BODENMECHANISCHE STOFFGLEICHUNGEN
BEI GROSSEN DEFORMATIONEN SOWIE
BE- UND ENTLASTUNGSVORGÄNGEN
FRANK BREINLINGER

BODENMECHANISCHE STOFFGLEICHUNGEN
BEI GROSSEN DEFORMATIONEN SOWIE
BE- UND ENTLASTUNGSVORGÄNGEN
BODENMECHANISCHE STOFFGLEICHUNGEN
BEI GROSSEN DEFORMATIONEN SOWIE
BE- UND ENTLASTUNGSVORGÄNGEN

Von der Fakultät Bauingenieur- und Vermessungswesen
der Universität Stuttgart zur Erlangung der Würde
eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)
genehmigte Abhandlung,

vorgelegt von

Frank Breinlinger

geboren in Tuttlingen.

Hauptberichter: Prof. Dr.-Ing. U. Smoltczyk
Mitberichter: Prof. Dr.-Ing. G. Gudehus
Mitberichter: Prof. Dr.-Ing. E. Ramm

Das Institut für Geotechnik ist eine Einrichtung der Universität Stuttgart

ISBN 3-921837-30-8
Gegen Vervielfältigung und Übersetzung bestehen keine Einwände, es wird lediglich um Quellenangabe gebeten.

Herausgegeben 1989 im Eigenverlag des Institutes für Geotechnik
Vorwort des Herausgebers

Die Versuche, das mechanische Verhalten schwach kohärenter Medien, z.B. von Haufwerken, im Kontinuum zu berechnen, swingt zur Wahl eines geeigneten Stoffmodells, wobei dessen Eignung daran zu messen ist, inwieweit die jeweils zu untersuchende Klasse von Randwertproblemen damit zuverlässig, d.h. in hinreichender Übereinstimmung mit der Beobachtung, simuliert werden kann. Daher kann es auch nicht das Ziel bodenmechanischer Bemühungen sein, ein universelles Stoffgesetz zu finden – was ja schon wegen der Mannigfaltigkeit der Boden- und Felsarten hoffnungslos wäre –, sondern ein sich mit zunehmender Differenzierung verzweigendes Instrumentarium, das problemorientiert eingesetzt werden kann.

Während für die Behandlung der physikalischen Nichtlinearität unter der Voraussetzung infinitesimaler Verzerrungen bei deviatorischer Beanspruchung zahlreiche Rechnemöglichkeiten zur Verfügung stehen, gab es für die Erfassung großer Deformationen – die bei allen Stoffen zu nicht mehr vernachlässigbaren Veränderungen ihrer strukturellen Eigenschaften und damit ihrer Festigkeit führen – in der Bodenmechanik bisher keine verwendbaren Ansätze, so daß sich nicht schließlich entscheiden ließ, ob ein bei großen Verzerrungen beobachtetes nichtlineares Materialverhalten wirklich allein physikalischer Natur ist oder mindestens teilweise nur ein geometrisches und damit ein Scheinproblem darstellt.

Herr Breinlinger hat sich dieser Frage angenommen und sie auf das für die geotechnische Praxis besonders wichtige Problem der Entlastungs-Spannungspfade angewendet, wie es sich beispielsweise bei einem Baugrubenaushub stellt. Der von ihm diskutierte Stoff ist das schwach kohärente Material, wie es etwa ein bindiger Boden ist, doch lassen sich seine Ergebnisse auch auf andere Materialien übertragen.

Aus der Sicht der Bodenmechanik läßt sich damit nun eine ganz wichtige Einschränkung bisheriger nichtlinearer Verformungsberechnungen aufgeben, die

Die Arbeit hat internationales Spitzen niveau und bringt die Forschung ein gehöriges Stück weiter. Sie wurde daher “mit Auszeichnung” bewertet.

Smoltczyk
Vorwort des Autors

Die vorliegende Arbeit entstand als Dissertation während meines Aufenthaltes als Stipendiat und als wissenschaftlicher Mitarbeiter am Institut für Geotechnik der Universität Stuttgart.

Herrn Prof. Dr.-Ing. U. Smolczyk gilt mein besonderer Dank für die Anregungen zu dieser Arbeit, für die Unterstützung und für die Übernahme des Hauptberichtes.

Den Herren Prof. Dr.-Ing. G. Gudehus und Prof. Dr.-Ing. E. Ramm möchte ich ganz herzlich danken für die Übernahme der Mitberichte, ihre Kritik, Anregungen und die wertvollen Diskussionen.

Den Kollegen des Institutes für Geotechnik, insbesondere Herrn Dr.-Ing. H. Schad, bin ich für die Kritik, die Hinweise und die vielen Diskussionen sehr dankbar. Herrn Dr.-Ing. H. Ochmann möchte ich ebenfalls ganz herzlich danken für die moralische Unterstützung während langer Arbeitsnächte, die dem gelegentlichen Bedürfnis, einfach die Segel zu streichen, ganz entscheidend entgegengewirkt hat.

Herrn Dr. J.O. Hallquist bin ich für die Überlassung seines Programmes NIKE2D, das als Basis für die weitere Entwicklung diente, sehr dankbar.

Für die vielen unentbehrlichen “kontinuumsmechanischen” Diskussionen möchte ich mich ganz herzlich bei Herrn Dipl.-Ing. K. Wegener am Institut für Mechanik C, Universität Braunschweig, bedanken.

Nicht zuletzt bin ich meiner Frau Bettina für ihre Geduld und ihr Verständnis, ohne das die Arbeit so nicht möglich gewesen wäre, sehr dankbar.

Die vorliegende Arbeit wurde im Rahmen eines dreijährigen Stipendiums von der ROBERT BOSCH STIFTUNG gefördert, der ich an dieser Stelle, insbesondere auch Herrn Dr. Payer, herzlich dafür danken möchte.

F. Breinlinger
Kurzfassung

Im Abschnitt Numerik wird in dieser Arbeit u.a. versucht, den Vorteil einer einheitlichen Geschwindigkeitsformulierung, der darin besteht, daß nur eine Bezugskonfiguration – nämlich die aktuelle Konfiguration – vorhanden ist, aufzuzeigen. Das Stoffgesetz, die Formulierung sowie die numerische Implementierung wird an zwei bodenmechanischen Randwertproblemen verifiziert.
Summary

In the past, geotechnical problems were often analysed without taking into account large deformation aspects. Observed phenomena are therefore often credited to the material behaviour of soils although they are in fact of geometric nature. At the beginning of this study the principle of material objectivity is looked at from a general point of view as well as from a geotechnical one. A suitable corotational stress rate for soils is chosen allowing to numerically simulate large strain problems.

The developed elasto-plastic material model is based on the Cam-Clay Critical State concept. The material law contains an extended Mohr-Coulomb failure criterion as well as so-called "caps" which are in charge of volumetric yield conditions. Due to an isotropic-kinematic hardening rule and the introduction of a second yield criterion, which can be traced back to the multisurface models derived by Mróz et al., complex stress paths can be described realistically. However, it has to be mentioned that the theory of plasticity is not the only theory which is able to describe the complex behaviour of soils.

In the numerical part of this study the advantage of a uniform velocity formulation, i.e. the existence of only one configuration (the actual one), is discussed among other things.

A number of numerical simulations of common experiments in soil mechanics are presented. The numerical results illustrate the adequacy of the proposed formulations and the elasto-plastic material model.
Inhaltsverzeichnis

1 Einleitung

1.1 Allgemeine Annahmen für das Stoffmodell ... 12
1.2 Gliederung der Arbeit .. 13
1.3 Begriffe und Symbole .. 14

2 Große Deformationen ... 19

2.1 Grundproblem ... 19
2.2 Mitrotierende Zeitableitungen ... 23
 2.2.1 Beispiel aus der Relativkinematik ... 23
 2.2.2 Prinzip der Materialobjektivität .. 24
 2.2.3 Physikalische Motivation .. 28
 2.2.4 Ebener Scherversuch .. 34
2.3 Allgemeiner Integrationsalgorithmus bei natürlicher Formulierung 40
 2.3.1 Verwendete Symbolik für die Numerik .. 41
 2.3.2 Stoffgesetzintegration der Green-Naghdi-Ableitung 42
 2.3.3 Verzerrungen ... 44

3 Ein elasto-plastisches Stoffgesetz .. 45

3.1 Die Terminologie des Cam-Clay-Modells ... 46
3.2 Elasto-plastisches Zweiflächenmodell ... 50
 3.2.1 Fließbedingung ... 52
 3.2.2 Fließregel .. 58
3.2.3 Ver- bzw. Entfestigungsgesetze ... 60
3.2.4 Darstellung in der Deviator-Ebene ... 63
3.3 Elasto-plastische Stoffmatrix ... 68
3.4 Parameterbestimmung .. 71
 3.4.1 Ermittlung der Stoffkonstanten ... 71
 3.4.2 Ausgangszustand .. 79

4 Versuche und Testrechnungen .. 81
 4.1 Numerik ... 81
 4.1.1 Iterationstechniken ... 85
 4.1.2 Spannungsreduktion ... 88
 4.1.3 Entwicklung des verwendeten Programmsystems 92
 4.2 Triaxialversuche .. 94
 4.3 Durchgeführte Testrechnungen ... 97
 4.3.1 Nachrechnung eines Mehrstufenversuches 97
 4.3.2 Nachrechnung eines Biaxialversuches 107

5 Zusammenfassung ... 111

6 Literatur .. 113

7 Anhang ... 119
 7.1 Zerlegung des Geschwindigkeitsgradienten 119
 7.2 Forderungen an objektive Zeitableitungen 120
 7.3 Ableitung der nichtsymmetrischen Steifigkeitsterme 124
1 Einleitung

In dieser Arbeit wird vorwiegend auf die Beschreibung von bindigen Böden abgehoben. Eine mikroskopische Betrachtungsweise, d.h. die Untersuchung der Wechselwirkungen zwischen den einzelnen Körnern, wird nicht angewandt. Die Gründe, die zu einer rein kontinuumsmechanischen Betrachtungsweise geführt haben, werden dargelegt. Das Stoffgesetz wird für die aktuelle Konfiguration formuliert, so daß es ohne besondere Schwierigkeiten möglich ist, große Formänderungen, d.h. auch große Verzerrungen, die in der Bodenmechanik 30 – 40 % betragen können, zu berücksichtigen. Die hierfür notwendigen kontinuumsmechanischen und numerischen Betrachtungen werden aufgezeigt. Die Aufstellung eines bodenmechanischen Stoffgesetzes sowie die numerische Implementierung in ein Finite Elemente-Programm unter Berücksichtigung großer Deformationen sind der Schwerpunkt dieser Arbeit.

Die konstitutive Beziehung sowie die für die Finite Elemente-Formulierung erforderliche Numerik werden an einem triaxialen Mehrstufenversuch mit Verformungsmessungen in vertikaler und in horizontaler (Ring-) Richtung verifiziert. Obwohl die Übereinstimmung mit dem Experiment als sehr zufriedenstellend be-
zeichnet werden kann, gilt auch für dieses Stoffgesetz, wie für alle in der Literatur
gemachten Vorschläge für Böden, daß ein absolut allgemeingültiges Modell, das
für alle Spannungspfade exakt ist, noch aussteht. Selbst wenn man annehmen
würde, daß eine völlige Entkopplung von Stoffgesetz und Numerik möglich wäre,
so bliebe doch dieser Punkt, der eine absolute Übereinstimmung unmöglich macht.
Da das Ergebnis einer numerischen Berechnung nur so gut sein kann, wie es die
Eingabeparameter sind — ganz abgesehen vom verwendeten Stoffgesetz —, ist bei
der vorhandenen Heterogenität von Böden eine exakte Vorhersage auch aus diesem
Grunde nicht möglich.
Das Ziel muß es aber dennoch sein, alle einfließenden Dinge, d.h. das Stoffmodell,
die mathematische Formulierung, die Numerik, die Parameterbestimmung, etc so
exakt wie möglich zu beschreiben, um eine Summation der "einzellen" Fehler zu
vermeiden. Eine Berechnung ist dann zwar immer noch mit einem Fehler behaf-
tet, jedoch läßt sich dieser Fehler bei Beachtung dieses Aspektes eingenzen, so
daß eine Vorhersage mit einer gewissen Wahrscheinlichkeit möglich sein wird.

1.1 Allgemeine Annahmen für das Stoffmodell

Die im folgenden aufgeführten Annahmen, auf die z.T. in den nachfolgenden Ab-
schnitten eingegangen wird, liegen dem Stoffmodell zugrunde:

- Der Boden wird als Kontinuum betrachtet, so daß man die Begriffe "Span-
nung" und "Verzerrung" verwenden kann.
- Chemische, elektrische oder thermische Einflüsse werden nicht betrachtet.
- Zeitliche Effekte (Vieksität) werden nicht berücksichtigt; dies bedeutet, daß
die Spannungswert unabhängig von der Zeitskala ist. Das reale Zeitink-
krement Δt könnte deshalb auch durch einen anderen Parameter, so z.B. ein
Lastinkrement ΔP, ersetzt werden.
- Es gilt das Konzept der effektiven Spannungen (TERZAGHI, 1936):
Alle messbaren Effekte einer Spannungssänderung, wie z.B. Kompression,
Scherung und eine Änderung des Scherwiderstandes sind ausschließlich einer
Änderung der effektiven Hauptspannungen σi' zuzuordnen.
För σi' gilt:

\[σ_i' := σ_i - u \]

Hierbei stellt σi die totale Druckspannung (= Kraft/Fläche) und \(u \) den Po-
renwasserdruck dar. Das Stoffmodell wird mit effektiven Spannungen for-
muliert.
1.2 Gliederung der Arbeit

Im einführenden Kapitel dieser Arbeit wird die zu lösende Problemstellung – d.h. Entwicklung eines bodenmechanischen Stoffmodell für komplexe Spannungspfade (Be- und Entlastungsvorgänge) sowie eine möglichst exakte numerische Formulierung – angesprochen. Einige grundlegende Annahmen werden aufgeführt, und die wichtigsten Bezeichnungen werden vorgestellt.

Die für die Implementierung in ein Finite Elemente-Programm erforderlichen Gleichungen sowie die Parameterbestimmung werden erläutert.

Im 4. Kapitel wird zu Beginn die erforderliche Numerik für die Finite Elemente-Formulierung, einschließlich der derzeit aktuellen Iterationstechniken, vorgestellt. Im Anschluß werden die durchgeführten Versuche und Testrechnungen erläutert.

Im 5. Kapitel werden zusammenfassend einige Bemerkungen über die in dieser Arbeit durchgeführten Punkte sowie ein Ausblick für zukünftige Forschungsarbeiten aufgeführt.

Im Anschluß an dieses Kapitel folgt ein Verzeichnis der verwendeten Literatur sowie ein Anhang, in dem einige Ableitungen dargestellt sind.
1.3 Begriffe und Symbole

Die in dieser Arbeit verwendeten Bezeichnungen werden im folgenden immer dann erläutert, wenn sie im Text zum ersten Male auftreten. Zugspannungen (einschließlich σ') und Zugdehnungen sind positiv. Einige wichtige allgemeine Bezeichnungen sind in der folgenden Tabelle zusammengestellt:

Skalare Größen

- a: Stoffparameter des elasto-plastischen Zweiflächenmodells
- A: Verhältnis von aktuellem Radius r zum Radius r_K (Abstand von der Raumdiagonalen zur Fließfläche im Kompressionsfall)
- c': effektive Kohäsion. Damit Festlegung des Mohr-Coulombschen Kriteriums für die Korn-zu-Korn (effektiven) Spannungen
- c_h: Stoffparameter zur Festlegung der Form von Fließfläche und Potential in der Deviatorebene ($hexagonal$, Schadsches Kriterium)
- c_p: Stoffparameter zur Festlegung der Form von Fließfläche und Potential in der Deviatorebene ($plumpness$, Schadsches Kriterium)
- c_0: Stoffparameter des Zweiflächenmodells zur Festlegung der Lage der Kappe
- c_2: Stoffparameter zur Festlegung der Form von Fließfläche und Potential in der Deviatorebene (Kriterium nach Gudehus)
- e: Porenzahl
- e_0: Porenzahl nach Vorbelastung, zu Beginn der Belastungsgeschichte
- E: Elastizitätsmodul
- h: Verfestigungsparameter
- K: Kompressionsmodul
- M_K: Steigung der "Critical State Line" im p,q-Diagramm
- p: mittlere Spannung
- p_c: mittlere Konsolidationsspannung
Bezeichnungen

\(q \) Hauptspannungsdifferenz im Triaxialversuch (\(= \sigma_1 - \sigma_3 \) wenn \(\sigma_2 = \sigma_3 \))

\(r \) Abstand des Spannungspunktes im Hauptspannungsraum von der Raumdiagonalen (Polarradius)

\(r_E \) Polarradius im Extensionsfall (Abstand von der Raumdiagonalen zur Fließfläche)

\(r_K \) Polarradius im Kompressionsfall (Abstand von der Raumdiagonalen zur Fließfläche)

\(R \) Proportionalitätsverhältnis; innere zu äußere Fließfläche (die Fließflächen sind geometrisch ähnlich)

\(s \) Skalierungsfaktor beim line search Verfahren

\(w_{Pr} \) optimaler Wassergehalt (Proctor)

\(u \) Porenwasserdruck

\(\delta \) Variationssymbol

\(\delta_{ij} \) Kronecker-Symbol

\(\varepsilon_0 \) Volumetrische Dehnung (\(= \varepsilon_1 + \varepsilon_2 + \varepsilon_3 \), materielles Bild)

\(\theta \) Polarwinkel in der Deviatorebene des Hauptspannungsraums

\(\kappa \) Schwellbeiwert

\(\lambda \) Kompressionsbeiwert

\(\Lambda \) Proportionalitätsfaktor zur Bestimmung der Größe des plastischen Dehnungsinkrementes

