 (7.30)

as it might be more convenient to determine the preconsolidation pressure pp along the
isotropic path. Using Equation 7.30, pp can be converted to pm.

When plastic deformation takes place due to loading or due to suction reduction the
yield surface rotates to reflect the anisotropy change. Figure 7.10 shows the yield surface
for two different α values at a constant suction level. On rotating the surface, the two
vertical tangents stay at the same p? values. The critical state line is completely fixed,
independent of (rotational) hardening.

7.5.1.1 Flow and hardening rules

The model uses associated plasticity with g = f . It employs two hardening mechanisms.
A size change being controlled by volumetric plastic strains and rotational hardening
being controlled by plastic volumetric and shear strains. The hardening rule is:

ṗm =
pm

λ? − κ?
· ε̇pv (7.31)
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pm p*

q

α1 α2

Μ

ps

Figure 7.10: Yield surface rotation under constant suction.

where pm and λ? are suction dependent. For triaxial state the rotational hardening is
given by Equation 7.9. The plastic volumetric strain ε̇pv and plastic shear strain ε̇pq in the
hardening rules are related to net stress as well as to suction.

7.5.1.2 General states of stress

Adopting a fabric tensor similar to that by Wheeler et al. (2003) in Equation 7.19, the
general form of the yield surface is written as:

f =
3

2
·
(

[σd − (ps + p?) · αd]
T [σd − (ps + p?) · αd]

)

−
(

M2 − 3

2
· αT

d · αd

)

·(pm − p?)·(ps + p?) = 0

(7.32)

The hardening rule for size change is given by Equation 7.31. For rotational hardening
the net stresses should be adopted. This yields the following generalized formula:

α̇d = µ ·
[
(χv (σ?

d, p
?) − αd) · 〈ε̇pv〉 + ω · (χd (σ?

d, p
?) − αd) ·

∣
∣ε̇pq
∣
∣
]

(7.33)

where the functions χv (σ?
d, p

?) and χd (σ?
d, p

?) are defined as:

χv (σ?
d, p

?) =
3 · σ?

d

4 · p? ; χd (σ?
d, p

?) =
σ?
d

3 · p? (7.34)

The factor ω has the same meaning as the factor β in S-Clay1 formulation. The new
symbol is used to avoid confusion with the Barcelona Basic Model β factor as employed
in Equation 7.29.
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Step1. Compute trial stresses σ? trial
i = σ?

i−1 + De · ∆ε

using σ? trial
i compute p? triali

Compute the new suction value si = si−1 + ∆s and

use it to compute ps, λ and ptrialmi from Equation 7.29.

Read the initial fabric vector values αo as calculated
depending on KNc

o value.

Step2. Check the yield functions

f
(
σ? trial
i , p? triali , αo, si, p

trial
mi

)
> 0?

If NO. then σ?
i = σ? trial

i , pmi = ptrialmi , αoi = αo

and Exit.

Step3. If f
(
σ? trial
i , p? triali , αo, si, p

trial
mi

)
> 0, see Routine 6.

Step4. Plastic corrector: σ?
i , ppi, αoi =converged value from

Newton-Raphson iterations in Routine 6.

Routine 5: Basic steps during the return mapping.

7.5.1.3 Numerical implementation of the new anisotropic model

The new anisotropic model is implemented into PLAXIS finite element code. The im-
plementation is done in the general net stress space. An implicit scheme is used for net
stress integration and for updating the preconsolidation pressure. However the fabric
vector is updated explicitly. The target is to evaluate the values of ∆σ?, the hardening
parameters increments ∆pm and ∆α corresponding to a given strain increment, ∆ε and a
given suction increment, ∆s. Routine 5 shows the basic steps followed during the return
mapping.

For solving the multiplier Λ, the residual vector r and the unknowns vector x needed to
be constructed as:

r =






σ? trial
i − σ?

i −De
ij · Λ · ∂g

∂σ?j

f

pmi − pmi−1 · e4ε
p
v/(λ

?−κ?)




 ; x =





σ?
i

Λ
pmi



 (7.35)

The above notation implies eight residuals and eight unknowns which are the six net
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stress components, the plastic multiplier Λ, and the preconsolidation pressure pm. A
fully implicit scheme suggests additional six residuals for the fabric vector components.
This strategy turned to be very complicated and computationally expensive as it is later
needed to build a Jacobian matrix for the residuals and invert it for each iteration. It
was then decided to updated the fabric vector components explicitly depending on the
converged values of the equation system 7.35.

Using the Newton-Raphson iteration technique, the previous system of eight nonlinear
equations can be solved. Routine 6 shows the solution strategy where k is the iteration
number. The Jacobian matrix J has the form:

J =


















∂r1

∂σ?
1i

∂r1

∂σ?
2i

∂r1

∂σ?
3i

∂r1

∂σ?
4i

∂r1

∂σ?
5i
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∂σ?
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∂r1

∂Λi
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∂pmi
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( 7 . 3 6 )

The converged value from the previous loading step is used as the initial value of the
fabric vector αinitial. A special constraint is put on the strain increment being used in the
integration procedure. If a big step is detected then a sub-stepping routine is initiated
to divide the strain increment into smaller sub-steps. This procedure is introduced in
order to avoid numerical instability and unexpected α values during the explicit update.
The complicated mathematical formulation of the yield surface makes it difficult to find
its first and second derivatives using hand calculations. For that reason, Mathematica
software was used. The implemented model is checked using a single finite element test
as discussed in the following section.

7.6 Numerical validation of the implemented model

Unfortunately, limited experimental data concerning the anisotropic behavior of unsat-
urated soil are available in literature. The data by Cui and Delage (1996) are interesting,
but unfortunately, no clear stress paths were provided. This makes the numerical simu-
lation not possible.