\(\mu \) Stoffparameter des Zweiflächenmodelles

\(\nu \) Querkontraktionszahl

\(\vartheta \) Betrag des Verbindungsvektors vom Fließflächenpunkt auf der inneren Fläche zum Fließflächenpunkt auf der Erstbelastungsfäche

\(\rho_{Pr} \) Proctor-Dichte

\(\varphi' \) effektiver Reibungswinkel. Damit Festlegung des Mohr-Coulombschen Kriteriums für die Korn-zu-Korn (effektiven) Spannungen

\(\varphi^* \) Neigung der in die \(p,q \)-Ebene transformierten Bruchgerade nach Mohr-Coulomb (Kompressionsfall)
\(\psi \) Dilatanzwinkel
\(\psi^* \) Neigung der Gerade des Fließpotentials (\(p, q \)-Ebene, Kompressionsfall)

Matrizen und Tensoren

\(C \) Konstitutiver Tensor der differentiellen Steifigkeit
\(D \) symmetrischer Anteil des Geschwindigkeitsgradienten
\(e_1, e_2, e_3 \) Basisvektoren eines kartesischen Systems
\(F \) Deformationsgradient
\(L \) Geschwindigkeitsgradient
\(n' \) Einheitsnormalenvektor der inneren Fließfläche
\(n^F \) Einheitsnormalenvektor der äußeren Fließfläche
\(n^p \) Einheitsnormalenvektor der plastischen Potentialfläche
\(R \) Rotationstensor
\(W \) Rotationsgeschwindigkeitstensor (Wirbeltensor, antisymmetrischer Anteil des Geschwindigkeitsgradienten)
\(v \) Verformungsgeschwindigkeitstensor
\(\alpha, \beta, \zeta \) Spannungstensoren (back stresses, Gegenspannungstensoren), welche die Lage der äußeren Fließfläche festlegen
\(\bar{\alpha}, \bar{\beta}, \bar{\zeta} \) Spannungstensoren, welche auf ein Koordinatensystem zur Beschreibung der inneren Fließfläche bezogen sind (\(\bar{\alpha} = R\alpha, \bar{\beta} = R\beta, \bar{\zeta} = R\zeta \))
\(\varepsilon \) Verzerrungstensor
\(\dot{\varepsilon} \) Verzerrungsgeschwindigkeitstensor (\(= D \))
\(\eta \) Spannungstensor, welcher die Lage des Bezugskoordinatensystems für die innere Fließfläche festlegt
\(\sigma \) Cauchyscher Spannungstensor
\(\Omega \) Rotationsgeschwindigkeitstensor (ausgehend von der polaren Zerlegung des Deformationsgradienten)
Bezeichnungen

Für skalare, vektorielle und tensorielle Größen gilt, sofern im Text nichts anderes vereinbart wird:

\(b \) kleine Buchstaben (Normalschrift) = skalare Größen
\(\dot{b} \) kleine Buchstaben (fett) = vektorielle Größen
\(B \) große Buchstaben (fett) = tensorielle Größen (≥ 2. Ordnung)

Indizes

\(a \) antisymmetrischer Anteil (rechter oberer Index)
\(b \) äußere Fließfläche ("bounding area")
\(e \) elastisch (rechter oberer oder unterer Index)
\(i \) innere Fließfläche
\(p \) plastisch (rechter oberer oder unterer Index)
\(s \) symmetrischer Anteil (rechter oberer Index)
\(t \) Zeitpunkt, zu dem eine Größe gemessen wurde (linker oberer Index), bzw. bezogen auf die Konfiguration zum Zeitpunkt \(t \) (linker unterer Index)
\(T \) transponiert (rechter oberer Index)
\(v \) volumetrisch (rechter unterer Index)
\(1,2,3 \) Hauptspannungsrichtungen

Allgemeine Symbole

\(\cdot \) deviatorische Komponente
\(' \) effektive Spannung bzw. Ableitungssymbol
\(\nabla \) Zeitableitung (räumlich)
\(\circ \) Zeitableitung (materiell)
\(\sim \) materielles Bild
Rechensymbole des Tensorkalküls

- einfaches Skalarprodukt
- doppeltes Skalarprodukt
\(\otimes \) dyadisches Produkt
2 Große Deformationen

2.1 Grundproblem

Im folgenden werden die theoretischen Überlegungen, die zur Implementierung eines Konzeptes großer Verzerrungen in ein Finite-Elemente-Programm notwendig sind, dargestellt. Als Einstieg in die Problematik großer Deformationen soll an dieser Stelle das Grundproblem der Kinematik, unabhängig vom Stoffgesetz, dargestellt werden.

In einer geometrisch nichtlinearen Berechnung ist das Gleichgewicht für den betrachteten Körper bezüglich seiner Momentankonfiguration aufzustellen. Für bestimmte Stoffgesetze ist es erforderlich, wie auch bei dem in dieser Arbeit entwickelten Stoffgesetz, eine inkrementelle Formulierung zu verwenden. Die Ursache hierfür ist in der Spannungs-Verformungsgesetzes-Beziehung zu suchen, d.h. aufgrund von Stoffgesetzen, in denen nach der Zeit abgeleitete Zustandsgrößen, die eine in irgendeiner Weise inkrementelle Formulierung erzwingen, vorkommen. In Bild 2.1 ist die Bewegung eines allgemeinen Körpers in einem stationären, kartesischen Koordinatensystem dargestellt. Zugelassen wird hierbei, daß der Körper große Verschiebungen und große Verzerrungen erfährt und daß er vom Material her nichtlinear reagiert. Ziel der Betrachtung ist die Berechnung der Gleichgewichtslage des ganzen Körpers in den diskreten Zeitpunkten 0, Δt, 2Δt, ..., nΔt, wobei Δt den Zuwachs der Zeit t darstellt.
Große Deformationen

Bild 2.1: Bewegung eines Körpers in einem Koordinatensystem

Vorab muß nun festgelegt werden, wie eine Deformation beschrieben wird. Es
soll gelten:

- Eine materielle Mannigfaltigkeit M ist die Menge aller betrachteten Massenpunkte.
- Konfigurationen ζ sind die geometrische Darstellung der materiellen Mannigfaltigkeit M; sie legen die Massenpunkte im Raum fest.
- Materielle Koordinaten sind solche Koordinaten, die den Massenpunkten zugeordnet sind und ihnen unabhängig von ihrer augenblicklichen Lage stets anhaften.

Es sei ζ_0 eine beliebig gewählte Referenzkonfiguration der materiellen Mannigfaltigkeit M. Die materiellen Koordinaten von M, (ξ_1, ξ_2, ξ_3), werden in der Referenzkonfiguration definiert und bleiben für jeden Punkt P über alle Verformungen erhalten. Die Überführung der infinitesimalen Umgebung von P, von ζ_0 auf ζ, kann durch eine lineare Abbildung beschrieben werden. Dies bedeutet, daß der Zusammenhang zwischen den Vektoren zweier benachbarter Punkte $dr_0 = dr(\xi, t_0)$, $dr_t = dr(\xi, t)$ in ζ_0 und ζ_t durch Tensoren beschreibbar ist. Der Deformationsgradient F bildet die (vektoriellen) Linienelemente $dr(\xi, t_0)$ eines Massenelementes $dm(\xi)$ in der Anfangskonfiguration ζ_0 ab in Linienelemente $dr(\xi, t)$ des betreffenden $dm(\xi)$ in einer späteren Konfiguration ζ_t, gemäß:

$$dr(\xi, t_0) \rightarrow dr(\xi, t) = F(\xi, t, t_0) \cdot dr(\xi, t_0)$$ (2.1)

Das Spannungsmaß, das üblicherweise bei der Totalen Lagrangeschen Formulierung verwendet wird, ist der 2. Piola-Kirchhoffsche Spannungstensor S:

$$S = \det F \, F^{-1} \sigma (F^{-1})^T$$ (2.2)

\[S = \det F_e F_e^{-1} \sigma (F_e^{-1})^T \]

(2.3)

2.2 Mitrotierende Zeitableitungen

2.2.1 Beispiel aus der Relativkinematik

Um auf die Problematik der Verwendung von Zeitableitungen von vektoriellen oder tensoriellen Größen in beobachterunabhängigen Stoffgesetzen aufmerksam zu machen, wird zunächst ein einfaches und bekanntes Beispiel aus der Starrkörperkinematik vorgestellt. Es sei O ein raumfester Beobachter des Punktes B mit der zugehörigen Basis $\{e_1, e_2\}$, während der Beobachter A sich mit seinem Basissystem $\{e'_1, e'_2\}$ mit der Winkelgeschwindigkeit ω dreht (vgl. Bild 2.2). Hierbei stellen e_1 und e_2 bzw. e'_1 und e'_2 Basisvektoren (keine Komponenten) dar. Die bekannten Zusammenhänge zwischen den Änderungen der Abstandsvektoren lauten mit

\[
\begin{align*}
\mathbf{r}_{AB} &= x'_1 e'_1 + x'_2 e'_2, \\
\dot{\mathbf{r}} &= \dot{\mathbf{r}}_A + \mathbf{\omega} \times \mathbf{r}_{AB} + \mathbf{v}_{B, rel} \\
\ddot{\mathbf{r}} &= \ddot{\mathbf{r}}_A + \ddot{\mathbf{r}}_{AB}
\end{align*}
\]

(2.4)

(2.5)

Bild 2.2: Rotation eines Basissystems
Dabei ist \(v_{B,rel} \) die Geschwindigkeit (Zeitableitung der Komponenten von \(r_{AB} \) bezüglich des drehenden Systems), die man dem mitrotierenden Beobachter als feststellbar unterstellt. Natürlich ist der Vektor \(r \) für den festen wie den mitbewegten Beobachter in jedem Augenblick "objektiv" feststellbar, d.h. beide Beobachter bestimmen den Abstand \(OB \) bzw. \(AB \) gleich, jedoch in verschiedenen Komponentendarstellungen. Kennt der Beobachter in \(A \) die Winkellage relativ zum feststehenden System und ist er außerdem noch im Besitz von Transformationsalgorithmen, so kann er die Komponenten von \(r_{AB} \) in genau den gleichen Komponenten angeben wie der feste Beobachter. Man könnte sich nun fragen, warum bei gleichem Anfangs- und Endwert die von beiden Beobachtern festgestellten Zeitableitungen verschieden sind. Der Unterschied in den beiden Standpunkten liegt darin, daß der feste Beobachter die Drehung der Achsen \(e_1', e_2' \) als Rotation auffäßt, während der mitbewegte Beobachter in \(A \) die Rotation seiner Achsen nur in Form einer Transformation miterlebt. Es gilt mit \(e_\nu = R \cdot e_i \) und \(HRH^T = 1 \):

\[
\begin{align*}
 r_{AB} &= x_\nu e_\nu = x_\nu (Re_i) = x_1'(Re_1) + x_2'(Re_2) = R [x_\nu e_i] \\
 r &= R \cdot [x_\nu e_i] + r_A \\
 \Rightarrow \overset{\r}{x} &= \overset{\r}{x}_A + R \cdot [\overset{\r}{x}_\nu e_i] \\
 \overset{\r}{x} - \overset{\r}{x}_A &= \overset{\r}{x} R H^T \cdot [x_\nu e_i] + [\overset{\r}{x}_\nu e_\nu]
\end{align*}
\]

Der raumfeste Beobachter integriert den Relativvektor \(\overset{\r}{x} - \overset{\r}{x}_A \) nach Gleichung (2.9). Dagegen integriert \(A \) nur die Komponenten \(\overset{\r}{x}_\nu \) und gelangt zu denselben \(r - r_A \) wie \(O \), indem er seine Komponenten \(x_\nu \) auf die Basis von \(O \) nach Maßgabe der aktuellen Drehlage transformiert. Obwohl Meinungsverschiedenheiten zwischen beiden Beobachtern über die Größe der absoluten Geschwindigkeiten \(\overset{\r}{x} - \overset{\r}{x}_A \) bestehen, stellen sie die Relativbewegung von \(B \) gegenüber dem System von \(A \) übereinstimmend fest. Ein von beiden für gültig befundenes Reibungsgesetz von Punkt \(B \) (die Reibungskraft wirkt stets der relativen Gleitrichtung entgegen) auf der mit \(\omega \) drehenden Scheibe muß für beide gleiche maßbare Reibungskräfte liefern und kann somit nur die Relativgeschwindigkeit \(v_{B,rel} \) als Bewegungsgröße enthalten. Dieser offensichtliche Tatbestand, auf die Kontinuumsmechanik und die darin als Bewegungs-, Kraft- und Zustandsgrößen auftretenden Tensoren erweitert, ist die Aussage des im folgenden Abschnitt behandelten Objektivitätsprinzips.

2.2.2 Prinzip der Materialobjektivität

Das Prinzip der Materialobjektivität oder der Raumisotropie gehört zu einer Reihe von Prinzipien, die den Versuch darstellen, durch eine Axiomatik den allgemeinen Rahmen für die Formulierung von Stoffgesetzen festzulegen. Da es unmittelbare Bedeutung für die Auswahl von vektoriellen und tensoriellen Zustandsgrößen sowie für die Formulierung objektiver Zeitableitungen besitzt, wird es im folgenden
vorgestellt. Das Prinzip der Materialobjektivität erscheint in zwei verschiedenen Formulierungen:

Passive Formulierung: Die Stoffgleichungen und Zustandsgrößen müssen unabhängig von der Bewegung des jeweiligen Beobachtersystems sein.

Aktive Formulierung: Die Stoffgleichungen und Zustandsgrößen müssen unabhängig von einer überlagerten Starrkörperrotation des Materials sein.

Aufgrund beider Formulierungen erfüllen Vektoren \(\mathbf{v} \) und Tensoren \(\mathbf{T} \) das Prinzip der Materialobjektivität, wenn sie sich bei einer Starrkörperbewegung \(\mathbf{Q} \) gemäß

\[
\mathbf{v} = \mathbf{Qv}^* \quad \text{bzw.} \quad \mathbf{T} = \mathbf{QT}^*\mathbf{Q}^T
\]

(2.10)

verhalten (vgl. Abschnitt 2.2.1). Sie werden daher objektiv genannt. Hierbei zeigt das \(^*\) an, daß die Größe sich mit dem Material mitbewegt, d.h. in der passiven Formulierung vom ruhenden Beobachter aus gesehen und in der aktiven Formulierung vom mit dem Material mitbewegten System aus betrachtet wird. Für Stoffbeziehungen \(\mathbf{G} = \mathbf{G}(\mathbf{X}) \), wobei \(\mathbf{X} \) skalare, vektorielle oder tensorielle Stoffgrößen darstellt, fordert das Objektivitätsprinzip:

\[
\begin{align*}
\mathbf{g} &= \mathbf{g}(\mathbf{X}) = \mathbf{g}(\mathbf{X}^*, \mathbf{Q}) = \mathbf{g}^*(\mathbf{X}^*) \quad \text{skalar} \\
\mathbf{G} &= \mathbf{G}(\mathbf{X}) = \mathbf{G}(\mathbf{X}^*, \mathbf{Q}) = \mathbf{QG}^*(\mathbf{X}^*)\mathbf{Q}^T \quad \text{tensoriell}
\end{align*}
\]

(2.11)

Vektoren \(\mathbf{v} \) und Tensoren \(\mathbf{T} \) heißen genau dann invariant gegen Starrkörperbewegungen, wenn sie sich bei Starrkörperbewegungen im materiellen Zustand \(\mathbf{v}^*, \mathbf{T}^* \) (im mit dem Material mitbewegten System) und im räumlichen Zustand \(\mathbf{v}, \mathbf{T} \) (im jeweiligen Beobachtersystem) nicht unterscheiden:

\[
\mathbf{v} = \mathbf{v}^* \quad \text{bzw.} \quad \mathbf{T} = \mathbf{T}^*
\]

(2.12)

Diese Abbildungseigenschaft und ein Abbildungsverhalten von Tensoren gemäß:

\[
\mathbf{T} = \mathbf{QT}^* \quad \text{bzw.} \quad \mathbf{T} = \mathbf{T}^*\mathbf{Q}^T
\]

(2.13)

werden in der Literatur häufig unter dem Begriff Objektivität subsumiert, wobei die Vektoren \(\mathbf{v} \) und Tensoren \(\mathbf{T} \) vom Beobachtersystem aber nicht unabhängig sind.

Die materiellen Zeitableitungen objektiver Tensoren sind automatisch weder objektiv noch invariant:

\[
\begin{align*}
\dot{\mathbf{\sigma}} &= \mathbf{Q}\dot{\mathbf{\sigma}}^*\mathbf{Q}^T \\
\Rightarrow \bar{\dot{\mathbf{\sigma}}} &= \mathbf{Q}\dot{\mathbf{\sigma}}^*\mathbf{Q}^T + \dot{\mathbf{\sigma}}\mathbf{Q}^T\mathbf{\sigma} + \mathbf{\sigma}\dot{\mathbf{Q}}\mathbf{Q}^T
\end{align*}
\]

(2.14)
Um aber trotzdem Zeitableitungen objektiver Tensoren in Stoffgesetzen verwenden zu können, muß man solche Zeitableitungen $\ddot{\mathbf{v}}$ definieren, die die Objektivitätsforderung erfüllen. Bei reiner Starrkörperbewegung muß diese Definition nach Gleichung (2.14) genau

$$\ddot{\mathbf{v}} = Q \dot{\mathbf{v}} = Q \dot{Q}^T \sigma = \dot{Q} Q^T \sigma - \sigma (\dot{Q} Q^T)^T,$$

wobei $\sigma^\circ = Q^T \sigma Q$ gilt, \((2.15) \)

liefern. Diese Feststellung läßt sich wie folgt auf den Fall verallgemeinern, bei dem neben der Starrkörperbewegung auch Deformationen auftreten, so daß sich die unten aufgeführten Definitionen (vgl. WEGENER 1987) ergeben. Hierzu ist die Einführung sogenannter Direktorensysteme, das sind stets orthogonale Vektordreibeine $\xi_{\mathbf{H}_i}$ und $\xi_{\mathbf{V}_i}$, erforderlich. Sie werden für den vorderen und den hinteren Index eines Tensors zunächst unabhängig voneinander definiert. Die Direktorensysteme sind Basisysteme, die mit bestimmten ausgezeichneten Materialrichtungen (Anisotropierichtungen) fest verbunden sind und die Drehlage eines sich verformenden Materieelementes darstellen. Sie definieren dann die Materialrotation als die Drehung der Direktorensysteme. Sie werden ausführlich im nachfolgenden Abschnitt erläutert.

In Bild 2.3 ist das allgemeine Abbildungsverhalten (ohne Streckungen) eines Spannungstensors dargestellt. Für den vorderen (Normalenrichtung) und den hinteren (Kraftrichtung) Index sollen unterschiedliche Abbildungen G und H (vgl. Gleichung (2.17)) gelten.

Bild 2.3: Abbildung eines Spannungstensors (zweidimensional)
Definition 1: Als materielles Bild eines objektiven Tensors \(\sigma \) bezeichnet man sein invariantes Abbild:

\[
\tilde{\sigma} = G^{-1} \sigma (H^{-1})^T ,
\]

(2.16)

d.h. eine überlagerte Starrkörperbewegung führt auf "dasselbe" materielle Bild, so daß gilt: \(\tilde{\sigma} = \tilde{\sigma}' \). Hierbei sind die Abbildungen \(G \) und \(H \) diejenigen, die die beiden Direktorensysteme \(\{ \xi_{Vi} \} \) bzw. \(\{ \xi_{Hi} \} \) für den vorderen bzw. den hinteren Index von der gewählten Referenzkonfiguration auf die aktuelle Konfiguration abbilden.

\[
\xi_{Vi} = G \xi_{Vi}^0 \quad \text{bzw.} \quad \xi_{Hi} = H \xi_{Hi}^0 \quad i = 1, 2, 3 \quad (2.17)
\]

\(\xi_{V1}, \xi_{V2} \) und \(\xi_{V3} \) bzw. \(\xi_{H1}, \xi_{H2} \) und \(\xi_{H3} \) stellen die Basisvektoren (vgl. Bild 2.3) der Direktorensysteme (keine Komponenten) dar. Damit \(\tilde{\sigma} \) tatsächlich ein invariantes Bild von \(\sigma \) wird, müssen \(G \) und \(H \) sich bei einer Starrkörperbewegung gemischt invariant-objektiv verhalten in der Form, daβ

\[
G = Q G^* \quad \text{und} \quad H = Q H^* \quad (2.18)
\]
gilt. Im Vergleich zu Gleichung (2.17) schränkt somit die Objektivitätsforderung die Klasse der für ein Material zulässigen Direktorensysteme \(\{ \xi_{Vi} \} \), \(\{ \xi_{Hi} \} \) ein auf solche Systeme, die bei Überlagerung einer Starrkörperbewegung ohne Schlupf mitgedreht werden.

Definition 2: Als räumliches Bild eines invarianten Tensors \(\tilde{\sigma} \) bezeichnet man sein objektives Abbild

\[
\sigma = G \tilde{\sigma} H^T ,
\]

(2.19)

d.h. für eine überlagerte Starrkörperbewegung gilt das Objektivitätsprinzip: \(\sigma = Q \sigma^* Q^T \). Hierbei sind \(G \) und \(H \) wieder die Abbildungen, die die beiden Direktorensysteme gemäß Gleichung (2.17) von der gewählten Referenzkonfiguration auf die aktuelle Konfiguration abbilden.

Hieraus folgt nun der Satz (WEGENER 1987):

- Jede objektive Zeitableitung eines objektiven Tensors \(\sigma = Q \sigma^* Q^T \) entsteht als räumliches Abbild der materiellen Zeitableitung des materiellen Bildes von \(\sigma \) zu beliebigen zulässigen Direktorensystemen \(\xi_{Vi} = G \xi_{Vi}^0, \xi_{Hi} = H \xi_{Hi}^0 \).

Es ergibt sich somit:

\[
\nabla \tilde{\sigma} = G \tilde{\sigma} H^T \quad \text{mit} \quad \tilde{\sigma} = G^{-1} \sigma (H^{-1})^T \quad (2.20)
\]

Die Folgerung des Objektivitätsprinzips ist, daß lediglich objektive Tensoren in die Formulierung von Stoffgesetzen eingehen können.

Wichtigstes Beispiel eines nicht objektiven Tensors ist der Deformationsgradient \(F \) (Gleichung (2.1)) für den \(F = R F^* \) gilt. Dies ist auch der Grund, weshalb
in keinem Stoffgesetz F als Deformationsmaß auftritt. Dagegen ist der Fingersche
Streckungstensor $B = \mathbf{F}^T \mathbf{F} = \mathbf{R}^T \mathbf{B} \mathbf{R}^T$ wieder objektiv. Für die verwendeten Zu-
standsgrößen ist die Objektivitätseigenschaft streng genommen stets ein Postulat,
während dies für den Abstandsvektor \mathbf{r}_{AB} in dem Beispiel aus der Starrkörperki-
nematik offensichtlich war.

2.2.3 Physikalische Motivation

Nachdem aus dem Prinzip der Materialobjektivität bereits ein Kriterium für die
Konstruktion objektiver Zeitableitungen folgte, soll nun das Problem der Wahl
der Direktoren systeme dargestellt werden. Zunächst ergibt sich hier eine vom
Objektivitätsprinzip unterschiedliche Motivation zur Einführung von Abbildungs-
vorschriften. Gesucht werden Zeitableitungen der Tensorkomponenten, bezogen
auf ein für das Material ausgezeichnetes Basissystem, das Direktoren system:

$$\mathbf{\dot{\gamma}} = [\sigma_{ij}] \mathbf{e}_i \otimes \mathbf{e}_j$$ \hspace{1cm} (2.21)

und wegen

$$\mathbf{\ddot{\sigma}} = [\sigma_{ij}] \mathbf{e}_i \otimes \mathbf{e}_j + \sigma_{ij} \mathbf{\dot{e}}_i \otimes \mathbf{e}_j + \sigma_{ij} \mathbf{e}_i \otimes \mathbf{\dot{e}}_j$$ \hspace{1cm} (2.22)

folgt

$$\mathbf{\ddot{\gamma}} = \mathbf{\ddot{\sigma}} - \sigma_{ij} \mathbf{\dot{e}}_i \otimes \mathbf{e}_j - \sigma_{ij} \mathbf{e}_i \otimes \mathbf{\dot{e}}_j$$ \hspace{1cm} (2.23)

Genau wie bei dem Beispiel der Relativkinematik in Reibungsgesetze nur Rela-
tivgeschwindigkeiten eingehen, benötigt man diese objektiven Zeitableitungen für
die Aufstellung von Materialgesetzen. Diese Ableitungen werden der Motivation
entsprechend mitrotierend genannt, da sie den Materialrichtungen folgen. Erst die
Benutzung ausschließlich nach Maßgabe des Objektivitätsprinzips zulässiger Di-
rekto ren system erlaubt die synonyme Verwendung der Begriffe "mitrotierende"
und "objektive Zeitableitung". Keinesfalls aber liefert das Objektivitätsprinzip
eindeutige Zeitableitungen. Die beiden folgenden Probleme müssen durch physi-
kalische Untersuchungen geklärt werden:

**Welche Tensoren bzw. Spannungsmaße will man verwenden, um den Materi-
alzustand zu beschreiben, d.h. welche Materialten soren sind objektiv?** Für
die Spannungen läßt sich eine Vielzahl von Maßen (vgl. Abschnitt 2.1) ange-
gen. Die zweckmäßigste Wahl scheint der Cauchysche Spannungstensor zu
sein, da dessen Objektivitätseigenschaft auf die Objektivität des Flächen-
elementvektors und die des darauf wirkenden infinitesimalen Kraftvektors
zurückgeführt werden kann (vgl. TRUESDELL 1955).

**Welches Basissystem $\{e_i\}$ ist dasjenige, welches die Drehung des Materials
zuverlässig beschreibt?** Dies wird insbesondere dadurch noch entscheidend
erschwert, daß sich nicht nur wie im Fall der Starrkörperrotation die Basis

In der allgemeinen Form der Gleichung (2.23) stellen die rotierenden Basisvektoren sogenannte Direktorensysteme dar.

Es sei \(\dot{e}_r = Re_i \) die Abbildungsvorschrift, bezogen auf die mitdrehende Basis,

\[
\Rightarrow \dot{\sigma} = \dot{\sigma} - \dot{\mathbf{R}} \mathbf{R}^{-1} \sigma - \sigma (\dot{\mathbf{R}} \mathbf{R}^{-1})^T
\]
(2.24)

\(\mathbf{R} \) bzw. \(\dot{\mathbf{R}} \) erfordern nun Stoffgleichungen. Weil die Materialtheorien damit sehr kompliziert werden und insbesondere Probleme bei der Formulierung der Stoffgleichungen für \(\mathbf{R} \) bestehen, interessiert man sich für Spezialfälle:

Das Direktorensystem wird mit der kartesischen Raumbasis identifiziert. Damit wird \(\dot{\mathbf{\sigma}} \) zu der gewöhnlichen materiellen Zeitableitung.

Das Direktorensystem hängt mit den materiellen Basisvektoren zusammen. Da \(\dot{e}_\kappa = L e_\kappa \) und \(\dot{e}^* = -L^T e^* \) mit dem Geschwindigkeitsgradienten \(L = (\nabla \otimes v)^T \) ist, muß zwischen ko- und kontravarianter Darstellung unterschieden werden. Dies wurde bisher aus Gründen der Einfachheit unterlassen. Mit dem Deformationsgradienten \(F \) gilt für den Geschwindigkeitsgradienten \(L \):

\[
e_\kappa = Fe_\kappa^0 \Rightarrow e_\kappa^0 = F^{-1} e_\kappa
\]

\[
\dot{e}_\kappa = \dot{F} e_\kappa^0 = \dot{F} F^{-1} e_\kappa = L e_\kappa
\]
Die von der Struktur her einfachsten mitrotierenden Zeitableitungen sind die nach Oldroyd. Bei ihnen werden als Direktoren systeme die ko- bzw. kontravarianten Materialbasisvektoren verwendet. Je nachdem, in welcher Darstellung der abzuleitende Tensor den Zustand kennzeichnet, erhält man die

\[
\begin{align*}
\text{obere Ableitung } \sigma^{O_1} & = \dot{\sigma} - L\sigma - L^T & \text{aus } \sigma = \sigma_{e\lambda} e_\lambda \otimes e_\lambda \\
\text{untere Ableitung } \sigma^{O_2} & = \dot{\sigma} + L^T\sigma + \sigma L & \text{aus } \sigma = \sigma_{\lambda e\alpha} e_\alpha \otimes e_\lambda \\
\text{die gemischten } \sigma^{O_3} & = \dot{\sigma} - L\sigma + \sigma L & \text{aus } \sigma = \sigma_{\lambda e\alpha} e_\alpha \otimes e_\lambda \\
\text{Ableitungen } \sigma^{O_4} & = \dot{\sigma} + L^T\sigma - \sigma L^T & \text{aus } \sigma = \sigma_{\lambda e\alpha} e_\alpha \otimes e_\lambda
\end{align*}
\]

(2.25)

nach Oldroyd. Diese Zeitableitungen heißen auch mitgeführte Zeitableitungen, da sie die gesamte Änderung der materiellen Basis aus der Zeitableitung ausklimmern.

Man wirft den Oldroyd-Ableitungen häufig vor, daß man je nach Komponentendarstellung des Tensors verschiedene Zeitableitungen hätte. Dieser Vorwurf ist nicht gerechtfertigt, sondern resultiert aus der Schwierigkeit zu entscheiden, welche Basis das für das Material geeignete Direktoren system bildet.

Die folgenden sogenannten mitdrehenden Zeitableitungen kompensieren nicht die gesamte Änderung der materiellen Basis, sondern versuchen, die Drehung des materiellen Basissystems von der Deformation abzuspalten. Dazu benutzen sie ein Direktoren system, das nur den Rotationsanteil der Bewegung der materiellen Basis mitmacht. Die Problematik dieses Vorgehens besteht darin, von drei sich irgendwie bewegenden Vektoren einen einheitlichen Dreh tensor auffindig zu machen. Dies ist, wie im folgenden gezeigt wird, wiederum nicht ohne plausibilisierende Annahmen möglich. Damit ergeben sich mehrere mögliche Lösungen:

- Da \(\varepsilon = L e \) gilt und \(L' = D \) die Deformationsgeschwindigkeiten beschreibt, unterstellt man dem Wirbeltensor \(W = L^\alpha \), Drehgeschwindigkeitstensor des Direktorensystems zu sein. Mit dieser Annahme findet man die sogenannte Jaumannsche oder Jaumann-Zaremba-Zeitableitung:

\[
\dot{\sigma} = \dot{\sigma} - W\sigma + \sigma W
\]

(2.26)

Eine sehr einfache Herleitung der Jaumannschen Spannungsgeschwindigkeit findet man auch bei Bednarczyk (1968). Man erkennt, daß alle Oldroyd-Ableitungen für den Fall \(L' = O \) – d.h. das Geschwindigkeitsfeld beschreibt eine reine Drehung – auf die Jaumannsche Zeitableitung führen. Dies entspricht der Forderung in Gleichung (2.14) des Objektivitätsprinzips und zeigt, daß alle diese Ableitungen die gleichen Objektivitätseigenschaften besitzen.

- Ebenso kann man auch von der polaren Zerlegung des Deformationsgradiens \(F \),

\[
\begin{align*}
F & = RU \quad \text{(Rechtszerlegung)} , \\
F & = VR \quad \text{(Linkszerlegung)} ,
\end{align*}
\]

(2.27) (2.28)
Mitrotierende Zeitableitungen

ausgehen. Diese Zerlegung ist eindeutig, wenn man fordert, daß U und V

symmetrisch sind und R orthogonal, d.h. $R^{-1} = R^T$ ist, wobei R

nur wegen der für kontinuumsmechanische Vorgänge notwendigen Regularität

eindeutig wird. Da F außerdem stetig in 1 (keine Bewegung) überführbar ist, ist

R eigentlich orthogonal (det$R = 1$). Damit beschreibt $e^\alpha = Re^\alpha$

eine reine Drehung von e^α.

Da F definitivgemäß (s. Gleichung (2.1)) die Abbildung von Materievek-
toren des Anfangs- auf den Endzustand vornimmt, gilt auch $e^\alpha = Fe^\alpha$

Während die Rechtszerlegung die zeitliche Abfolge “Deformation der Aus-
gangsbasis durch U und anschließende Drehung der deformierten Basis” be-
deutet, stellt die Linkszerlegung die umgekehrte Reihenfolge dar. Da aber

R eindeutig bestimmt ist, hat man so den gewünschten Drehanteil der Ma-

teriebasis gefunden. Dabei läuft, durch die Linkszerlegung vorgegeben, die

Deformation in diesem durch R mitgedrehtem Direktoren- system ab. Den

Drehgeschwindigkeitstensor des Direktoren- systems, im Gegensatz zum Wir-

beltensor W Rotationsgeschwindigkeitstensor Ω genannt, erhält man mit

L Linkszerlegung:

$\ddot{e}^\alpha = (\dot{V} R + V \dot{R})e^0$

$\ddot{e}^\alpha = (\ddot{V} RR^TV^{-1} V \dot{R} R^TV^{-1})e^\alpha$

$\ddot{e}^\alpha = (\ddot{V} V^{-1} + V \dot{R} R^TV^{-1})e^\alpha \quad (2.29)$

Rechtszerlegung:

$\ddot{e}^\alpha = (\ddot{R} U + \dot{R} U)e^0$

$\ddot{e}^\alpha = (\ddot{R} \dot{U} U^{-1}R^T + \dot{R} UU^{-1}R^T)e^\alpha$

$\ddot{e}^\alpha = (\ddot{R} \dot{U} U^{-1}R^T + \dot{R} R^T)e^\alpha \quad (2.30)$

Bei der Rechtszerlegung steht der Drehgeschwindigkeitsterm einzeln, da die

Drehung nach der Deformation ausgeführt wird, d.h.

$\Omega = \dot{R} R^T \quad (2.31)$

Bei der Linkszerlegung steht der Deformationsterm einzeln, während der

zweite, demnach als der die Drehung enthaltende Summand, zu interpretieren ist. Dort wird zuerst die Deformation der materiellen Basis durch

V^{-1} rückschichtig gemacht. Dann wird auf den undeformierten Zustand die

Drehgeschwindigkeit aufgebracht, und diese wird durch V wieder auf den

deformierten Zustand zurück abgebildet.

Von entscheidender Bedeutung ist, daß Ω genau wie W ein antisymmetri-
scher Tensor ist.
Beweis:

\[RR^T = 1 \]

Ableiten nach der Zeit liefert:

\[\dot{R} R^T + R \dot{R}^T = 0 \]

\[\iff \dot{R} R^T = -R \dot{R}^T = -(\dot{R} R^T)^T \]

Somit ergibt sich als weitere mitdrehende Zeitableitung:

\[\ddot{\varepsilon} = \dot{\sigma} - \Omega \sigma + \sigma \Omega, \quad (2.32) \]

die nach GREEN und NAGHDI (1965) benannt ist.

Im Gegensatz zu den Oldroyd-Ableitungen, aber genau wie bei der Jau-
mann-Ableitung, ist der Rotationstensor \(\Omega \) für die ko- und kontravarianten
Materialbasisssysteme gleich.