For special cases, the model is expected to produce similar results to those produced
by the Modified Cam Clay, the Barcelona Basic Model or the S-Clay1 Model. In what
follows, these cases are discussed. The geometry and boundary conditions for the tests
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Step1. Initialize k = 0, Λk = 0, σ?
i = σ? trial

i , pmi = ptrialmi ,α = αinitial

Err = 1 (stands for error tolerance)

Build the unknown vector xk.

Step2. Construct the residuals vector rk and check the convergence

Err = maximum absolute value in the residuals vector.

Step3. If Err ≤ 10−10 Then

Update α explicitly by employing Equation 7.33

Exit with the converged values in the

unknowns vector xk and the new α value.

Step4. If Err > 10−10 then construct the Jacobian matrix J = ∂rk

∂xk
.

Calculate the updated unknowns vector xk+1 = xk − J−1 · rk.

Step5. Set k = k + 1. Goto Step 2.

Routine 6: Solving Λ for the new anisotropic model.
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Chapter 7 Anisotropic model for unsaturated soil

Table 7.1: The anisotropic model parameters as used in the single element tests.
κ λo ν M pc β a λ∞ µ ω

[−] [−] [kPa] [−] [kPa] [kPa−1] [−] [−] [−] [−]
0.01 0.1 0.15 1.2 10 0.013 0.1 0.05 30 0.76

considered are the same as in Section 5.7. The material parameters are listed in Table 7.1.
The initial preconsolidation pressure, the initial suction and the initial degree of yield
surface rotation are specified in each case separately.

7.6.1 Case 1: Isotropic fully saturated soil

Without rotational hardening the proposed model should give identical results to that by
the Modified Cam Clay model in case of isotropically consolidated fully saturated soil.
Figure 7.11 illustrates this idea. A standard triaxial test is simulated using both models.
An overconsolidated soil with ppo = 20 kPa is used to do the simulation. On using
the new anisotropic model, a suction s = 0 is used to model saturation. The isotropy is
recovered by removing the initial rotation of the yield surface by setting αo = 0. To avoid
any rotation of the yield surface during loading the rotational hardening parameter µ in
Equation 7.33 is taken to be zero. The Modified Cam Clay Model is used as implemented
in the PLAXIS package (Vermeer and Brinkgreve, 1995). The triaxial test is performed
for drained and undrained conditions. Figure 7.12 shows the followed stress paths. The
results in Figure 7.13 for drained condition and in Figure 7.14 for undrained conditions
show identical response for both models.

pm
p*

q

ppo

ps

M

α

anisotropic model for general state

Cam Clay model

no suction effect on

preconsolidation pressure

no cappilary 

coheasion




no anisotropy for isotropically

consolidated soil

Figure 7.11: For isotropic saturated soil the anisotropic model reduces to the Modified
Cam Clay model.
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Figure 7.12: The applied stress path during the test.
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Figure 7.13: Model predictions compared to Modified Cam Clay predictions for (a)
isotropic loading (b) standard drained shear test.
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Figure 7.14: Model predictions compared to Modified Cam Clay predictions in case of
undrained triaxial compression and extension.
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Figure 7.15: For isotropic unsaturated soil the anisotropic model reduces to the BB-
model.

7.6.2 Case 2: Isotropic unsaturated soil

The test is repeated using the same conditions as in Case 1 but considering an unsatu-
rated state. Under these conditions the model should behave exactly like the Barcelona
Basic Model as can be seen in Figure 7.15. A suction value of 100 kPa is used for this
comparison. Figure 7.16 shows the stress path as being followed in this test. Figure 7.17
shows a good agreement between the new model and the BB-model predictions. There
are two remarks concerning this test:

• The BB-model as used in this test is implemented by the author in the stress in-
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Figure 7.16: The applied stress path during the test.
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Figure 7.17: Present model predictions compared to Barcelona Basic Model predictions
for (a) isotropic loading (b) standard drained shear test.

143



Chapter 7 Anisotropic model for unsaturated soil

pm p*

q

pmo

ps

M

α

anisotropic model

S-Clay1

no suction effect on


preconsolidation pressure

no cappilary 


coheasion




Figure 7.18: The anisotropic model resembles The S-Clay1 model for Anisotropic satu-
rated soil.

variants space (see Section 5.5.2). The new anisotropic model, however, is imple-
mented in the general space of stress. The identical results give a good check on
the implementation of both models.

• The BB-model is used as an associated model with g = f . This is done to be con-
sistent with the associated anisotropic model.

7.6.3 Case 3: Anisotropic fully saturated soil

At full saturation, the present anisotropic model reduces to the S-Clay1 anisotropic model,
as can be seen in Figure 7.18. Wiltafsky (2003) implemented the S-Clay1 model into
PLAXIS. His implementation is used to validate the numerical implementation of the
new anisotropic model at full saturation. The initial inclination of the yield surface is
calculated according to Equation 7.13. It yields a value of αo = 0.467. The anisotropic
parameters ω and µ are as specified in Table 7.1. The modeled soil is normally consoli-
dated with ppo = 1 kPa. Two different tests are performed in this case. The first is a stan-
dard drained triaxial test with an unloading-reloading cycle. The followed stress path
is shown in Figure 7.12. The two models yield identical results as shown in Figure 7.19.
The second test involves undrained shearing starting from anisotropic conditions. The
soil in this test is anisotropically compressed following KNC

o line in drained conditions.
Then the sample is taken to failure one time by undrained compression and another time
by undrained extension. The resulting stress paths as predicted by the models are shown
in Figure 7.20.
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Figure 7.19: Model predictions compared to S-Clay1 model predictions for (a) isotropic
loading (b) standard drained shear test.
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Figure 7.20: Model predictions compared to S-Clay1 Model predictions in case of
undrained triaxial compression and extension.
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Chapter 8

Boundary value problems

8.1 Introduction

Four strip-footing boundary value problems are analyzed in this chapter. Both the isotropic
Barcelona Basic Model and the new anisotropic model are used for the calculations. The
first problem concerns the response of a shallow foundation to a gradual increase of the
ground water table. The second problem is a stability problem where the effect of suc-
tion on the soil bearing capacity is discussed. The third problem is on the response of
a shallow foundation to a continuous infiltration at the soil surface. The last problem
concerns a back analysis of a trial wall on expansive soil in Sudan.