In der Literatur lassen sich noch viele weitere Zeitableitungen finden. Bei
WEGENER (1987) findet sich eine Zusammenstellung (vgl. Tabelle 2.1) einiger
Zeitableitungen. Da es nicht Ziel dieser Arbeit ist, eine Zeitableitung weiter oder
gar neu zu entwickeln, wird hinsichtlich der kritischen Bewertung dieser Ableitun-
gen (Objektivitätsnachweis) auf WEGENER (1987) bzw. auf diejenigen Autoren
verwiesen, auf die die jeweilige Zeitableitung zurückgeht.

Der in Tabelle 2.1 auftretende elastische Rotationsgeschwindigkeitstensor \(\Omega_e \) wird
analog zu \(\Omega \) (vgl. Gleichung (2.31)) aus der polaren Zerlegung von \(F_e \) gewonnen.

Wird der Geschwindigkeitsgradient \(L = \dot{F} F^{-1} \) mit Hilfe des Produktansatzes
\(F = F_e F_p \) additiv in einen elastischen (reversiblen) und in einen plastischen (ir-
reversiblen) Anteil zerlegt, so erhält man (s. Anhang):

\[L = L_e + L_p \quad \text{mit} \quad L_e = \dot{F}_e F_e^{-1} \quad \text{und} \quad L_p = F_e \dot{F}_p F_p^{-1} F_e^{-1} \quad (2.33) \]

\(D_p \) stellt in der Giesekeus-Ableitung (Tabelle 2.1) den symmetrischen Anteil \(L_p' \)
von \(L_p \) dar. Die weiterhin in Tabelle 2.1 auftretenden Parameter \(a, b, \xi \) sind ma-
teriantabhängige Größen und werden an dieser Stelle nicht näher erläutert.

Die große Vielfalt möglicher objektiver Zeitableitungen zeigt sehr deutlich, daß
die Objektivität nicht die einzige Eigenschaft ist, die man von einer Zeitableitung
verlangen muß. Vielmehr geben physikalische Modellbildungen der mikromechani-
schen Verformungsmechanismen entscheidende Hinweise auf zu verwendende Zeit-
ableitungen.

Da hinsichtlich der Bestimmung eines geeigneten Basisystems für die Materialdreh-
hung bei Böden, wie bereits erwähnt, erhebliche Schwierigkeiten bestehen, wird
eine Zeitableitung derart gewählt, daß der die Rotation beschreibende Algorith-
mus ein rein kinematischer Vorgang wird und somit keine materialabhängigen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Zeitableitung</th>
<th>Formel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>oberer Oldroyd</td>
<td>$\sigma^{O_1} = \dot{\sigma} - L\sigma - \sigma L^T$</td>
</tr>
<tr>
<td>2</td>
<td>unterer Oldroyd</td>
<td>$\sigma^{O_2} = \dot{\sigma} + L^T\sigma + \sigma L$</td>
</tr>
<tr>
<td>3</td>
<td>gemischter Oldroyd</td>
<td>$\sigma^{O_3} = \dot{\sigma} - L\sigma + \sigma L$</td>
</tr>
<tr>
<td>4</td>
<td>gemischter Oldroyd</td>
<td>$\sigma^{O_4} = \dot{\sigma} + L^T\sigma - \sigma L^T$</td>
</tr>
<tr>
<td>5</td>
<td>Truesdell</td>
<td>$\sigma^T = \dot{\sigma} + \sigma \text{ div} \nu - L\sigma - \sigma L^T$</td>
</tr>
<tr>
<td>6</td>
<td>Biot</td>
<td>$\sigma^B = \dot{\sigma} - \sigma \text{ div} \nu - L\sigma - \sigma L^T$</td>
</tr>
<tr>
<td>7</td>
<td>Jaumann</td>
<td>$\sigma^J = \dot{\sigma} - W\sigma + \sigma W$</td>
</tr>
<tr>
<td>8</td>
<td>Biezeno-Hencky</td>
<td>$\sigma^{BH} = \dot{\sigma} - W\sigma + \sigma W + \sigma \text{ div} \nu$</td>
</tr>
<tr>
<td>9</td>
<td>Green-Nag'idi</td>
<td>$\sigma^{GN} = \dot{\sigma} - \Omega\sigma + \sigma \Omega$</td>
</tr>
<tr>
<td>10</td>
<td>Stickforth</td>
<td>$\sigma^S = \dot{\sigma} - \Omega e\sigma + \sigma \Omega e$</td>
</tr>
<tr>
<td>11</td>
<td>Halleux-Donea</td>
<td>$\sigma^H = \dot{\sigma} - (aW + b\Omega)\sigma + \sigma(aW + b\Omega)$</td>
</tr>
<tr>
<td>12</td>
<td>Rate natürlicher</td>
<td>$\sigma^V = \dot{\sigma} - A_V\sigma + \sigma A_V$</td>
</tr>
<tr>
<td></td>
<td>Dehnungen</td>
<td>$A_V = \text{Rotationsgeschw. d. Hauptachsen von } V$</td>
</tr>
<tr>
<td>13</td>
<td>kombinierter Oldroyd</td>
<td>$\sigma^{O_5} = \dot{\sigma} - (L - (\zeta D)\sigma - \sigma(L^T - \zeta D)$</td>
</tr>
<tr>
<td>14</td>
<td>Leonov</td>
<td>$\sigma^L = \dot{\sigma} - L e\sigma - \sigma L^T e$</td>
</tr>
<tr>
<td>15</td>
<td>Giesekus</td>
<td>$\sigma^G = \dot{\sigma} - (L - (\zeta D e)\sigma - \sigma(L^T - \zeta D e)$</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Verschiedene Zeitableitungen (WEGENER 1987)

Zustandsparameter enthält. Träfe dieser Sachverhalt auf alle Materialien wirklich zu, so wäre die Materialforschung ein erhebliches Stück weiter. Bei Stahl z.B. hat sich gezeigt (s. WEGENER 1987), daß die Rotation ganz deutlich zustandsabhängig ist. Ist ein Material aber derart komplex, daß sich wie beim Boden praktisch keine allgemeine Aussage über Gleitssysteme treffen läßt (Stichworte seien hier: Heterogenität, Mehrphasengemisch, Kornzusammensetzung), erscheint es vernünftig, ein verhältnismäßig einfaches und materialunabhängiges Direktorensystem zu wählen. Diese Unabhängigkeit trifft z.B. auf die Jaumann-, die Oldroyd-Ableitungen (1-4) oder die Green-Naghdi-Ableitung zu. Um aus diesen Ableitungen die geeignetste auszuwählen, soll zunächst das Problem der Invarianz und der Symmetrierhaltung betrachtet werden.

Benutzt man σ als allgemeines Symbol für mitrotierende Zeitableitungen und gilt $\dot{\sigma} = 0$, so sollen die Invarianten I_1, I_2, I_3 von σ für beliebige Tensoren stationär bleiben. Diese Forderung wurde bereits 1961 von PRAGER gegen die untere und obere Oldroyd-Ableitung ins Feld geführt. Sie ist insbesondere dann von entscheidender Bedeutung, wenn das Stoffgesetz invariante skalare Funktionen der Stoffgröße σ enthält.

Berücksichtigt man bei der Wahl der Direktorensysteme das Prinzip der Materialobjektivität (s. Gleichung (2.18)), läßt sich die bisher ermittelte allgemeine Form für mitrotierende Zeitableitungen wie folgt darstellen: Mit Gleichung (2.20) und
mit
\[\dot{G} = K_G G \] sowie \[\dot{H} = K_H H \] (2.34)

stellt sich \(\ddot{\sigma} \) wie folgt dar:
\[\ddot{\sigma} = \dddot{\sigma} - K_G \sigma - \sigma K_H^T, \] (2.35)
wobei gilt:
\[G^{-1} = -G^{-1} K_G \] sowie \[H^{-1} = -H^{-1} K_H. \] (2.36)

Für Tensoren \(\sigma \), die symmetrisch sind, d.h. \(\sigma = \sigma^T \), \(\dddot{\sigma} = \dddot{\sigma}^T \), soll auch die mitrotierende Zeitableitung symmetrisch sein: \(\dddot{\sigma} = \dddot{\sigma}^T \). Transponiert man Gleichung (2.35) und zieht dies wiederum von Gleichung (2.35) ab, so fordert die Symmetrieerhaltung nach einiger Rechnung (s. Anhang) \(K_G = K_H + a \cdot 1 \), also \(K_G = K_H \) plus einen unbestimmten Kugelanteil. Die Invarianzbedingung hingegen erzwingt (vgl. Anhang): \(K_H = -K_G^T \). Die Forderung nach Invarianz und die Forderung nach der Symmetrieerhaltung lassen somit nur noch antisymmetrische Rotationsgeschwindigkeits-tensoren \(K_G \) und ein einheitliches Direktorensystem für beide Indizes zu. Es folgt deshalb:
\[K_G = K_H = -K_G^T \] (2.37)

Diese beiden Forderungen scheidet daher die obere und die untere Oldroyd-Ableitung sowie die gemischten Oldroyds aus.

Um eine Entscheidung zwischen der verbleibenden Jaumann- und der Green-Naghdi-Ableitung zu treffen, soll im folgenden das Verhalten dieser beiden Ableitungen beim ebenen Scherversuch untersucht werden.

2.2.4 Ebener Scherversuch

Es seien \(\xi^0 \) nach Bild 2.4 die materiellen Basisvektoren des unverformten und \(\xi \),
die des verformten Materialelementes:

\[
\begin{align*}
\xi_1^0 &= e_1, \quad \xi_2^0 = e_2 \\
\dot{\xi}_1 &= e_1, \quad \dot{\xi}_2 = be_1 + e_2
\end{align*}
\]

Damit ergeben sich für die kinematischen Tensoren, Deformationsgradient \(F \), Geschwindigkeitsgradient \(L \), Wirbeltensor \(W \) sowie den Fingerschen Streckungstensor \(B \) mit \(b \) dem Abscherbetrag, d.h. dem Tangens des Verdrehwinkels:

\[
(F_{ij}) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}
\]

\[
\dot{F} = \begin{pmatrix} 0 & \dot{b} \\ 0 & 0 \end{pmatrix} \Rightarrow L = \dot{F} F^{-1} = \begin{pmatrix} 0 & \dot{b} \\ 0 & 0 \end{pmatrix}
\]

und

\[
W = \frac{1}{2} \begin{pmatrix} 0 & \dot{b} \\ -\dot{b} & 0 \end{pmatrix} \neq 0
\]

Es ergibt sich somit:

\[
B = V^2 = FF^T = \begin{pmatrix} 1 + b^2 & b \\ b & 1 \end{pmatrix}
\]

Hieraus errechnet sich die Wurzel mit der Formel nach Stickforth (1987):

\[
\sqrt{B} = \frac{\sqrt{\text{det}B} \cdot 1 + B}{\sqrt{\text{tr}B} + 2\sqrt{\text{det}B}}
\] (2.38)
und liefert:
\[V = \frac{1}{\sqrt{4 + b^2}} \begin{pmatrix} 2 + b^2 & b \\ b & 2 \end{pmatrix} \Rightarrow V^{-1} = \frac{1}{\sqrt{4 + b^2}} \begin{pmatrix} 2 & -b \\ -b & 2 + b^2 \end{pmatrix} \]

Womit sich
\[R = V^{-1} F = \frac{1}{\sqrt{4 + b^2}} \begin{pmatrix} 2 & b \\ -b & 2 \end{pmatrix} \quad \text{und} \quad \dot{R} = \frac{2 \dot{b}}{(4 + b^2)^{3/2}} \begin{pmatrix} -b & 2 \\ -2 & -b \end{pmatrix} \]

ergibt, so daß man letztlich
\[\Omega = \dot{R} R^T = \frac{2 \dot{b}}{4 + b^2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \]

für den Rotationsgeschwindigkeitstensor erhält.

Im zweidimensionalen Fall sind alle antisymmetrischen Tensoren linear abhängig, d.h. mit
\[W = W \dot{b} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \]

sind alle Rotationsgeschwindigkeiten für die Zeitableitung, die eine Aufspaltung der Bewegung in einen Rotations- und einen Deformationsanteil versuchen, erfaßt, wobei
\[\begin{cases} W = \frac{1}{2} & \text{für die Jaumann-Ableitung} \\ W = \frac{1}{4 + b^2} & \text{für die Green-Naghdi-Ableitung} \end{cases} \]

(2.40)
gilt. Für ein hypoelastisches Stoffgesetz mit linear viskosem Ansatz gilt:
\[\dot{\sigma} = h D \]

(2.41)
wobei \(h \) ein Stoffparameter ist, und es ergibt sich für den Gegenspannungstensor die Differentialgleichung
\[\dot{\sigma} = h D + W \sigma - \sigma W \]

(2.42)
mit \(W \) als dem allgemeinen Rotationsgeschwindigkeitstensor aus Gleichung (2.39). In Komponentenschreibweise folgt somit:
\[\dot{\sigma}_{11} = - \dot{\sigma}_{22} = 2 \dot{b} W \sigma_{12}, \quad \dot{\sigma}_{12} = \frac{1}{2} h \dot{b} + \dot{b} W (\sigma_{22} - \sigma_{11}) \]

(2.43)
Benutzt man als unabhängige Variable den Abscherbetrag \(b \) (Variablenttransformation) und differenziert nach dieser Größe, so folgt, wenn man die Ableitungen nach \(b \) mit \(\cdot' \) bezeichnet:
\[\sigma'_{11} = - \sigma'_{22} = 2 W \sigma_{12} \]

(2.44)
und
\[\sigma_{22} - \sigma_{11} = \left[\frac{1}{W} \sigma_{12}' - \frac{1}{2} h \frac{1}{W} \right] \]

(2.45)
Differenziert man Gleichung (2.45) nach \(b \) und setzt \(\sigma'_{11} \) bzw. \(\sigma'_{22} \) aus Gleichung (2.44) ein, so folgt:

\[
\sigma''_{12} - \frac{W'}{W} \sigma'_{12} + 4W'' \sigma_{12} = -\frac{1}{2} h \frac{W''}{W}
\]
(2.46)

Benutzt werden mußte hier \(h \neq h(b) \), so daß die Verfestigungsgeschwindigkeit nur von der Deformationsgeschwindigkeit abhängt. Unabhängig von der Versuchsführung \(b(t) \) ergibt sich Gleichung (2.46) bei Benutzung der Jaumannschen Zeitableitung, also \(W = 1/2 \) und \(W' = 0 \), zu:

\[\sigma''_{12} + \sigma_{12} = 0\]
(2.47)

Diese Gleichung hat die ossillierenden Lösungen

\[\sigma_{12} = C_1 \cos(b) + C_2 \sin(b)\]
(2.48)

Für ein Stoffmodell nach v. Mises mit isotroper und kinematischer Härtung,

\[f = \frac{3}{2} (\sigma^d - \alpha) \cdot (\sigma^d - \alpha) - k^2 = 0\]
(2.49)

und assozierter Fließregel findet \textit{Dafalias} (1983), zu den Anfangsbedingungen \(\alpha^0 \), bei \(b = 0 \), für die Schubspannung zur Jaumannschen Zeitableitung:

\[\sigma_{12} = \frac{k}{\sqrt{3}} + \frac{1}{2} h \sin(b) - \frac{1}{2} (\alpha_{11}^0 - \alpha_{22}^0) \sin(b) + \alpha_{12}^0 \cos(b)\]
(2.50)

\(\sigma^d \) stellt hierbei den Deviator der Cauchyspannung und \(k \) die "Größe" der Fließfläche dar. Die Verfestigung wurde hierbei nach Prager angenommen, so daß sich für den sogennannnten Gegenspannungstensor (back stress) die Gleichung \(\sigma^d = hD^p \) ergibt. Die oben gefundene Lösung oszilliert ebenfalls unabhängig von den Anfangsbedingungen (vgl. Bild 2.5, Kurve (a)).

Der Gleichung für den Gegenspannungstensor liegt der gleiche Sachverhalt wie in Gleichung (2.41) zugrunde, so daß die dort gefundene Lösung verwendet werden kann. Setzt man in Gleichung (2.46) für \(W = 2/(4 + b^2) \) nach Gleichung (2.40a) für die Green-Naghdi-Zeitableitung ein, folgt:

\[\alpha''_{12} + \frac{2b}{4 + b^2} \alpha'_{12} + \frac{16}{(4 + b^2)^2} \alpha_{12} = \frac{1}{2} h + \frac{2b}{4 + b^2}\]
(2.51)

wobei man durch die Substitution \(\psi = \arctan(b/2) \) die Differentialgleichung

\[\frac{d^2 \alpha_{12}}{d\psi^2} + 4 \alpha_{12} = 2h \tan(\psi) (1 + \tan^2(\psi))\]
(2.52)
erhält. Die Lösung erhält man durch Variation der Konstanten der homogenen Lösung
\[\alpha_{12} = C_1 \cos(2\psi) + C_2 \sin(2\psi) \]
und führt nach längerer Rechnung auf (vgl. DAFALIAS 1983):
\[\sigma_{12} = \frac{k}{\sqrt{3}} + \frac{1}{2} h \left[\frac{1}{4 + b^2} \left(b^3 - 4(b^2 - 4) \arctan\left(\frac{b}{2}\right) - 4b \left[1 + 4 \ln\left(\frac{2}{\sqrt{4 + b^2}}\right) \right] \right) \right] - \frac{1}{2} (\alpha_{11}^0 - \alpha_{22}^0) \frac{4b}{4 + b^2} \frac{b^2 - 4}{\beta^2 + 4} \]
(2.53)
Diese Funktion der Schubspannungen über \(b \) ist in Bild 2.5, Kurve (b) dargestellt für \(\alpha_{12}^0 = 0 \). Sie oszilliert im Gegensatz zu Kurve (a) (Jau mann-Ableitung) nicht.
Die Jau mann sche Zeitableitung liefert ossil lierende Lösungen im verformungsge-

\[b = \text{Tangens des Verdrehwinkels} \]
\[\sigma_{12} = \text{Schubspannung} \]

Bild 2.5: Kinematische Verfestigung nach (a) J aumann, (b) Green-Naghdi, (c) isotrope Verfestigung (DAFALIAS, 1983)

Durch ein anderes hyperelastisches Stoffgesetz, wie z.B.
\[\tau = hD + D\sigma + \sigma D \]
(2.54)
gelangt man zu nicht oszillierenden Lösungen. Bei elasto-plastischen Materialien treten im Falle kinematischer Verfestigung mit $\dot{\varepsilon} = h D^p$ Oszillationen im Spannungsverlauf auf, hingegen ergeben sich bei isotroper Verfestigung monoton wachsende Spannungsverläufe über der Abscherung (vgl. Bild 2.5). Bis zu Verformungen von etwa 50% stimmen die Ergebnisse aus beiden Zeitableitungen erstaunlich gut überein.

Die Problematik der oben aufgeworfenen Frage liegt darin, daß sich die Einflüsse des Stoffgesetzes nicht in letzter Konsequenz von denen der objektiven Zeitableitung trennen lassen und man schon sehr gute Stoffgesetze benötigt, um überhaupt Deformationen dieser Größe zutreffend beschreiben zu können.

Trotzdem aber läßt sich das oszillierende Verhalten allein aus der Kinematik der Jaumann-Ableitung begründen. Beim ebenen Scherversuch führt keiner der materiellen Vektoren eine Drehung um einen Winkel von π oder mehr aus. Dagegen ist die Drehgeschwindigkeit \dot{W}, die der Jaumann-Ableitung zugrunde liegt, konstant, führt also nach genügend großen Abscherungen zu beliebig wachsenden Verdrehwinkeln.

WEGENER (1987) kommt nach analytischer Untersuchung zu der Folgerung, daß man nicht oszillierende Zeitableitungen nur dann findet, wenn $W(b)$ stärker als mit $1/b$ gegen 0 konvergiert. Dies legt die Schlußfolgerung nahe, daß die oszillierenden Lösungen tatsächlich von der zu großen Rotationsgeschwindigkeit verursacht werden und es lediglich gelingt, sie durch geeignete Verfestigungsgesetze für die materiellen Bilder der Spannungen (die unter Umständen gegenläufige Drehungen enthalten) zu überdecken.

Um eine Entscheidung für die "richtige" Zeitableitung zu ermöglichen, reichen genau genommen alle diese Betrachtungen nicht aus. Dazu bedarf es eines exakten Vergleichs zwischen Experiment und Rechnung. Durchführbare Experimente bis zu solchen Verformungen, bei denen sich die unterschiedlichen Zeitableitungen bemerkbar machen, erfordern allerdings einen erheblichen Rechenaufwand. Das im Vergleich zum Scherversuch nächst komplizierter Experiment, der Torsionsversuch an dünnwandigen Zylinderproben, versagt bei Metallen bereits sehr früh durch Ausbeulung, so daß der Torsionsversuch an Vollquerschnitten durchzuführen ist.

2.3 Allgemeiner Integrationsalgorithmus bei natürlicher Formulierung

Formuliert man das Stoffgesetz für die aktuelle Konfiguration, so werden, zumindest wenn das Stoffgesetz Evolutionsgleichungen für tensorielle Größen \mathbf{X} enthält, objektive Zeitableitungen erforderlich:

$$
\dot{\mathbf{X}} = f(\sigma, D, V, \ldots)
$$

(2.55)

$$
\dot{\mathbf{ar{X}}} = f(\mathbf{X}, t)
$$

(2.56)

σ soll hierbei eine beliebige Stoffantwort darstellen, wobei $\dot{\mathbf{ar{X}}}$ deren objektive Zeitableitung sei, und G und H sollen die zugehörigen Abbildungen der Direktorensysteme regeln (vgl. Abschnitt 2.2.2). \mathbf{X} soll für alle tensoriellen Zustandsvariablen stehen, die in das Stoffgesetz eingehen. Es ergeben sich somit vier Schritte:

- Materielle Bilder zum Zeitpunkt t (Rücktransformation ins Materialsystem):

$$
\begin{align*}
\dot{\mathbf{ar{X}}}(t) &= G^{-1}(t) \cdot \sigma(t) \cdot (H^{-1}(t))^T \\
\dot{\mathbf{X}}(t) &= G^{-1}(t) \cdot \mathbf{X}(t) \cdot (H^{-1}(t))^T
\end{align*}
$$

(2.57)

- Integration um einen Zeitschritt von t auf $t + \Delta t$:

$$
\dot{\mathbf{\sigma}} = f(\dot{\mathbf{X}}, t)
$$

(2.58)

gemäß irgendeiner geeigneten numerischen Integrationsregel, deren Art für das Schema an dieser Stelle unbedeutend ist.

- Integration der Abbildungstensoren G, H um einen Zeitschritt von t auf $t + \Delta t$ gemäß:

$$
\dot{G} = K_G \cdot G, \quad \dot{H} = K_H \cdot H
$$

(2.59)

nach einer geeigneten numerischen Integrationsregel.

- Räumliche Bilder zum Zeitpunkt $t + \Delta t$:

$$
\sigma(t + \Delta t) = G(t + \Delta t) \cdot \dot{\mathbf{\sigma}}(t + \Delta t) \cdot H^T(t + \Delta t)
$$

(2.60)

Um dem Problem mit der Orthogonalität der integrierten Abbildungstensoren aus dem Wege zu gehen, werden diese für die in dieser Arbeit verwendete Green-Naghdi-Ableitung, in Anlehnung an Hallquist (1986), jeweils durch die polare Zerlegung von F (vgl. Abschnitt 2.3.2) gewonnen. Diese hiermit implizierte Zwangsorthogonalisierung enthält keine Willkür, was die Behandlung des Fehleranteils betrifft. Sie ist ein weiterer Vorteil der Green-Naghdi-Zeitableitung. Der Deformationsgradient wird nicht durch Integration von $F = LF$, sondern durch

$$F_{ij}^t(t) = \frac{\partial x^i(t)}{\partial \xi^j} \quad (2.61)$$

gewonnen. Außerdem wird wie bei Hallquist (1986) konsequent die Mittelpunktsregel benutzt, d.h. die Integration von Gleichung (2.58) erfolgt gemäß:

$$\Delta \vec{\sigma} = \tilde{f} \left(\tilde{X} \left(t + \frac{\Delta t}{2} \right), t + \frac{\Delta t}{2} \right) \quad (2.62)$$

Die Integration für das Zeitintervall zwischen t und $t + \Delta t$ erfolgt somit über eine Stützstelle zum Zeitpunkt $t + \frac{\Delta t}{2}$, die mit Δt multipliziert wird. Dies erfordert $\tilde{X} \left(t + \frac{\Delta t}{2} \right)$ als materielles Bild zum Zeitpunkt $t + \frac{\Delta t}{2}$:

$$\tilde{X} \left(t + \frac{\Delta t}{2} \right) = G^{-1}(t + \frac{\Delta t}{2}) \cdot X(t + \frac{\Delta t}{2}) \cdot (H^{-1}(t + \frac{\Delta t}{2}))^T \quad (2.63)$$

Dieses Schema ist implizit und muß iterativ gelöst werden.

2.3.1 Verwendete Symbolik für die Numerik

Bevor in den folgenden Abschnitten die für die Finite Elemente Formulierung verwendeten Größen erläutert werden, werden an dieser Stelle einige grundlegende Begriffe und Symbole definiert. Um die Vielfalt der vorhandenen Definitionen nicht durch neue Größen zu erweitern, werden, soweit dies möglich ist, die Konventionen von Bathe (1986) übernommen.

Wie bereits in Bild 2.1 verwendet, sind die Koordinaten eines allgemeinen Punktes P zur Zeit $t = 0$: \vec{x}_1, \vec{x}_2, \vec{x}_3, zur Zeit t: \vec{x}_1, \vec{x}_2, \vec{x}_3 und zur Zeit $t + \Delta t$: \vec{x}_1, \vec{x}_2, \vec{x}_3. Der linke obere Index bezieht sich dabei auf die Konfiguration des Körpers, während der rechte untere Index die Koordinatenachse angibt. Die Schreibweise für die Verschiebungen eines Körpers entspricht der Schreibweise
für die Koordinaten. Die Verschiebungen sind zur Zeit t: $^t u_i \ (i = 1, 2, 3)$ und zur Zeit $t + \Delta t$: $^{t+\Delta t} u_i \ (i = 1, 2, 3)$. Es gilt daher:

$$
\begin{align*}
^{t+\Delta t} x_i &= ^0 x_i + ^t u_i \\
^{t+\Delta t} x_i &= ^0 x_i + ^{t+\Delta t} u_i \\
\end{align*}
$$

(2.64)

Die Zuwächse der Verschiebungen von der Zeit t bis zur Zeit $t + \Delta t$ werden durch

$$
\Delta u_i = ^{t+\Delta t} u_i - ^t u_i \quad i = 1, 2, 3
$$

(2.65)

beschrieben. Während der Bewegung eines Körpers ändern sich sein Volumen, seine Oberfläche und seine Massendichte kontinuierlich. Diese Größen werden wie oben zur Zeit $0, t$ und $t + \Delta t$ durch $^0 X$, $^t X$ und $^{t+\Delta t} X$, wobei hier X z.B. eine dieser Größen darstellen soll, gekennzeichnet. Kräfte, Spannungen und Verzerrungen müssen zu einem Zeitpunkt auch auf einen bestimmten Zustand bezogen werden. In Analogie zu der für die Koordinaten und Verschiebungen benutzten Schreibweise zeigt ein linker oberer Index an, in welchem Zustand die Größe auftritt. Ein linker unterer Index kennzeichnet den Zustand, bezüglich dessen die Größe gemessen ist. Es gilt jedoch die Ausnahme: Wenn die betrachtete Größe in derselben Konfiguration auftritt, in der sie gemessen wird, kann der linke untere Index auch weggelassen werden. So gilt z.B. für die Cauchyschen Spannungen, die a priori auf der aktuellen Konfiguration definiert sind:

$$
\sigma_{ij} = ^{t+\Delta t} \sigma_{ij} \equiv ^{t+\Delta t} \sigma_{ij}
$$

(2.66)

Für den Cauchyschen Spannungstensor wird die Variable σ verwendet. Ansonsten werden neue Symbole immer dann definiert, wenn sie erstmals auftreten.

2.3.2 Stoffgesetzintegration der Green-Naghdi-Ableitung

Entsprechend Abschnitt 2.3 erfolgt die Stoffgesetzintegration mit der sogenannten natürlichen Formulierung. Speziell für die in dieser Arbeit zu verwendende Green-Naghdi-Zeitableitung erhält man, bei Benutzung der Mittelpunkttsregel, das bei HALLQUIST (1986) verwendete implizite Rechenschema:

1. Erzeugung der materiellen Bilder zum Zeitpunkt t, d.h. Abbildung auf ein materiefestes System, mit $G = H = R$ (vgl. Abschnitt 2.2.2 bzw. 2.2.3):

$$
^t \tilde{\sigma} = ^t R^T \cdot ^t \sigma \cdot ^t R
$$

(2.67)

2. Integration der Abbildungstensoren um einen Zeitschritt von t auf $t + \Delta t$ mit Hilfe der Mittelpunkttsregel: Die Abbildungstensoren werden durch eine polare Zerlegung des Deformationsgradienten F (Gleichung (2.27)) gewonnen. Da sich der Strecktensor U über das Cayley-Hamiltonsche Theorem geschlossen angeben läßt (vgl. MARSDEN/HUGHES 1983 oder STICKFORTH
1987), kann der Abbildungstensor \(\mathbf{R} \) aus den nachfolgenden Gleichungen ermittelt werden. Um die Mittelpunktssregel anwenden zu können, muß diese Zerlegung dreimal durchgeführt werden:

\[
^{t'} \mathbf{F} = \frac{\partial \mathbf{t'} \mathbf{x}}{\partial \mathbf{0} \mathbf{x}} = ^{t'} \mathbf{R} \cdot ^{t'} \mathbf{U} \tag{2.68}
\]

\[
^{t + \Delta t} \mathbf{F} = \frac{\partial \mathbf{t + \Delta t} \mathbf{x}}{\partial \mathbf{0} \mathbf{x}} = ^{t + \Delta t} \mathbf{R} \cdot ^{t + \Delta t} \mathbf{U} \tag{2.69}
\]

\[
^{t + \frac{1}{2} \Delta t} \mathbf{F} = \frac{\partial \mathbf{t + \frac{1}{2} \Delta t} \mathbf{x}}{\partial \mathbf{0} \mathbf{x}} = \frac{1}{2} (^{t'} \mathbf{F} + ^{t + \Delta t} \mathbf{F}) = ^{t + \frac{1}{2} \Delta t} \mathbf{R} \cdot ^{t + \frac{1}{2} \Delta t} \mathbf{U} \tag{2.70}
\]

Hierbei stellt

\[
^{t + \frac{1}{2} \Delta t} \mathbf{x} = \frac{1}{2} (^{t} \mathbf{x} + ^{t + \Delta t} \mathbf{x}) \tag{2.71}
\]

die Geometrie zum Zeitpunkt \(t + \frac{1}{2} \Delta t \) dar.

3. Berechnung des materiellen Dehnungssinkrementes zum Zeitpunkt \(t + \frac{1}{2} \Delta t \):

\[
^{t + \frac{1}{2} \Delta t} \Delta \tilde{\varepsilon} = ^{t + \frac{1}{2} \Delta t} \mathbf{R}^T \cdot ^{t + \frac{1}{2} \Delta t} \Delta \varepsilon \cdot ^{t + \frac{1}{2} \Delta t} \mathbf{R} \tag{2.72}
\]

4. Integration um einen Zeitschritt von \(t \) auf \(t + \Delta t \) mit Hilfe der Mittelpunktssregel, die unbeschränkt stabil ist (vgl. Gleichung (2.62)):

\[
^{t + \frac{1}{2} \Delta t} \Delta \tilde{\varepsilon} = ^{t + \frac{1}{2} \Delta t} \tilde{C}_{\text{ep}} \cdot ^{t + \frac{1}{2} \Delta t} \Delta \tilde{\varepsilon} \tag{2.73}
\]

Hierbei stellt \(^{t + \frac{1}{2} \Delta t} \tilde{C}_{\text{ep}} \) den konstitutiven Tensor (materielles Bild) dar. Für den Cauchyspannungstensor ergibt sich als materielles Bild zum Zeitpunkt \(t + \Delta t \):

\[
^{t + \Delta t} \tilde{\sigma} = \tau \tilde{\sigma} + ^{t + \frac{1}{2} \Delta t} \Delta \tilde{\varepsilon} \tag{2.74}
\]

Aufgrund des neuen Zustandes \(^{t + \Delta t} \tilde{\sigma} \) ergibt sich der konstitutive Tensor \(^{t + \Delta t} \tilde{C}_{\text{ep}} \) zum Zeitpunkt \(t + \Delta t \).

5. Das räumliche Bild zum Zeitpunkt \(t + \Delta t \) ergibt sich dann:

\[
^{t + \Delta t} \sigma = ^{t + \Delta t} \mathbf{R} \cdot ^{t + \Delta t} \tilde{\sigma} \cdot ^{t + \Delta t} \mathbf{R}^T \tag{2.75}
\]

Der konstitutive Tensor \(^{t + \Delta t} C_{\text{ep}} \) auf dem räumlichen Bild wird durch eine 4-stufige Tensortransformation des materiellen Stofftensors erzeugt und ergibt dann als Stoffmatrix, zusammen mit der sogenannten Operatormatrix \(\mathbf{B} \), den symmetrischen Hauptteil der Steifigkeitsmatrix.

Das \(^{t + \Delta t} \sigma \) auf der aktuellen Konfiguration geht in die schwache Formulierung für die Gleichgewichtsbedingungen ein. Der Rotationsgeschwindigkeitstensor \(\mathbf{\Omega} \) (Gleichung (2.31)) muß in dieser Formulierung nicht explizit errechnet werden, da die materiellen Bilder in der unrotierten Konfiguration angeschrieben werden. Die verwendete Green-Naghdi-Ableitung ist in dem Abbildungstensor \(\mathbf{R} \), wie im Abschnitt Numerik gesehen wird, enthalten.
2.3.3 Verzerrungen

Die Integration des Verzerrungsgeschwindigkeitstensors (symmetrischer Teil des Geschwindigkeitsgradienten, d.h. es gilt \(\dot{\varepsilon} = L^t = D \))

\[
^{t+\frac{1}{2}\Delta t} \varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial t^{t+\frac{1}{2}\Delta t} \dot{\bar{u}}_i} + \frac{\partial}{\partial t^{t+\frac{1}{2}\Delta t} \dot{\bar{u}}_j} \right),
\]

(2.76)

mit Hilfe der Mittelpunktsregel führt auf den sogenannten "centered strain tensor" (vgl. HALLQUIST 1986):

\[
^{t+\frac{1}{2}\Delta t} \Delta \varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial \Delta u_i}{\partial t^{t+\frac{1}{2}\Delta t} x_j} + \frac{\partial \Delta u_j}{\partial t^{t+\frac{1}{2}\Delta t} x_i} \right).
\]

(2.77)

Die Konfiguration zum Zeitpunkt \(t + \frac{1}{2}\Delta t \) ("mid-step geometry") errechnet sich nach Gleichung (2.71). Für die Integration des Stoffgesetzes wird der centered strain tensor (vgl. Schritt 3 Abschnitt 2.3.2) auf das materielle Bild (unrotierte Konfiguration) abgebildet. Der centered strain tensor ist objektiv. Er hat zudem den großen Vorteil, daß er eine sehr gute Approximation für das logarithmische Dehnungsmaß ist – für \(\Delta t \to 0 \) führt die Akkumulation dieser Tensoren zum logarithmischen Dehnungsmaß (den sogenannten "wahren Dehnungen").
3 Ein elasto-plastisches Stoffgesetz

Es handelt sich hierbei um ein Zweiflächenmodell, das durch Verschiebung der inneren Fließfläche in der Lage ist, auch kinematische Verfestigung zu beschreiben. Bei dem auf der Cam-Clay-Theorie basierenden Modell wurde versucht, möglichst viele Parameter an die klassische Theorie anzulehnen. Somit kann auf die bereits gewonnen Erfahrungen, speziell bei der Parameterbestimmung, zurückgegriffen werden. Es wurde auch versucht, Parameter zu verwenden, denen eine in der Bodenmechanik vertraute Bedeutung zugeordnet werden kann und deren Bestimmung aus konventionellen bodenmechanischen Versuchen möglich ist. Aus der Verwendung der Mohr-Coulombschen Fließfläche mit Kappe resultiert eine zu-
sammengesetzte Fließfläche, die zwar den Nachteil einer Unstetigkeitsstelle – die allerdings nur sehr schwach ausgeprägt ist – aufweist, aber auch den Vorteil der Beschreibung mittels “konventioneller” Parameter innehat. Bevor die Entwicklung dieses Modells im Abschnitt 3.2 ausführlich beschrieben wird, soll kurz die Terminologie des ursprünglichen Cam-Clay-Modells beschrieben werden.