8.2 Problem 1: Shallow foundation exposed to a ground

water table increase

Such a problem is a classic test for the verification of an unsaturated soil model. Sim-
ilar problems were studied by Nesnas (1995), de Almeida et al. (2002) and Georgiadis
(2003). The modeled soil is a particular collapsible silt. The problem is solved using
three different models, namely the Modified Cam Clay Model with no suction effect on
the mechanical behavior, the isotropic Barcelona Basic Model and the new anisotropic
model.

8.2.1 Geometry, boundary conditions and initial conditions

Figure 8.1 shows the geometry, the boundary conditions and the finite element mesh for
a rough strip footing resting on partially saturated soil. The material properties shown
in Table 8.1 are the same as those given by Compas et al. (1991) for a preconsolidated
collapsible silt with a preoverburden pressure POP = 80 kPa; where POP is defined as
the difference between the vertical effective stress and the vertical preconsolidation pres-
sure. However, as they did not specify the M-value, a critical state friction angle of 31o

is assumed, which implies M = 1.24. The ground water table is at a depth of 2m below
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Table 8.1: Material properties as used in Problem 1
MCC parameters BB-model parameters Anisotropy parameters
κ [−] 0.006 pc [kPa] 18.1 ω [−] 0.8
λo [−] 0.217 β [kPa−1] 0.021 µ [−] 20
ν [−] 0.2 a [−] 0.6
M [−] 1.24 λ∞ [−] 0.123
eo [−] 1.67 κs [−] 0.008

POP [kPa] 80 λs [−] 0.108
OCR [−] 3 so [kPa] 100

the footing. The initial pore water pressures are assumed to be hydrostatic, with tension
above the phreatic line. For suction, this implies a linear increase with height above the
phreatic line, as in this zone the pore air pressure ua is assumed to be atmospheric, i.e.
s = ua − uw = −uw. Below the phreatic line pore pressures are positive and ua = uw, as
indicated in Figure 8.1. For uw < 0 the linear increase of uw implies a decreasing degree
of saturation, as also indicated in Figure 8.1. In fact, the degree of saturation is not of
direct impact to the present settlement analysis, as transient suction due to deformation
and changing degrees of saturation are not be considered. The distribution of saturation
being shown in Figure 8.1, was computed using the SWCC function according to Equa-
tion 6.49. The varying degree of saturation with height above the phreatic line implies a
varying soil unit weight. For the sake of convenience, however, a constant (mean) value
of 17.1 kN/m3 has been used for the soil weight above the phreatic line. For the initial net
stresses the Ko-value of 0.85 has been used to account for the preoverburden pressure of
80 kPa. This value of Ko is calculate depending on an empirical correlation by Kulhawy
and Mayne (1990) whereKo = (1−sinϕ́) ·OCRsinϕ́. An overconsolidation ratioOCR = 3
is used in the previous formula. The finite element mesh consists of 6-noded triangles for
the soil and 3-noded beam element for the strip footing. The flexural rigidity of the beam
was taken to be EI = 10MN.m2 per meter footing length. This value is representative
for a reinforced concrete plate with a thickness of roughly 20 cm.

8.2.2 The interaction between the ground water flow finite element

code and the deformation code

The initial condition of suction is generated using the PAXFLOW code. The hydraulic
boundary conditions are shown in Figure 8.1. Transient boundary conditions are used
for increasing the ground water table. The solution is decoupled in the sense that ground
water calculations are performed first. During the calculation, the PLAXFLOW code
saves the pore water pressure values for each time step. After the flow calculation be-
ing done, the PLAXIS code uses the suction values for the deformation analysis. The
equilibrium is solved and the internal variables are updated for each time step. Figure
8.2a clarifies the interaction between the two codes. A suitable number of time steps and
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Figure 8.1: Geometry, boundary conditions and initial conditions.

plastic calculation steps are required to accurately simulate the exact variation of suction
with time on one hand. On the other hand a relatively small suction increment ∆s is re-
quired to insure numerical stability during stress integration. Figure 8.2b is an example
for a bad time stepping from the viewpoint of accuracy and numerical stability.

8.2.3 Results of numerical analyses with isotropic BB-model

Computed load-settlement curves, are shown in Figure 8.3 both for the Barcelona Basic
model and the Modified Cam Clay model. For the latter MCC-analysis, suction was
fully neglected. In fact it was set equal to zero above the phreatic line. On the other hand
suction is accounted for in the BB-analysis, but the analysis is simplified by assuming
no change of suction during loading. In reality, footing loading will introduce a soil
compaction and thus some change of both the degree of saturation and suction. As
yet this has not been taken into account. Up to an average footing pressure of 80 kPa
both analyses yield the same load-displacement curve. This relates to the adoption of a
preoverburden pressure of POP = 80 kPa. For footing pressures beyond 80 kPa, Figure
8.3 shows a considerable difference between the results from the BB-analysis and the
MCC-analysis. Indeed, the BB-analysis yields much smaller settlements than the MCC-
model. Hence settlements are tremendously overestimated when suction is not taken
into account. The impact of suction is also reflected in the development of the plastified
zone below the footing. For the BB-analysis the plastic zone with f = 0 is indicated in
Figure 8.4a. The MCC-analysis shows a larger plastic zone underneath the footing, as
shown in 8.4b.

Having loaded the footing up to an average pressure of 150 kPa as can be seen in Figure
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Figure 8.2: The interaction between the flow code and the deformation code.