3.1 Die Terminologie des Cam-Clay-Modells

Anzumerken ist an dieser Stelle vielleicht noch, daß Roscoe et al. von der Plastizitätstheorie die Normalität, aber nicht die Konsistenzbedingung übernommen haben.

Die triaxialen Kompressionsversuche zur Entwicklung des Cam-Clay-Modells wurden in einem p, q, e-Raum aufgetragen. Hierbei stellt p die effektive mittlere Druckspannung, q eine deviatorische Komponente (entsprechend Abschnitt 3.2) und e die Porenzahl (vgl. Abschnitt 3.4) dar. Der Zusammenhang zwischen diesen Größen ist in den Bildern 3.1 und 3.2 dargestellt. Folgende Begriffe werden von ROSCOE/BURLAND (1968) bzw. SCHOFIELD/WROTH (1968) zur Beschreibung des Materialverhaltens verwendet:

Die Critical State Line (CSL) legt im p, q, e-Diagramm Punkte fest, die sich bei weiterer Scherung nicht ändern (ideale Grenzzustände); ihre Projektion auf die p, q-Ebene ist eine Gerade.

Schwellkurve (hydrostatische Entlastungskurve): Die elastische Wand ist im $\ln(-p), q, e$-Diagramm eine Fläche, normal zur $\ln(-p), e$-Ebene, durch die Schwellkurve (vgl. Bild 3.2 bzw. 3.7). p stellt hierbei die mittlere Spannung dar, wobei Druckspannungen negativ sind.

Bei den Cam-Clay-Modellen werden zwei Bereiche (vgl. Bild 3.3) unterschieden:

- *subcritical region* (unterkritischer Bereich); der elastische Bereich wird durch
die sogenannte unterkritische Fließkurve vom unterkritischen Bereich abgetrennt. Plastisches Fließen ist in diesem Bereich mit einer Volumenverkleinerung verbunden, wodurch bei einem wassergesättigten Boden Wasser austritt.

- supercritical region (überkritischer Bereich); dieser Bereich wird durch die überkritische Fließkurve vom elastischen Bereich abgetrennt. Plastisches Fließen führt im überkritischen Bereich zu einer Volumenvergrößerung (Auflockerung). Infolge der Volumenvergrößerung kann der Boden mehr Wasser aufnehmen.

Im allgemeinen ist für normalkonsolidierte Böden die unterkritische Fließkurve maßgebend und für überkonsolidierte die überkritische.
3.2 Elasto-plastisches Zweiflächenmodell

Die bisher entwickelten Zweiflächenmodelle lassen sich mit Hilfe einer stetig differenzierbaren Funktion formulieren, d.h. die Fließflächen sind stetig und lassen sich mit einer Funktion für alle Spannungsbereiche darstellen (vgl. Topolnicki 1987, König 1985, Mróz/Pietruszczak 1983). Von der Bedingung der stetigen Differenzierbarkeit wird in dieser Arbeit abgegangen, jedoch soll die zusammengesetzte Fließfläche stetig sein und innerhalb der Teilbereiche auch stetig differenzierbar.

Für die Beschreibung des Stoffmodells werden folgende Bezeichnungen zur Darstellung eines Spannungstensors X (Zugspannung sind positiv, was auch für p gelten soll) verwendet:

hydrostatische Komponente: $X_m = p = \frac{1}{3}X_{ii}$

deviatorische Komponente: $X^* = s = \sqrt{(X_{ij} - \delta_{ij}X_m)(X_{ij} - \delta_{ij}X_m)}$

In der p,q-Ebene gilt: $q = \sqrt{\frac{2}{3}}X^*$

Es gilt die Einsteinsche Summationskonvention. Das Stoffgesetz wird für das Korngerüst formuliert. In der Bodenmechanik ist es üblich, die effektiven Spannungen als gestrichene Größen zu kennzeichnen (z.B. p' für die mittlere effektive Hauptspannung). Im folgenden wird zwischen totalen und effektiven Spannungen nicht unterschieden ($u = 0$). Es gilt daher z.B. für die hydrostatische Spannung p:

$p = p'$

Ein Punkt über einer Größe bedeutet, daß es sich um eine materielle Zeitableitung handelt. Das in diesem Abschnitt entwickelte Stoffgesetz wird auf dem sogenannten materiellen Bild entwickelt und anschließend, gemäß dem in Abschnitt 2.3.2 (Stoffgesetzintegration der Green-Nagdi-Zeitableitung) beschriebenen Algorithmus, auf das räumliche Bild transformiert. Um entsprechend Abschnitt 2.3.2 die Mittelpunktsregel anwenden zu können, müssen sämtliche Zustandsvariablen auf die Konfiguration zum Zeitpunkt $t + \Delta t/2$ bezogen sein. Sofern im folgenden keine linken Indizes angegeben werden (vgl. Abschnitt 2.3.1), sind alle Größen auf dieser Konfiguration als materielles Bild definiert. Definitionsgemäß müssen deshalb alle Zustandsgrößen mit einer ~ versehen werden. Aus Gründen der Einfachheit wird in diesem Abschnitt (Kapitel 3) auf die Kennzeichnung des materiellen Bildes verzichtet. Es gilt also z.B.:

$\Lambda := t^{\Delta t} \tilde{\Lambda}$

Die Bezeichnung dX_{ij} bedeutet, daß es sich um einen differentiellen Zuwachs einer Größe X_{ij}, z.B. der Spannungen, handelt.
Im folgenden wird das auf der Mrózschen Basis weiterentwickelte Zweiflächenmodell sowie die Aufbereitung für die Finite Elemente-Formulierung dargestellt. Die äußere Fließfläche (Grenzfließfläche oder Konsolidationsfläche) setzt sich aus drei Teilflächen zusammen: der Kappe, dem überkritischen Bereich und dem Zugbereich. Strenggenommen trifft die Bezeichnung Konsolidationsfläche nur auf die Cam-Clay-Kappe zu, es soll in dieser Arbeit aber trotzdem die gesamte äußere Fließfläche darunter verstanden werden. Im Inneren der äußeren Fließfläche existiert eine geometrisch ähnliche zweite, kleinere Fließfläche, die den elastischen Bereich abgrenzt und die innerhalb der großen Fläche aufgrund einer kinematischen Verschiebungsregel umherwandern kann. Dies bedeutet, daß sich der elastische Nukleus innerhalb der großen Fließfläche oder auch Erstbelastungsfläche umherbewegt. Bewegt sich der Spannungspunkt auf die große Fließfläche zu, so wird die innere Fläche bis zum Berührungspunkt mit der Erstbelastungsfläche mitgeführt. Fortan, solange die Erstbelastungsfläche aktiv ist, weitet sich diese isotrop auf oder schrumpft, während die Berührung der inneren Fläche und auch das Proportionalitätsverhältnis (vgl. Bild 3.9) erhalten bleiben, so daß die innere Fläche bei Erstbelastung einer gekoppelt isotrop-kinematischen Verfestigung unterworfen ist. Dieses Zweiflächenmodell ist in Bild 3.4 dargestellt. Die erforderlichen Gleichungen werden in den folgenden Abschnitten ausführlich erläutert.
3.2.1 Fließbedingung

Die Gleichungen für die Grenzfließfläche werden in dieser Arbeit wie folgt definiert:

\[
F_1 := (\sigma_m - \alpha_m)^2 + \\
\frac{3}{2} [(\sigma^* (1 - c_0))/(A M_K c_0)]^2 - \\
(1 - c_0)^2 p_c^2 = 0 \\
(\sigma_m \leq \alpha_m \leq 0)
\]

\[
F_2 := \sigma_m - \sqrt{\frac{3}{2}} [\sigma^*/(A \tan \varphi^*)] + \\
[\frac{(c_0 p_c)}{\tan \varphi^*}] \cdot (M_K - \tan \varphi^*) = 0 \quad (3.1)
\]

\[
(\alpha_m < \sigma_m \leq 0)
\]

\[
F_3 := (\sigma_m - \zeta_m)^2 + \\
\frac{3}{2} [\sigma^* / A]^2 c_t \cdot (r_E / r_K) \cdot [2 - c_t \cdot (r_E / r_K)] - \\
[c_0 p_c (M_K - \tan \varphi^*)]^2 = 0 \\
(\sigma_m > 0)
\]

In Bild 3.5 ist die sich aus einem Schnitt durch die Fließfläche (vgl. Bild 3.4), der die Raumdiagonale (hydrostatische Achse) enthält, ergebende Fließkurve für \(c_0 = 0.5\) und \(M_K = M(A = 1.0) = 1.0\) dargestellt. Ebenso ist aus Bild 3.5 die Form des plastischen Potentials ersichtlich, das im folgenden Abschnitt Fließregel erläutert wird. \(\sigma\) stellt hierbei den in die \(p, q\)-Ebene projizierten aktuellen Spannungstensor dar.

Der Gegenspannungstensor ("Ortstensor") \(\alpha\) bzw. \(\alpha_m\) gibt die Translation bzw. den Ort des Grenzfließflächenzentrums (Definition) an. Die Tensoren \(\beta\) und \(\zeta\) folgen aus der Bedingung, daß der Zugbereich durch eine elliptische Kappe abgegrenzt wird, die tangential an die Fließfläche bzw. Kurve anschließen soll (s. Bild 3.5). Die Größe der Ellipsenhauptachse (in hydrostatischer Richtung) der "Zugkappe" wird wie folgt festgelegt:

\[
|\beta_m| + |\zeta_m| = c_K = c_0 p_c (M_K - \tan \varphi^*) \quad (3.2)
\]

Damit ergibt sich für die Gegenspannungstensoren:

\[
\alpha_{ij} = \delta_{ij} c_0 p_c \quad (3.3)
\]
Bild 3.5: Grenzfließfläche F und plastisches Potential P (hydrostatische Ebene)

\[\begin{align*}
\beta_{ij} &= \delta_{ij}c_t \frac{r_E}{r_K} c_0 p_c (M_K - \tan \varphi^*) \\
\zeta_{ij} &= -\delta_{ij}c_0 p_c (M_K - \tan \varphi^*) (1 - c_t \frac{r_E}{r_K})
\end{align*} \] (3.4)

(3.5)

Dabei ist p_c die Konsolidationsspannung bei isotroper Kompression (vgl. Bild 3.5). φ^* stellt die Neigung der in die p,q-Ebene transformierten Grenzgerade nach Mohr-Coulomb im Kompressionsfall ($A = 1.0$) dar. Die Parameter c_0, M_K und φ^* sind Stoffkonstanten (s. Abschnitt 3.4). c_0 legt den Kappenpunkt auf der Critical State Line fest und M_K ist die Neigung der Critical State Line in der p,q-Ebene (Kompressionsfall). Der Parameter $A = A(\theta)$ enthält die räumliche Verallgemeinerung der Fließfläche. Er wird wie folgt festgelegt:

\[A = \frac{r}{r_K} = A(\theta) \] (3.6)

Die Bedeutungen von θ, r und r_K ergeben sich aus der Polardarstellung der Grenzfließfläche in der Deviatorebene (Zylinderkoordinatensystem), wobei die Achse die hydrostatische Achse ist. $\sqrt{3}\sigma_m$ gibt die Koordinate des Spannungspunktes der Fließfläche in Richtung der Achse an, $r = \sigma^*$ ist der Polarradius und θ der Polarwinkel. Der Parameter A stellt das Verhältnis vom Radius der Fließfläche bei beliebigem Winkel θ zum Radius r_K bei $\theta = 60^\circ$ (Kompression) und somit die Form der Fließfläche in der deviatorischen Ebene (s. Bild 3.6 bzw. Abschnitt 3.2.4) dar. In Gleichung (3.1) muß für den Zugbereich der Faktor $c_t(r_E/r_K)$ bekannt sein. Analog zu r_K für den Kompressionsfall stellt r_E den Radius im Extensionsfall (s. Abschnitt 3.2.4) dar. Beide Radien müssen aus Messungen bestimmt werden.
Bild 3.6: Zweiflächenmodell in der Deviatorebene

werden und sind deshalb in den Bereich der Materialparameter (vgl. Abschnitt 3.4) einzuordnen. \(c_t\) muß dann so bestimmt werden, daß sich der elliptische Zugbereich bei \(\sigma_m = 0\) tangential anschließt. Die Gleichung (Tangentenbedingung), aus der \(c_t\) bestimmt werden muß, lautet daher:

\[
\tan \varphi^* = \frac{-[1 - c_t \cdot (r_E/r_K)]}{c_t \cdot (r_E/r_K)[2 - c_t \cdot (r_E/r_K)]}
\] \(3.7\)

\[
K = -\frac{1 + e_0}{\kappa} \sigma_m
\] \(3.8\)

Bei einer Konsolidationsspannung \(p_c\) und der Ausgangsporezahl \(e_0 = e_c\) ergibt sich der Tangentenmodul mit Gleichung (3.8) zu:
hydrostatische Erstverdichtung (Kompressionskurve)
\[e = e_1 - \lambda \ln(\sigma_m/\sigma_{m,1}) \]

Entlastung (Schwellkurve)
\[e = e_1 - \lambda \ln(\sigma_{m,2}/\sigma_{m,1}) - \kappa \ln(\sigma_m/\sigma_{m,2}) \]

\[E = \begin{cases}
3(1 - 2\nu) K = -3(1 + e_0)(1 - 2\nu) \left[\sigma_m/\kappa \right] & (\sigma_m \leq 0) \\
0 & (\sigma_m > 0)
\end{cases} \tag{3.9} \]

Hierbei stellt \(\nu \) die Querkontraktionszahl dar. Im Bereich von Zugspannungen gilt für den Tangentenmodul: \(E := 0 \). Bei einer hydrostatischen Erstverdichtung soll sich – unabhängig von \(q \) – eine Gesamtvolumenverzerrung

\[d\varepsilon_v = -\frac{\lambda}{1 + e_0} \left(\frac{d\sigma_m}{\sigma_m} \right) \tag{3.10} \]

einstellen. Nach Abzug des elastischen Anteils ergibt sich der plastische Anteil zu:

\[d\varepsilon_p = -\frac{\lambda - \kappa}{(1 + e_0)} \left(\frac{d\sigma_m}{\sigma_m} \right) \tag{3.11} \]

Da die Grenzfließfläche durch ihren Schnittpunkt mit der hydrostatischen Spannungsachse und die Stoffparameter eindeutig bestimmt ist, stellt der Achsenabschnitt \(p_c \) ein Maß für die plastischen Volumendehnungen dar. In der Fließbedingung kann deshalb die plastische Volumendehnung durch die Spannungsgröße \(p_c \)
Bild 3.8: Äußere \((F)\) und innere \((f)\) Fließfläche

ausgedrückt werden. Es folgt also:

\[
F(\sigma, e^p) = F(\sigma, p_c)
\] \hspace{1cm} (3.12)

der Annahme ausgegangen wird, daß die geometrische Ähnlichkeit erhalten bleibt. Die "Größe" der inneren Fließfläche wird durch einen Proportionalitätsfaktor R festgelegt. Wenn l_i der Betrag der Raumdiagonalenabschnitte, den die Erstbelastungsfläche vom Punkt p_i bis zum Punkt p_e einschließt, und l_i der analoge Wert für die innere Fläche (vgl. Bild 3.9) ist, wird der Parameter R wie folgt definiert:

$$R = \frac{l_i}{l_i} \quad (R \leq 1)$$ \hspace{1cm} (3.13)

R soll eine Materialkonstante sein. Mit R gilt analog zu Gleichung (3.1) für die innere Fläche:

$$f_1 := (\bar{\sigma}_m - \bar{\alpha}_m)^2 + $$

$$\frac{3}{2} \left[(\bar{\sigma}^* (1 - c_0))/(AM_K c_0) \right]^2 -$$

$$[(1 - c_0) p_e R]^2 = 0 \quad \quad (\bar{\sigma}_m \leq \bar{\alpha}_m \leq 0)$$

$$f_2 := \bar{\sigma}_m - \sqrt{\frac{3}{2}} [\bar{\sigma}^*/(A \tan \varphi^*)] +$$

$$[(c_0 p_e R) / \tan \varphi^*] \cdot (M_K - \tan \varphi^*) = 0 \quad \quad (\bar{\sigma}_m < \bar{\sigma}_m \leq 0)$$

$$f_3 := (\bar{\sigma}_m - \bar{\zeta}_m)^2 +$$

$$\frac{3}{2} [\bar{\sigma}^*/A]^2 c_t \cdot (r_E/r_K) \cdot [2 - c_t \cdot (r_E/r_K)] -$$

$$[c_0 p_e (M_K - \tan \varphi^*) R]^2 = 0 \quad \quad (\bar{\sigma}_m > 0)$$

$\bar{\sigma}, \bar{\alpha}, \bar{\beta}$ und $\bar{\zeta}$ sind die Spannungsgrößen (vgl. Bild 3.8 und Bild 3.5), die auf das lokale Koordinatensystem zur Beschreibung der inneren Fließfläche bezogen sind. Sein Ursprung liegt um den Gegenspannungstensor η von $p = 0, q = 0$ verschoben. Für die Tensoren $\bar{\sigma}, \bar{\alpha}, \bar{\beta}$ und $\bar{\zeta}$ gilt aufgrund der Ähnlichkeitsbedingung:

$$\bar{\sigma} = R \sigma, \quad \bar{\alpha} = R \alpha, \quad \bar{\beta} = R \beta, \quad \bar{\zeta} = R \zeta \quad \quad (3.15)$$
3.2.2 Fließregel

Für die Formulierung der Fließregel $d\varepsilon_p = d\varepsilon_p(\sigma)$ wird ein plastisches Potential wie folgt angenommen:

\[
\begin{align*}
\begin{cases}
p_1 := f(\sigma, \bar{\sigma}) &= f_1 \\
p_2 := \bar{\sigma} - \sqrt{\frac{1}{2}} \left[\frac{\sigma^*}{(A \tan \psi^*)} \right] + \\
g(\sigma, \bar{\sigma}) := &\left(\frac{\alpha_0 p_c R}{\tan \psi^*} \right) \left(M_X - \tan \psi^* \right) = 0 \neq f_2 \\
p_3 := f(\sigma, \bar{\sigma}) &= f_3
\end{cases}
\end{align*}
\]

(3.16)

p_2 unterscheidet sich von f_2 durch den anderen Winkel ψ^*, eine später noch zu erläuternde Stoffkonstante. Mit $p_1 = f_1$ und $p_3 = f_3$ folgt eine assoziierte Fließregel für die Bereiche 1 und 3 und eine nicht assoziierte Fließregel ($p_2 \neq f_2$).
für den Bereich 2. Mit dem Normaleneinheitsvektor \(\mathbf{n_s} \) der Fließpotentialfläche im Spannungsbereich, und einem die Größe der plastischen Dehnungen bestimmenden Proportionalitätsfaktor \(d\Lambda \) lautet die Fließregel:

\[
d\varepsilon^p = d\Lambda \mathbf{n_s}
\]

(3.17)

Die Unstetigkeitsstelle von \(\mathbf{n_s} \) an der Übergangsstelle zur "Cam-Clay-Kappe" läßt theoretisch an dieser Stelle einen ganzen Flächen von plastischen Dehnungsrichtungen zu, wenn der Spannungspunkt genau auf der Knickstelle liegt. Trotzdem soll \(\mathbf{n_s} \) an der Knickstelle eindeutig als Normale an den benachbarten Punkt auf dem sich anschließenden elliptischen Bereich festgelegt werden. Dieser Sprung kann theoretisch bei einem entsprechenden Randwertproblem zu Konvergenzschwierigkeiten führen, wobei anzumerken ist, daß sich ein "echter Knick" von einer stark ausgeprägten Ausrundung numerisch nicht unterscheidet. Da bei normalen Randwertaufgaben, die mit der Methode der finiten Elemente gelöst werden, sich nur wenige Spannungspunkte direkt auf den Knick zu bewegen, wird das Konvergenzproblem durch einen Verschmierungseffekt wesentlich entschärft. Zudem sind die heutigen Iterationstechniken sehr leistungsfähig, so daß in der Regel Konvergenz erreicht werden kann.

Als Normalenvektoren der Fließfläche bzw. des plastischen Potentials ergeben sich damit:

\[
\mathbf{n}^F = \frac{\frac{\partial F(\sigma)}{\partial \sigma}}{\left| \frac{\partial F(\sigma)}{\partial \sigma} \right|} = \mathbf{n}^f
\]

(3.18)

\[
\mathbf{n}^s = \frac{\frac{\partial g(\sigma)}{\partial \sigma}}{\left| \frac{\partial g(\sigma)}{\partial \sigma} \right|}
\]

(3.19)

Da diese Normalenvektoren normiert sind, kann die Bestimmung der jeweiligen Richtung im Ähnlichkeitspunkt, d.h. dem Spannungspunkt, für den \(\mathbf{n}^f = \mathbf{n}^F \) (vgl. Bild 3.8) gilt, sowohl an der Grenz- als auch an der inneren Fließfläche durchgeführt werden. In der nachfolgenden Formulierung des Verfestigungsge setzes wird für das Potential nur der Einheitsnormalenvektor \(\mathbf{n}^s \) benötigt, so daß eine Potentialdefinition \(G \) (analog zu \(g \)) für die Grenzfließfläche nicht erforderlich ist. Aus Gründen der Anschaulichkeit ist in Bild 3.5 aber trotzdem das zu \(p_2 \) analoge plastische Potential \(P_2 \) (Ähnlichkeitsbedingung) eingezeichnet.

Wenn der Spannungspunkt die innere Fläche \(f = 0 \) von innen erreicht, setzt plastisches Fließen gemäß Gleichung (3.17) ein. Der plastische Volumendehnungsanteil ergibt sich daraus zu:

\[
d\varepsilon^p = 3 \varepsilon^p_m = d\Lambda \ 3n^p_m
\]

(3.20)

Die Bestimmung des Schnittpunktes mit der Fließfläche erfolgt geometrisch, d.h. es muß zuerst überprüft werden, in welchem Bereich (1, 2 oder 3) der Spannungspunkt liegt. Anschließend wird der Schnittpunkt mit der im entsprechenden
Bereich gültigen Gleichung für die Fließfläche bestimmt (vgl. Abschnitt 4.1.2). Die Einheitnormalenvektoren n^f und n^g ergeben sich dann als Ableitungen (s. Gleichungen (3.18) und (3.19)) in diesem Fließflächen- bzw. Potentialpunkt. Das Erreichen der Grenzfließfläche führt zu einer im folgenden Abschnitt dargelegten Änderung des Verfestigungsmoduls und damit in Verbindung mit der Konsistenzbedingung zur Veränderung des plastischen Dehnungsanteiles.

3.2.3 Ver- bzw. Entfestigungsgesetze

Wenn der Spannungspunkt auf einer der beiden Fließflächen liegt, tritt plastisches Fließen und damit verbunden Verfestigung ein. Für beide Fließflächen sind Verfestigungsregeln aufzustellen, wobei wegen Gleichung (3.13) die Größe der inneren Fließfläche bereits durch Angabe der Vergrößerung der Grenzfließfläche festgelegt wird. Letzteres wird durch die Änderung dp_e des Achsenabchnittes p_e in Abhängigkeit von $d\varepsilon_\nu$ beschrieben. Aus den Gleichungen (3.11) und (3.20) folgt:

$$dp_e = -p_e \frac{(1 + \varepsilon_0)}{(\lambda - \kappa)} d\varepsilon_\nu = -p_e \frac{(1 + \varepsilon_0)}{(\lambda - \kappa)} \Delta 3n_m^g$$

(3.21)

Mit p_e als Verfestigungsparameter (s. Gleichung (3.12)) lautet die Steigung h_b der $\sigma_m-\varepsilon_\nu^g$-Kurve nach ZIENKIEWICZ 1977 (vgl. auch Abschnitt 3.3):

$$h_b = \frac{\partial F}{\partial p_e} \frac{1}{\left| \frac{\partial F}{\partial \sigma} \right|} d\Lambda$$

(3.22)

Nach Einsetzen von Gleichung (3.21) in Gleichung (3.22) erhält man die volumetrische Ver- bzw. Entfestigungsbeziehung:

$$h_b = \frac{\partial F}{\partial p_c} \frac{(1 + \varepsilon_0) p_e 3n_m^g}{\left| \frac{\partial F}{\partial \sigma} \right|}$$

(3.23)

Diese Ver- bzw. Entfestigungsbeziehung soll auch im überkritischen und im Zugbereich gelten. Liegt der Spannungspunkt im Bereich 1, der Cam-Clay-Kappe, so ergibt sich für h_b ein positiver Wert, und es tritt Verfestigung ein. Erreicht der Spannungspunkt die Fließfläche aber im Bereich 2 oder 3, so wird h_b negativ, was Entfestigung (Schrumpfen der Fließflächen) bedeutet.

Bei aktiver äußerer Grenzfließfläche wird der Verfestigungsmodul $h = h_b$, der später in die Gleichung für die elastoplastische Stoffmatrix (Gleichung (3.48)) eingeht, allein nach dieser Beziehung bestimmt. Liegt hingegen der Spannungspunkt unterhalb der äußeren Grenzfließfläche, so bestimmt die Verfestigungsbeziehung für die innere Fläche, die im folgenden erläutert wird, ausschließlich das Verfestigungsverhalten, d.h. es gilt: $h = h_i$ (i steht für die innere Fläche).

Der bereits durch die äußere Grenzfließfläche bedingten Größenänderung der inneren Fließfläche wird eine kinematische Verfestigung, d.h. eine Verschiebung
des Fließflächenzentrums innerhalb der Grenzfließfläche überlagert. Diese Verfestigungsrichtung wird wie folgt durch die relative Lage der inneren in der äußeren Fließfläche bestimmt. In Bild 3.8 sind die äußere und die innere Fließfläche in der p, q-Ebene dargestellt. Der zu einem Punkt R_i der inneren Fließfläche adjungierte Punkt R_b ist der Punkt der Grenzfließfläche, an dem im Spannungsraum die Normale auf der Grenzfließfläche zu derjenigen auf der inneren Fließfläche im Punkt R_i (s. Bild 3.8) parallel ist. Wenn der Spannungspunkt die innere Fließfläche erreicht – beim Übergang auf Inkremente kann der Spannungspunkt die Fließfläche durchstoßen, so daß eine Korrektur erforderlich wird –, definiert man einen zugehörigen Fließflächenpunkt R_i als den Punkt, in dem die Gerade $\vec{r} = \vec{a} + \xi_i (\vec{\sigma} - \vec{a})$ mit Richtungstensor $(\vec{\sigma} - \vec{a})$ die innere Fließfläche schneidet (vgl. Bild 3.10). Der Fließflächenpunkt R_i wird also durch Auflösen der Gleichung

$$f(\vec{a} + \xi_i (\vec{\sigma} - \vec{a}), \vec{a}) = 0$$ (3.24)

nach ξ_i bestimmt. Hierzu wird zunächst die entsprechende p, q-Ebene (abhängig vom Polarwinkel θ) bestimmt, in der anschließend die geometrische Schnittpunkt-ermittlung durchgeführt wird.

Der Vektor γ verbindet den Fließflächenpunkt R_i auf der inneren Fließfläche mit dem adjungierten Punkt R_b auf der Erstbelastungsfäche. Der Betrag ϱ dieses Verbindungsektors gibt somit den Abstand vom aktuellen Fließflächenpunkt R_i zum adjungierten Punkt R_b auf der Grenzfließfläche an:

$$\varrho = ||\gamma||$$ (3.25)

Der maximal mögliche Abstand im Hauptspannungsraum ergibt sich auf der Raum diagonalen (vgl. Gleichung (3.13)) zu:

$$\varrho_0 = \sqrt{3} (l_b - R_i b)$$ (3.26)

Der Verfestigungsmodul $h = h_i$, der für die elasto-plastische Stoffmatrix (s. Gleichung (3.48)) benötigt wird, wenn der Spannungspunkt unterhalb der Erstbelastungsfäche und auf der inneren Fließfläche liegt, wird wie folgt festgelegt:

$$h_i := \begin{cases} h_b + (h_{\text{max}} - h_b) (\varrho/\varrho_0)^{\mu} & (h_b \geq 0.0) \\ h_{\text{max}} (\varrho/\varrho_0)^{\mu} & (h_b < 0.0) \\ h_b & (h_{\text{max}} < h_b) \end{cases}$$ (3.27)

Durch das Verhältnis (ϱ/ϱ_0) wird ein stetiger Übergang von einer Wiederbelastung zur Erstbelastung ($(\varrho/\varrho_0) \rightarrow 0$) gewährleistet. Da sich auch negative Werte für h_b ergeben können und unterhalb der Erstbelastungsfäche keine Entfestigung zugelassen werden soll, ist die erste Zeile in Gleichung (3.27) zur Bestimmung von h_i nicht ausreichend. Der Verfestigungsmodul wird dann nach der zweiten Zeile bestimmt. Für den Fall, daß $h_{\text{max}} < h_b$ ist, würde sich bei positivem h_i mit Zeile 1 eine Annäherung an h_b von unten her ergeben, was ebenfalls ausgeschlossen sein soll. Der Parameter h_{max} ist definiert durch:

$$h_{\text{max}} = \alpha E$$ (3.28)
Hierbei stellt \(a \) eine Stoffkonstante und \(E \) den Tangentenmodul nach Gleichung (3.9) dar. Beim elliptischen Zweißächenmodell von König (1985) wurde der Faktor \((a/\phi_0) \) ebenfalls mit einem Exponenten versehen. Mit diesem Stoffparameter \(\mu \) können über- oder unterlineare Abhängigkeiten des Verfestigungsmoduls \(h_i \) vom Abstandsverhältnis \((a/\phi_0) \) berücksichtigt werden, wodurch sich die Fülligkeit von Hystereseschleifen (vgl. Bild 3.19) steuern läßt.

Wenn sich der aktuelle Spannungspunkt unterhalb der Erstbelastungsfläche befindet und die innere Fläche aktiv ist, erfolgt die Verschiebung der inneren Fläche vom Fließflächenpunkt \(R_i (\bar{\sigma} = \bar{r}_i) \) zum aktuellen Spannungspunkt \(\bar{\sigma} \) (vgl. Bild 3.10) hin:

\[
d\eta = (\bar{\sigma} - \bar{r}_i)
\]

Da aufgrund der Ähnlichkeitsbedingung jetzt auch der adjungierte Punkt \(R_b \)

\[
A(\theta_l) M_K = M
\]

geometrisch bestimmt ist, liegt der für den Parameter \(h_i \) (Verfestigungsmodul) benötigte Vektor \(\gamma \) (vgl. Bild 3.8) ebenfalls fest.

Bild 3.11: Verträglichkeit beim Berühren der beiden Fließflächen

erforderlich wird) der Grenzfließfläche liegt. Ist dies der Fall, so wird der Ort des
zugehörigen äußeren Fließflächenpunktes R_a analog zu Gleichung (3.24) (vgl. Bild
3.11) ermittelt:

\[
F(r, \alpha) = 0, \quad r = \alpha + \xi_a(\sigma - \alpha).
\]

Die Lage der inneren Fläche wird dann aus der Bedingung bestimmt, daß sich
die beiden Flächen im Punkt R_a berühren sollen:

\[
\eta = r_a - R(a - \alpha) - \bar{\alpha} = r_a - Rr_a
\]

Fortan, solange die Grenzfließfläche aktiv ist, werden die plastischen Verformun-
gen durch die Erstbelastungsfläche bestimmt. Die Berührung bleibt im erreichten
Spannungspunkt erhalten. Durch die isotrope Verfestigungsbeziehung weiten sich
die Grenzfließfläche und die innere Fläche im gleichen Verhältnis ($R = \text{const}$) auf.
Da die innere Fläche somit einer zusätzlichen kinematischen Verschiebung unter-
worfen ist, ergibt sich bei Erstbelastungen eine isotrop-kinematische Verfestigung.
Bei Ent- und Wiederbelastungen ergibt sich aber eine rein kinematische Verfesti-
gungsbeziehung für die innere Fließfläche, solange sie die Grenzfließfläche nicht
wieder berührt. Grundsätzlich ist im Ent- und Wiederbelastungsfall auch eine ge-
koppelte isotrop-kinematische Verfestigung möglich (WINZELMANN 1984, KÖNIG
1985). Dies müßte aber mit einem wesentlich höheren numerischen Aufwand und
einer sehr viel komplexeren Verschiebungsregel bezahlt werden.

3.2.4 Darstellung in der Deviator-Ebene

Durch die Formulierung mit invarian ten Spannungsgrößen ohne 3. Invariante er-
geben sich Fließflächen im Hauptspannungsraum, deren Spuren in der Deviatore-

In Bild 3.13 sind diese Kriterien für einen Reibungswinkel (s. Abschnitt 3.4) von \(\varphi' = 20^\circ\) angegeben. Für \(A = A(\theta)\) (vgl. Gleichung (3.6)) ergeben sich nach Umformung der Fließbedingungen (Entkopplung vom Öffnungswinkel) folgende Gleichungen:

\(^1\)Laufende Arbeit am Institut für Geotechnik, Stuttgart
Gudehus:

\[A = \frac{1 - (c_2/\sqrt{6}) \cdot \cos(3\theta)}{1 + (c_2/\sqrt{6})} \]
(3.33)

Der Parameter \(c_2 \) erlaubt die Berücksichtigung verschiedener deviatorischer Fließflächen. Für \(c_2 = 0 \) ergibt sich eine kreisförmige Form. Der Parameter \(c_2 \) ist allerdings nicht völlig frei wählbar, da ab einem bestimmten Wert von \(c_2 \) sich konkave Einbuchtungen ergeben. In der Deviatorebene ist jeweils eine Höhenlinie des Fließpotentials mit der Fließbedingung nach dem hier entwickelten Modell identisch. Das bedeutet, daß die Einbuchtungen gegen die Druckersche Forderung nach konvexen Höhenlinien des Fließpotentials verstoßen. Eine strenge Convexitätssforderung führt auf die Bedingung (s. König 1985):

\[c_2 \leq \frac{\sqrt{6}}{5.5} = 0.445 \]
(3.34)

Stutz:

\[A = \frac{[1 + (B/\sqrt{6})]^m}{[1 - (B/\sqrt{6}) \cdot \cos(3\theta)]^m} \]
(3.35)

Mit den Parametern \(B \) und \(m \) können sehr unterschiedliche deviatorische Kurvenformen beschrieben werden. Die Parameterbestimmung ist aber aufwendiger als bei Gudehus, da sie nicht mehr allein mit Kompressions- und Extensionsversuchen durchgeführt werden kann.