150



8.2 Problem 1: Shallow foundation exposed to a ground water table increase

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0.0 1.0 2.0 3.0 4.0 5.0

footing settlement   [cm]

fo
ot

in
g 

pr
es

su
re

 [k
Pa

]

BBM predictions

MCC predictions

4.0 cm 5.0 cm

Figure 8.3: Load-displacement curves due to footing loading followed by increase of
ground water table up to soil surface.

150 kPa

(a)

150 kPa

(b)

Figure 8.4: Plastic points before ground water increase (a) BB-model model (b)
MCC-model.

151



Chapter 8 Boundary value problems

0.0

5.0

10.0

15.0

20.0

0.0 0.5 1.0 1.5 2.0 2.5
time [day]

su
ct

io
n 

[k
Pa

]

Figure 8.5: Suction variation directly under the shallow foundation.

8.3, the effect of soil wetting is considered by increasing the ground water table up to
ground surface. The ground water table increase is assumed to take place in 2.5 days. The
maximum time increment is chosen to be 0.1 day. This insures a smooth suction variation
and small suction increments in time. Figure 8.5 shows suction variation at a point A
located directly underneath the shallow foundation. Indeed wetting implies an increase
of pore water pressures and thus a decrease of effective stresses, being associated with
some soil swelling.

On simulating the raise of the ground water level by the MCC-model, both the footing
and the adjacent soil surface is heaving, as plotted in Figure 8.6. Due to the fact that an
extremely low swelling index of only 0.006 was adopted (see Table 8.1) heave is relatively
small, but for other (expansive) clays it may be five times as large. Similar to the MCC-
analysis, the BB-analysis yields soil heave as also shown in Figure 8.6. In contrast to the
MCC- analysis, however, the footing shows additional settlements. Here it should be
realized that Figure 8.6 shows vertical displacements due to wetting only, i.e. an extra
footing settlement of about 1.6 cm. The BB-analysis yields this considerable settlement of
the footing, as it accounts for the loss of capillary cohesion as soon as the suction reduces
to zero.

The different performance of both models is clearly shown in Figure 8.3. Here the BB-
analysis yields a relatively stiff soil behavior when loading the footing up to 150 kPa,
followed by considered additional settlement upon wetting. In contrast, the MCC-model
yields a relatively soft response upon loading and footing heave due to wetting.

8.2.4 Calculation with an anisotropic model

The same calculation is repeated using the new anisotropic model. The additional pa-
rameters for this model are shown in Table 8.1. The parameter ω is calculated using

152



8.3 Problem 2: Bearing capacity of unsaturated soil

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

MCC predictions
Anisotropic model predictions
BBM predictions

x [m]
he

av
e 

[c
m

]
se

ttl
em

en
t [

cm
]

0 1 2 3 4 5 6 7 8 9 10

Figure 8.6: Models response for wetting.

Equation 7.15. The parameter µ is assumed to have a value of 20. In a later example,
the effect of this parameter on the deformations will be discuss in more detail. An ini-
tial value of yield surface rotation is also required for this model. Assuming that the
unloading during soil history did not lead to any rotation of the yield surface, Equation
7.13 is used to calculate the initial inclination. It yields a value of αo = 0.472. Figure 8.6
shows that the anisotropic model yields somewhat more settlement in comparison to the
BB-model. This also applies for the transient plastic compression during the increase of
ground water level as can be seen in Figure 8.7.

The internal variables of the anisotropic model at point A at the end of loading and
before ground water level increase are pmo = 75 kPa and α = 0.4. For the isotropic model
ppo = 100 kPa at this stage. The yield surfaces of both models under these conditions can
be seen in Figure 8.8. For an arbitrary stress path, the anisotropic model yields much
earlier in comparison to the BB-model. This explains the smaller settlement produced
by the latter. The principal stress directions as shown in Figure 8.9 resembles a typical
stress distribution for such type of problems. The slight rotation of the principal stresses
at the lower boundary of the mesh suggests that a deeper mesh should have been used
for the calculation. The effect on the final results is expected to be however, minor.

8.3 Problem 2: Bearing capacity of unsaturated soil

From Figure 8.3 it can be seen that the bearing capacity of the footing is nearly reached, at
least for the MCC-analysis without suction. However, the collapse load is far beyond the
applied footing pressure of 150 kPa, at least for a Drucker-Prager type generalization of
the Modified Cam Clay model and a CSL-slope ofM = 1.24. The applied Drucker-Prager
generalization involves circular yield surfaces in a deviatoric plane of the principle stress
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150 kPa

Figure 8.9: Principal directions of net stresses as calculated by BB-model.

space, which is realistic for small friction angels rather than large ones. For this reason
the bearing capacity of a strip footing for a relatively low CSL-slope of M = 0.62 is
analyzed. Under triaxial compression conditionsM is given by Equation 3.41, this yields
a friction angle of ϕcs = 16.4o in triaxial conditions. However, the considered problem is
a plane strain problem for a strip footing. In planar deformation, M is given by Equation
3.43, and it follows that ϕcs = 21o. Table 8.2 gives the soil parameters. Figure 8.10, shows
the boundary conditions and the finite element mesh for the bearing capacity problem
of shallow footing on unsaturated soil. In this analysis, the soil has been loaded up to
failure using both the BB-model and the MCC-model. In order to be able to compare
the numerical results with theoretical values, a uniform distribution for suction in the
unsaturated part of s = 20 kPa is used. The soil is considered to be weightless and the
surcharge soil load is replaced by a distributed load of 25 kN/m2 per unit length which
is equal to a foundation depth of about 1.5m. A value of Ko = 1 is used to generate the
initial net stresses. The same finite element types as in the previous problem are used
here for the soil and the footing.

Table 8.2: Material properties as used in Problem 2.
MCC parameters BB-model parameters
κ [−] 0.015 pc [kPa] 43
λo [−] 0.14 β [kPa−1] 0.016
ν [−] 0.2 a [−] 1.24
M [−] 0.625 λ∞ [−] 0.036
eo [−] 0.9 κs [−] 0.01

POP [kPa] 56.4 λs [−] 0.10
OCR [−] 3.5 so [kPa] 100
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Figure 8.10: Geometry and boundary conditions for the bearing capacity problem.

According to Prandtl (1921), the bearing capacity of a weightless soil is given by:

qf = c ·Nc + qo ·Nq (8.1)

where qo is the surcharge load at footing level and b is the footing width. The factors Nc

and Nq are functions of the soil friction angle:

Nq =
1 + sinϕ′

1 − sinϕ′
· eπ·tanϕ′

; Nc = (Nq − 1) · cotϕ′ (8.2)

In the present analysis soil weight is taken equal to zero so that the above exact solution
applies. For the zero-suction case, c = 0 and the bearing capacity qf is found to be
177 kPa. According to the BB-model, the cohesion c increases with suction s linearly,
according to the formula:

c = a · s · tanϕ′ (8.3)

On using a = 1.24 and s = 20 kPa, a value of c = 9.5 kPa is obtained. For this capil-
lary cohesion of 9.5 kPa the Prandtl equation yields qf = 327 kPa. Figure 8.11 shows
the calculated load-displacement curves using the BB-model and the MCC-model. The
figure shows that an increase of suction value by 20 kPa was enough to double the soil
bearing capacity. Shear bands at failure as shown in Figure 8.12a are typically accord-
ing to the solution by Prandtl. In Figure 8.12b, the displacement increments show the
failure mechanism represented by footing sinking which is associated with soil heave
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Table 8.3: Bearing capacity values.
Suction [kPa] 0 20
Theoretical bearing capacity value [kPa] 177 327
Numerical bearing capacity value [kPa] 158 315
Relative error [%] 10.7 3.7

at the edges. By comparing the theoretical bearing capacity values with the computed
ones (Table 8.3), it is clear that the results are quite satisfactory with relatively small er-
ror. It is believed that better bearing capacity values can be captured by adopting more
advanced failure criterion than the Drucker-Prager criterion being used in this analy-
sis. One can use a modified version of the well-known Mohr-Coulomb failure criterion
which accounts for suction effects, or Matsuoka-Nakai criterion which offers a failure
surface without singular boundaries and as a consequence a more suitable criterion for
numerical implementation.

In another respect, the linear increase of cohesion with suction in Equation 8.3 should
be treated carefully. For low suction values, this assumption is reasonable. However for
high suction, a more conservative relation which poses a maximum on cohesion value
should be used.

8.4 Problem 3: Shallow foundation exposed to a rainfall

event

This example is intended to be a benchmark problem with well-defined mechanical and
hydraulic boundary conditions. The geometry, the boundary conditions and the finite
element mesh are shown in Figure 8.13. The mechanical properties of the soil are shown
in Table 8.4. Again the finite element mesh consists of 6-noded triangles for the soil and
3-noded plate element for the strip footing. The flexural rigidity of the plate was taken
to be EI = 10MN.m2 per meter footing length. The soil is overconsolidated with a
preoverburden pressure POP = 20 kPa. The initial stresses are generated using Ko =
0.5. For the anisotropic model, the initial inclination of the yield surfaces and the factor
ω are calculated depending on Equation 7.13 and Equation 7.15 respectively. This yields
αo = 0.458 and ω = 0.76. The parameter µ controlling the speed of yield surface rotation
is varied in the range 0 − 100. In addition, the expression as given by Leoni et al. (2007)
is used for estimating µ in an additional analysis.

Table 8.4: Soil mechanical parameters.
κ λo ν M pc β λ∞ a κs

[−] [−] [−] [−] [kPa] [kPa−1] [-] [−] [−]

0.02 0.2 0.15 1.2 5 0.013 0.1 0.1 0.015
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Figure 8.13: Geometry and boundary conditions.

A hydrostatic distribution is adopted as an initial condition for the transient ground wa-
ter flow calculations. The hydraulic properties are the same as these used to check the
unsaturated ground water flow finite element code in Section 6.6. In this way, the varia-
tion of suction over the time is given by the Srivastava and Yeh (1991) analytical solution.
The steady state is also given by Gardner (1958b) analytical solution. This gives the pos-
sibility to check suction values at any stage of the calculation. The problem involves two
phases. In the first, the soil is loaded by 50 kPa applied by a shallow foundation. In
the second phase, the soil is exposed to a rainfall event for a period of five days. The
rainfall produces an infiltration rate of 0.1m/day on the top boundary of the soil. In fact,
the deformations in the first phase is dominated by the variation of net stresses whereas
suction plays the major role in the second phase.

8.4.1 Phase 1: Deformation due to foundation loading

Figure 8.14 presents soil deformation upon loading with 50 kPa. The deformation is cal-
culated using the BB-model and the anisotropic model. Up to footing pressure of 30 kPa
both models shows elastic response due to the POP value of 20 kPa. Furthermore,
similar results are produced as both models use isotropic elasticity. After yielding, the
anisotropic model produces more settlement. This can be explained by the smaller elas-
tic region in the anisotropic yield surface as compared to the isotropic model. This point
was discussed in Problem 1. This difference in results tend to diminish if the anisotropy
is destroyed very fast upon loading. As can be seen in Figure 8.14, a higher µ value leads
to a closer prediction to that of an isotropic model.
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8.4.2 Phase 2: Deformation due to infiltration

Keeping the foundation under a steady load of 50 kPa, a five days of rainfall event with
infiltration rate of q = 0.1m/day is simulated using the flow calculation code. The re-
sults are the same as in Section 6.6. The suction is calculated at different time steps in
a groundwater analyses and provided to the deformation code to evaluate the resulting
displacements. Figure 8.15 shows suction and vertical displacements underneath the
footing with time. The suction steady state value of 11.5 kPa at point A in Figure 8.13 is
in accordance with the value given by Gardner (1958b). It is shown in Figure 8.15a that
the steady state is reached in 2 days after which the suction variation is negligible. This
has a direct consequence on the foundation settlement which takes place essentially dur-
ing the first two days and then reaches a steady situation as can be seen in Figure 8.15b.
This response is typical for both the isotropic and the anisotropic models. However, the
results indicate that the anisotropic model yields more settlement. The magnitude of
the settlement is affected by the parameters µ. On adopting a high speed of rotation as
reflected by high µ values, the soil destroys its anisotropy very fast. Therefore, the re-
sults for high µ values approaches that by isotropic model. It can be seen in Figure 8.15b
that for µ values higher than 40 the anisotropic model gives almost the same results as
given by an isotropic model. The isotropic model in this case is an associative version of
BB-model. The non-associative BB-model gave smaller deformation. These observations
match the conclusions in the first phase where the anisotropic model yields more settle-
ment. The expression by Leoni et al. (2007) proposes a value of µ ≈ 30. The prediction
using this value is also shown in Figure 8.15b. Using this expression, the number of soil
parameters reduces by one.

In this problem, the soil plastic deformation upon wetting is called as partial soil struc-
ture collapse. The word “partial” means that additional wetting of the soil will lead to a
further collapse until the soil reaches a full saturation.
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Figure 8.15: Suction and plastic deformation with time in point A of Figure 8.13.
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Figure 8.16: General view of the trial walls with a typical cross section.

8.5 Problem 4: Trial wall on expansive soil in Sudan

Nine trial walls were built on swelling soil in Barakat site in Sudan. The area is known
for its highly expansive soil. The test were carried out in order to investigate the effect
of soil replacement on the walls vertical movement (Saeed, 2004). The walls are made of
brick (1 1/2 brick) with a length of 1.2m and a height of 1.9m above the ground level.
The foundation depth is 0.6m as shown in Figure 8.16. A schematic representation of
the walls with their dimensions is given in Figure 8.17. The expansive soil underneath
the walls was replaced by different materials namely A1, A2, A3, B1, B2, B3, C1, C2 and
C3 where: A1: plain concrete, A2: Reinforced concrete with 20 % voids, A3: Big stones,
B1: 25 cm of Cohesive Nonexpansive Soil (CNS), B2: 50 cm of CNS, B3: 75 cm of CNS,
C1: Natural soil, C2: Natural soil with 6% lime, C3: Sand. The soil was then exposed
to two successive wetting-drying cycles for a period of about 18 months. Detailed data
about the vertical displacements of the trial walls is reported by Saeed (2004). Only
the wall C1 with no replacement underneath is considered here, as the purpose is to
simulate the behavior of expansive soil itself. By assuming bricks with a unit weight of
γbrick = 14 kN/m3, the generated footing pressure is of the order 24 kN/m2.

8.5.1 Soil properties

Soil grain size distribution is shown in Figure 8.18. According to the ASTM standards
the soil is a clayey silt consists of sand 12 %, silt 54 % and clay 34 %. The soil plastic
limits are a liquid limit wl = 68 % and a plastic index Ip = 36 %. The soil is classified on
Casagrand’s chart as a highly plastic clay which is also an indication of a high swelling
potential. Table 8.5 lists the physical properties of the studied soil as provided by Saeed
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Figure 8.18: Grain size distribution.

Table 8.5: Soil physical properties.
Grain Size distribution Plastic Limits Other physical properties
Sand 12 % wl 68 % Gs 2.69
Silt 54 % Ip 36 % γb 17.62 kN/m3

Clay 34 % wn 27.1 % eo 0.94
wn: natural water content γb: humid unit weight Gs: specific weight

Table 8.6: Soil mechanical properties.
Strength parameters Stiffness parameters Other properties
ϕ́ 30o λo 0.1 ksat 0.02m/day
ć 0 κ 0.03 σp 105kPa

ν 0.2

(2004). In addition to the previous data, 1-D compression test results with unloading are
provided by Omer (2003) as it clear in Figure 8.19. The soil is overconsolidated with a
preconsolidation pressure σp= 105 kPa. The swelling indexCs and compression indexCc
have the values 0.07 and 0.225 as derived from the 1-D compression test. Using Equation
3.44 these parameters are converted to Cam Clay type of stiffness indexes κ = 0.03 and
λo = 0.1. The abnormally high κ value seems to be suspicious. For a swelling clay, a high
value for the swelling index is expected but in a range lower than the concluded value.
In this report the previous value is accepted as it has no influence on the back analysis
results.

No information has been provided about the shear strength parameters ϕ′ and c′. Fur-
thermore, no information about the soil permeability could be found. Typical value of
ϕ′ = 30o is used for the clayey silt with no effective cohesion. A value of 0.02m/day is
used for the saturated permeability ksat. Table 8.6 lists the stiffness and strength param-
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Figure 8.19: One-dimensional compression results.

eters as used in the analysis. The BB-model requires information about the soil behavior
on suction path. No such information has been provided by Saeed (2004). The swelling
index with respect to suction, κs is the most important parameter affecting the amount
of predicted heave and is the basic back analyzed value in this problem.

8.5.2 The test procedure and measurements

The test involves suction variation without any change in the applied footing pressure.
After building the walls, trenches were dug around them and the soil has been con-
tinuously flooded by water during the wetting phases. Figure 8.20 presents only the
displacements of the wall C1 without replacement. By investigating the measurements,
four stages can be distinguished. First a wetting phase of about 270 days took place and
resulted in total heave of about 6.0 cm. The wetting phase was followed by a relatively
short drying phase of 90 days resulted in 2.5 cm shrinkage. This indicates an evaporation
rate which is roughly of the same order as the infiltration rate during the wetting phase.
The second wetting stage lasted 127 days and resulted in 2.5 cm heave, which indicates
an elastic behavior by recovering the shrinkage settlement in the previous phase in al-
most similar time. The final phase is quite short of about 50 days resulted in 0.5 cm of
shrinkage.
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Figure 8.20: The vertical displacement of the wall as measured in the field.

8.5.3 Numerical simulation

The simulation can be classified as a back analysis, where the available field data is used
to calibrated the missing parameters of the model. The most important missing param-
eters are the soil swelling index with respect to suction κs for deformation calculation
and the Soil Water Characteristic Curve for unsaturated groundwater flow. No plastic
deformations are assumed to occur during swelling and shrinking. For that reason the
parameters which controls the post yielding stiffness are not relevant in this simulation.

8.5.3.1 Geometry and boundary conditions

Figure 8.21a shows the geometry, boundary conditions, and the finite element mesh for
the problem. The ground water table lies at a depth of 30m below the ground level
according to Saeed (2004). The initial pore water pressures are assumed to be hydro-
static, with tension above the phreatic line. For the initial net stresses the Ko-value of
0.5 has been used. Barcelona Basic Model is used to model the soil behavior whereas
a simple linear elastic model is used for the wall with ν = 0.15 and Young’s modulus
E = 100MPa. The deep mesh boundaries are decided by the ground water flow. The
suction shows considerable variation with depth. Thus it was decided to consider the
whole area above the ground water table. According to Saeed (2004), the soil was always
soaked with water during wetting phase, which suggests an infiltration rate equal to the
saturated soil permeability ksat . A high evaporation rate of 10mm/day is applied dur-
ing the drying phase to account for the observed severe shrinkage. The applied surface
discharge with time is illustrated in Figure 8.21b.
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Figure 8.21: Geometry and boundary conditions.

8.5.3.2 Parametric study

To calibrate the missing data which are the suction swelling index κs and the soil water
characteristic curve SWCC, a parametric study is conducted to study the effect of each
parameter on the numerical results. This is simply done by varying one parameter while
keeping all the other parameters fixed.

Effect of the SWCC on the numerical results A fixed value κs = 0.015 is adopted
for this analysis. The SWCC is allowed to have different shapes as in Figure 8.22. For
each shape, the flow equation is solved followed by a deformation calculation using the
BB-model. Figure 8.23 shows an interesting results concerning the effect of the shape of
SWCC on the value of the predicted displacement as well as the rate of soil deformation
with time. In Case 1, the SWCC is very flat in the region near the initial suction value
of 300 kPa which allows for a rapid reduction of suction on adding a little amount of
water. For example, an increase of the degree of saturation to Sr = 0.2 is enough to
drop the suction from its initial value to a value of about 125 kPa. Whereas this only
allows for a reduction from 300 kPa to about 270 kPa when using the SWCC in Case
3. As a consequence, a higher heave is expected in the first case in comparison to the
second. This is exactly what the simulation yields in Figure 8.23. Suction profile after 50
days when using different soil water characteristic curves is shown in Figure 8.24. The
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Figure 8.22: Different shapes of the SWCC.
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Figure 8.23: Predicted displacement as associated with each SWCC.
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Figure 8.25: SWCC and relative permeability function as used in the analysis.

high reduction in suction in Case 1 explains the associated large heave. The SWCC in
Case 1 is adopted for the final numerical simulation as it gives the best fit to the field
measurements. Furthermore, a simple permeability function is used in parallel to the
SWCC. Both curves are shown in Figure 8.25.

Effect of the suction swelling index κs The suction swelling index is varied in the
range 0.005-0.03 which covers the most common values for this index as mentioned in
literature (Fredlund and Rahardjo, 1993). The effect of suction swelling index on the
results is quite obvious in Figure 8.26. The results are very sensitive to this parameter.
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Table 8.7: BB-model parameters.
κ λo ν M pc β λ∞ a κs

[−] [−] [−] [−] [kPa] [kPa−1] [-] [−] [−]

0.03 0.1 0.2 1.2 50 0.013 0.07 0.5 0.015

A value of κs = 0.015 is found to give the best fit to the measured data. The value is
satisfactory as it also reflects the expansive nature of the studied soil.

8.5.3.3 Model predictions versus field data

As a conclusion from the previous parametric study the SWCC and permeability func-
tions in Figure 8.25 are used in the final analysis. A value of κs = 0.015 is assigned to the
suction swelling index. The material properties as used in the calculation are shown in
Table 8.7.

Figure 8.27 shows the suction and degree of saturation variation with time underneath
the wall. The suction drops from 300 kPa to about 30 kPa at the end of the first wetting
phase then it increased again to 275 kPa at the end of the first drying phase. This behav-
ior is repeated in the next wetting-drying cycle. A decrease in the suction is associated
by an increasing degree of saturation and vice versa.

The predicted vertical displacements of the wall as it shown in Figure 8.28, are very
satisfactory in comparison to the measurements. The deviation at the end of the first
drying phase suggests that a higher swelling index during shrinkage should be used.
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Figure 8.27: Suction variation underneath the footing.
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Figure 8.28: Predicted vertical displacements.
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Figure 8.29: Vertical suction and displacement profiles during first wetting-drying cycle.

As the model uses the same index for both swelling and shrinking it would be better for
further improvement to introduce the idea of yielding on the shrinkage path as it also
proposed by the Barcelona model.

Figures 8.29 and 8.30 shows suction profiles and vertical displacement profile at given
time steps during the test progress. The suction profiles resembles the common profiles
for vertical infiltration and evaporation. The deformed mesh at the end of calculation is
shown in Figure 8.31.

The above example shows the possibility of fitting well the measured data by assuming
very rational soil properties. It also highlights the importance of soil water characteristic
curve in the unsaturated groundwater flow calculations and the resulted effects on the
deformation analysis. The case may be considered as a representative for a light weight
building on overconsolidated expansive soil. In such a case, the suction swelling index
is the most important soil property that determine the final amount of heave.
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Figure 8.30: Vertical suction and displacement profiles during second wetting-drying cy-
cle.

Figure 8.31: Deformed mesh at the end of calculation.
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Chapter 9

Conclusions and recommendations

The present study illustrates the possibility of simulating the mechanical behavior of un-
saturated soil using the finite element method with suitable constitutive models. Upon
incorporating suction, the soil behavior was shown to be much stiffer than without
suction. Moreover, it has been shown that soil swelling and soil collapse was well-
simulated.

9.1 Conclusions on modeling and numerical

implementation

• The Barcelona Basic Model is implemented in the p?-q-s stress space. The imple-
mentation includes a possible yielding by suction increase.

• The implemented model is validated for different stress paths using single element
tests. The results are compared to the model predictions as provided by the original
work of Alonso et al. (1990).

• The model is able to reproduce many features of unsaturated soil behavior includ-
ing:

◦ Soil swelling as associated with suction reduction.
◦ Soil plastic compression upon wetting under high confining pressure.
◦ Reversible behavior where the soil shows swelling at first followed by plastic

compression.
◦ Increase of soil stiffness with suction.
◦ Increase in preconsolidation pressure with suction.
◦ Plastic yielding as associated with suction increase.
◦ Strains are path dependent for stress paths that include drying of the soil.

• A finite element code for unsaturated water flow is validated for one-dimensional
infiltration and evaporation. The validation is done for transient conditions using
the analytical solution by Srivastava and Yeh (1991) and for steady-state conditions
using the analytical solution after Gardner (1958b).
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• A new anisotropic model for unsaturated soil is proposed. The model is able to
reproduce all the isotropic Barcelona Basic model features. In addition, it accounts
for soil anisotropy by including a rotational hardening law. The model is imple-
mented into a finite element code. The implementation is done in the general stress
space. Mixed invariants are used to account for the interaction between the stress
tensor and the fabric tensor.

9.2 Conclusions on the response of shallow foundation on

unsaturated soil

9.2.1 Isotropic behavior

• In elastic region, the used models give similar results to that by the Modified Cam
Clay.

• The foundation shows stiffer behavior if the suction contribution is taken into ac-
count.

• Wetting the soil under a footing pressure which is less than the saturated isotropic
preconsolidation pressure leads to a pure swelling.

• If the wetting occurs with a load higher than the saturated preconsolidation pres-
sure, the soil shows both swelling and plastic compression. The dominant behavior
is dependent on the magnitude of external loading and the value of suction reduc-
tion.

• Soil bearing capacity was found to increase with increasing suction.

• The back analysis of the trial wall in Sudan shows the possibility of the practical
use of the model with reasonable assumptions.

• The soil water characteristic curve and soil permeability function play a major role
in determining swelling rate in time.

9.2.2 Anisotropic behavior

• If the preoverburden pressure is considered as a reference for comparison, anisotropic
model always yields more settlements in the plastic zone.

• Settlements are influenced by the rate of anisotropy diminishing with loading. Fast
destruction of anisotropy yields less settlements.

The foundation on an unsaturated soil should be treated carefully. Although the suction
positively contributes to the strength and stiffness of the soil, reducing suction could
lead to catastrophic results. At this point, one dimensional transient flow calculations
for an infiltration and evaporation processes can be very helpful. By applying transient
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boundary conditions the variation of a suction profile with time can be simulated; typi-
cally for two or three years. Depending on the results, the designer can pick the lowest
and the highest suction values in the studied period. With these information in hand,
deformation analyzes for these cases can be done to determine the absolute foundation
deformation variations as well as the differential settlements with respect to neighboring
footings. Such movements due to suction variations can introduce quite high bending
moments in the beams, columns and walls of superstructures if they have not been con-
sidered in design.

9.3 Recommendation for further research

Further research is needed to investigate:

• Improvement of the strength criteria being used in the implemented models. The
Drucker-Prager failure surface can be replaced by a suitable form of Mohr-Coulomb
criterion or Matsuoka-Nakai. The linear increase of cohesion with suction can be
improved by adopting a nonlinear relationship which imposes some constraint on
cohesion increase.

• More research is needed about the soil parameters. Incorporating the SWCC in de-
termining the parameters is a promising step. Reducing the number of parameters
is helpful in reducing the complexity of use.

• The model can be extended to the case of undrained behavior and consolidation
problem. To this end, more work should be done for the interaction between the
flow code and the mechanical code.

• The slope stability problems are another important application of unsaturated soil
mechanics. Many natural slopes have low factors of safety and slope failures are
especially imminent after wetting by rainfall. Hence, soil collapse computations
would seem to be of greater interest to slopes than to footings, as considered in
this study. Not only natural slopes suffer upon wetting, but river embankments as
well. High river water levels tend to occur for relative short period of time, so that
there is partial wetting. This offers also a challenging topic to those interested in
fields of transient ground water flow and deformations in unsaturated ground.
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kleinen Baugruben.
Smoltczyk, U. /
Schad, H. /
Zoller, P.

Sonderkonstruktionen der Böschungssicher-
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e 15,34
Nr. 39 Smoltczyk, U. (1994) Sonderheft: 25 Jahre Lehre und Forschung in

der Geotechnik.
e 15,34

Nr. 40 Rilling, B. (1994) Untersuchungen zur Grenztragfähigkeit bindi-
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Nr. 54 Möller, S.C. (2006) Tunnel induced settlements and forces in lin-
ings

e 17,90
Nr. 55 Benz, T. (2007) Small-Strain Stiffness of Soils and its Numeri-

cal Consequences.
e 17,90

195



Mitteilungen des Instituts für Geotechnik

Nr. 56 Abed, A. (2008) Numerical Modeling of Expansive Soil Be-
havior.

e 17,90

196