Schad:

\[A = A(\theta, c_h, c_p) \]
(3.36)

Die von Schad\(^1\) für die deviatorische Fließkurvenform entwickelten Gleichungen bestehen aus Funktionen 2. Grades (Kegelschnitte):

\[k(\theta) = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6 = 0 \]
(3.37)

Die sich in der deviatorischen Ebene ergebende Fließflächenform setzt sich aus Teilkurven so zusammen, daß auch in den 1. Ableitungen die Stetigkeit erhalten bleibt. Die Variablen \(x \) und \(y \) in Gleichung (3.37) stellen die durch die Transformation vom \(\sigma^*, \theta \)-Polarkoordinatensystem (Deviatorebene) erhaltenen Komponenten in einem kartesischen \(x, y \)-Koordinatensystem (Deviatorebene) dar. Durch das Verhältnis \(r_E/r_K \), das durch den Parameter \(c_h \) gesteuert wird, und den Parameter \(c_p \), der für die Fülligkeit im Bereich der ebenen Dehnung verantwortlich ist, liegt die Fließflächenform in der Deviatorebene fest. Die Parameter \(a_i \) (\(i = 1, ..., 6 \)) sind also durch die Forderung nach der stetigen Differenzierbarkeit sowie durch die Parameter \(c_h \) und \(c_p \) festgelegt. Da diese Gleichungen Teil einer laufenden Arbeit sind, wird an dieser Stelle auf die mathematische Ableitung zur Bestimmung der

\(^1\)Laufende Arbeit am Institut für Geotechnik, Stuttgart
Parameter a_i verzichtet. Mit den beiden Parametern c_A und c_F läßt sich die Fließkurve in der Deviatorbene gut an Versuchskurven anpassen. Der Aufbau der Gleichungen ist so, daß die Deviatorkurve bei entsprechender Parameterwahl sowohl zum Mohr-Coulombschen Kriterium als auch zum Kreis (Drucker-Prager bzw. v. Mises), vgl. Abschnitt 3.4, entarten kann.

Der Parameter c_2 bei Gudehus läßt sich direkt aus dem Verhältnis r_K/r_F der Radien im Extensions- und im Kompressionsbereich (vgl. Bild 3.12) bestimmen. Wegen der sich für $r_K/r_F > 1.2$ im Extensionsbereich ergebenden konkaven Form ist das Gudehussehnen Kriterium für Böden mit großen Reibungswinkeln nur bedingt geeignet. Aufgrund der einfachen Parameterbestimmung, der Übersichtlichkeit der Formulierung und der Anpassungsfähigkeit des Ansatzes ist die räum-
liche Verallgemeinerung von Gudehus für gering vorbelastete Tore mit kleinen bis mittleren Reibungswinkeln (s. KÖNIG 1985) sehr gut geeignet.
Die Schadsche Deviatorkurve weist aufgrund ihrer Formulierung für beliebige Parameter c_h und c_p – und somit für beliebige Reibungswinkel ($r_K/r_E > 1.2$) – keine konkaven Bereiche auf. Sie hat dafür aber den Nachteil einer komplizierteren Parameterbestimmung und erfordert außerdem einen größeren numerischen Aufwand.

Wie in der p,q-Ebene muß natürlich auch in der Deviatorebene, um ein überschneidungsfreies Berühren zu gewährleisten, die Ähnlichkeitsbedingung (s. Bild 3.6) erfüllt sein. Da $A = A(\theta)$ (s. Gleichung (3.6)) gilt, stellen die im Abschnitt 3.2 dargestellten Gleichungen Schnitte durch die räumliche Fließfläche dar und besitzen auch in der Deviatorebene Gültigkeit. Dies bedeutet für die Ableitungen, daß θ bei Verwendung der Kettenregel ebenfalls auftritt. Es gilt dann z.B. für die Ableitung der Fließfläche nach den Spannungen:

$$\frac{\partial F}{\partial \sigma} = \frac{\partial F}{\partial p} \frac{\partial p}{\partial \sigma} + \frac{\partial F}{\partial q} \frac{\partial q}{\partial \sigma} + \frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial \sigma}$$

(3.38)
3.3 Elasto-plastische Stoffmatrix

Neben den Elastizitätskonstanten müssen bei einer elasto-plastischen Berechnung noch die Fließbedingung (Fließfläche) und die Fließregel (vgl. Abschnitte 3.2.1 bzw. 3.2.2) bekannt sein. Bei Materialien mit Ver- bzw. Entfestigung ist zusätzlich ein Verfestigungsgesetz (s. Abschnitt 3.2.3) notwendig. Eine grundsätzliche Annahme der Plastizitätstheorie ist die additive Zusammensetbarkeit der Verzerrungen aus plastischen und elastischen Anteilen.

\[\text{de} = \text{de}^e + \text{de}^p \] \hspace{2cm} (3.39)

Für den elastischen Anteil ergibt sich mit der Elastizitätsmatrix \(C \):

\[\text{d} \sigma = C \text{de}^e \] \hspace{2cm} (3.40)

Fügt man Gleichung (3.17) und (3.40) zusammen, so ergibt sich die elasto-plastische Beziehung:

\[\text{de} = C^{-1} \text{d} \sigma + \text{d} \Delta n^p \] \hspace{2cm} (3.41)

Aus der Konsistenzbedingung, daß nämlich die Fließbedingung während des gesamten Fließvorgangs erfüllt sein muß, folgt:

\[f + \text{d} f = 0 \] \hspace{2cm} (3.42)

Mit \(f = 0 \) liefert die Konsistenzbedingung:

\[\text{d} f = 0 = \left(\frac{\partial f}{\partial \sigma} \right)^T \text{d} \sigma + \left(\frac{\partial f}{\partial \chi} \right)^T \text{d} \chi \] \hspace{2cm} (3.43)

Hierbei ist \(\chi \) ein in die Fließbedingung eingehender Verfestigungsparameter. Für den Verfestigungsmodul \(h \) folgt, sofern nur ein Verfestigungsparameter maßgebend ist:

\[h = \frac{\partial f}{\partial \chi} \text{d} \chi \left(\frac{1}{\partial f} \right) \text{d} \Lambda \] \hspace{2cm} (3.44)
Mit Gleichung (3.18) lautet die Konsistenzbedingung:

\[(n^f)^T d\sigma - h \, d\Lambda = 0\] \hspace{1cm} (3.45)

Die Gleichungen (3.41) und (3.45) ergeben in Matrizenform ein Gleichungssystem, das für elasto-plastische Vorgänge einen Zusammenhang zwischen Spannungen und Verzerrungen angibt. An die Stelle der elastischen Spannungs-Verzerrungsbeziehung (Gleichung (3.40)) tritt nun:

\[
\begin{bmatrix}
\frac{d\varepsilon}{d\sigma} \\
0
\end{bmatrix}
=
\begin{bmatrix}
C^{-1} & n^\sigma \\
(n^f)^T & -h
\end{bmatrix}
\begin{bmatrix}
d\sigma \\
d\Lambda
\end{bmatrix}
\] \hspace{1cm} (3.46)

Durch Elimination von $d\Lambda$ läßt sich diese Beziehung (s. ZIEKIEWICZ (1977)) so umformen, daß der für Finite Elemente-Berechnungen auf Elementebene formulierter Proportionalitätsfaktor $d\Lambda$ im Gleichungssystem nicht mehr auftritt. Die Beziehung lautet:

\[d\sigma = C^{ep} d\varepsilon\] \hspace{1cm} (3.47)

Für die Inversion der im Rang 1 modifizierten Matrizen gilt die Sherman-Morrison-Formel, mit der sich die elasto-plastische Matrix C^{ep} ergibt:

\[C^{ep} = C - \frac{C \, n^\sigma (n^f)^T C}{h + (n^f)^T C n^\sigma}\] \hspace{1cm} (3.48)

Wie zu Beginn dieses Kapitels bereits erwähnt, sind alle hier aufgeführten Zustandsvariablen materielle, d.h. \sim-Größen.

Bei Vielflächenmodellen, bei denen mehrere Fließflächen gleichzeitig aktiv sind, kann die Elimination der entsprechenden Proportionalitätsfaktoren $d\Lambda_1, \ldots, n$ nicht mehr wie bei ZIEKIEWICZ (1977) durchgeführt werden. Die plastischen Komponenten der Verformungen setzen sich dann aus mehreren Anteilen zusammen. Die Beschreibung eines Algorithmus zur Elimination dieser Faktoren ist z.B. bei WINELMANN (1984) ausführlich beschrieben.

Bei dem in dieser Arbeit eingeführten Zweiflächenmodell ist ein solches Vorgehen nicht notwendig. Das entwickelte Modell enthält zwar zwei Fließflächen, aber nur jeweils eine Fläche soll die Verfestigung angeben. Für einen Spannungspunkt ergibt sich für den Proportionalitätsfaktor deshalb immer nur ein einziger Wert. Für den Verfestigungsmodul h gilt deshalb in dieser Arbeit: $h = h_2$ oder $h = h_1$, d.h. es ist immer nur eine Fließfläche für das Ver(Ent-)-festigungsverhalten maßgebend. Die eliminierten Proportionalitätsfaktoren können aus den Gesamtverzerrungszuwächsen bestimmt werden:

\[d\Lambda = \frac{(n^f)^T C d\varepsilon}{h + (n^f)^T C n^\sigma}\] \hspace{1cm} (3.49)

Bei der numerischen Integration des Stoffgesetzes über ein Inkrement Δt stellt Gleichung (3.48) nicht automatisch, abhängig von der Integration, eine echte (konsistente) Tangente (vgl. MATZENMILLER, 1988) dar.
Aus Gleichung (3.48) läßt sich auch erkennen, daß die elasto-plastische Matrix nur dann symmetrisch ist, wenn das plastische Potential und die Fließbedingung identisch sind, d.h. wenn $n^f = n^p$ gilt. Eine nichtassoziierte Fließregel ($n^f \neq n^p$), wie sie in dieser Arbeit verwendet wird, führt somit auf eine unsymmetrische Stoffmatrix (Tensor).

Insgesamt ergeben sich für Be-, Ent- und Wiederbelastung folgende Definitionen:

Bei aktiver Erstbelastungsfläche ($F = 0$, $f = 0$, $h = h_1$):

aktiv belastung $F + dF = 0$, $n^f_m < 0$, $n^p_m < 0$, $h > 0$
(Verfestigung)
neutrale Belastung $F + dF = 0$, $n^f_m = 0$, $n^p_m = 0$, $h = 0$
passive Belastung $F + dF = 0$, $n^f_m > 0$, $n^p_m > 0$, $h < 0$
(Entfestigung)

Bei ausschließlich aktiver innerer Fläche ($F < 0$, $f = 0$, $h = h_1$):

Belastung: $f + df = 0$, $n^f_m \neq 0$, $n^p_m \neq 0$, $h > 0$
Entlastung,

elastische Wiederbelastung: $f < 0$, $d\Delta = 0$
3.4 Parameterbestimmung

Bei der Formulierung des Stoffgesetzes wurde Wert darauf gelegt, daß die erforderlichen Stoffparameter möglichst eine in der Bodenmechanik vertraute Bedeutung haben. Auf diese Weise wird die Bestimmung dieser Größen aus Experimenten wesentlich erleichtert.

3.4.1 Ermittlung der Stoffkonstanten

Die erforderlichen Größen lassen sich in vier Gruppen einteilen:

Allgemeine Kenngrößen:

\[c_0 = \text{Ausgangsporenzahl} \]
\[\varphi' = \text{Winkel der inneren Reibung} \]
\[\psi = \text{Dilatanzwinkel} \]
\[\nu = \text{Querkontraktionszahl} \]
\[\text{(Elastizitätstheorie)} \]

Erweiterte „Mohr-Coulombsche Parameter“:

Bei Verwendung des Gudehusschen Kriteriums:

\[c_2 = \text{bestimmende Größe für die Form der Deviatorebene} \]

Bei Verwendung des Schadschen Kriteriums:

\[c_h = \text{Hexagon-Form (hexagon form)} \]
\[c_p = \text{Fülligkeitsparameter (plumpness)} \]

„Cam-Clay-Parameter“:

\[c_0 = \text{Parameter zur Festlegung der Kappe} \]
\[M_K = \text{Steigung der Critical-State-Line im} \]
\[p, q\text{-Diagramm (Kompressionsfall)} \]
\[\lambda = \text{Kompressionsbeiwert} \]
\[\kappa = \text{Schwellbeiwert} \]
Neue Parameter:

\[R = \text{Proportionalitätsfaktor (innere/äußere Fläche)} \]
\[a = \text{Faktor zur Bestimmung des Verfestigungsmoduls } h_i \]
\[\mu = \text{Exponent zur Bestimmung des Verfestigungsmoduls } h_i \]

Die Definition der Porenzahl ist:

\[e = \frac{V - V_f}{V_f} \quad (3.50) \]

Hierbei ist \(V \) das Gesamtvolumen des Bodenelements und \(V_f \) das Volumen der festen Bestandteile, so daß sich für \(V - V_f \) das Porenvolumen ergibt. \(e_0 \) ist somit die Porenzahl des Ausgangszustandes, die entsprechend Gleichung (3.50) bestimmt wird.

Der Winkel der inneren Reibung \(\varphi' \) wird aus in der Bodenmechanik üblichen Triaxialversuchen bestimmt. Der Reibungswinkel \(\varphi' \) legt die Fließkurve im überkritischen oder "trockenen" Bereich fest. Der Neigungswinkel \(\varphi^* \) im \(p, q \)-Diagramm (Kompressionsfall) ergibt sich aus \(\varphi' \) über

\[\tan \varphi^* = - \frac{6 \sin \varphi'}{3 - \sin \varphi'} \quad (3.51) \]

Der Dilatanzwinkel, der das plastische Potential im Bereich 2 (vgl. Bild 3.5) festlegt, wird so gewählt, daß

\[\psi = 0 \text{ volumenkonstantem Fließen entspricht und} \]
\[\psi = \varphi' \text{ einer assoziierten Fließregel gleichkommt.} \]

Um einen zutreffenden Wert für den Dilatanzwinkel zu erhalten, ist es zweckmäßig, Versuche auszuwerten, bei denen rein deviatorische Spannungszustände aufgebracht und die Volumenänderungen gemessen werden. Die Bedingung muß sein, daß die mittlere effektive Normalspannung \(\sigma_m \) konstant ist und die Probe dabei vollkommen drainiert wird (s. BUCHMAIER 1985). Die Durchführung solcher Versuche ist bei bindigen Böden jedoch schwierig und zeitraubend, und zwar um so mehr, je geringer die Durchlässigkeit des Bodens ist. Häufig aber genügt, bei Problemen mit geringen volumetrischen Verformungsbeschränkungen durch kinematische Randbedingungen, eine grobe Schätzung des Dilatanzwinkels (\(\psi = 0; \varphi = \varphi' / 2; \varphi = \varphi' \)), vgl. SCHAD (1979), wobei für bindige Böden \(\psi = 0 \) ein häufig benutzter Wert ist.

Analog zu \(\varphi^* \) stellt \(\psi^* \) den gemäß Gleichung (3.51) in die \(p, q \)-Ebene transformierten Neigungswinkel dar.
Die Form der Fließkurve in der Deviatorebene ist unabhängig von der Öffnungsweite des Grenzkegels. Das Verhältnis der Radien im Kompressions- und im Extensionsbereich wird über den **Gudehusschen Parameter** \(c_2 \) Versuchsergebnissen angepaßt. Die Bestimmungsgleichung für \(c_2 \) ist z.B. bei König (1985) wie folgt angegeben:

\[
 c_2 = \sqrt{6} \left(\frac{r_K}{r_E} \right)^2 - 1 \quad \left(\frac{r_K}{r_E} \right)^2 + 1 \tag{3.52}
\]

Der Wertebereich dieses Parameters liegt zwischen (vgl. König 1985 bzw. Gleichung (3.34)):

\[
 0 \leq c_2 \leq \frac{\sqrt{6}}{5.5} = 0.445
\]

\(c_2 = 0 \) bedeutet hierbei eine kreisförmige Deviatorkurve und \(c_2 = 0.445 \) ist der Grenzwert, bis zu dem die deviatorische Form keinerlei konkave Einbuchtungen aufweist. Die Bestimmung von \(r_K \) und \(r_E \) und somit von \(c_2 \) erfolgt durch triaxiale Kompressions- und Extensionsversuche. Für Böden kommt man mit einem festen Wert für \(c_2 \) (z.B. \(c_2 = 0.4 \)) in vielen Fällen ebenfalls zu einem brauchbaren Ergebnis, so daß \(c_2 \) in diesem Fall aus der Reihe der zu bestimmenden Parameter ausscheiden würde.

Die **Parameter** \(c_p \) und \(c_h \) sind bei Verwendung der Schadenskurvenform anstelle des obigen Parameters \(c_2 \) erforderlich. \(c_h \) bestimmt hierbei die hexagonale Form und kann ebenfalls aus Kompressions- und Extensionsversuchen bestimmt werden. Der Parameter \(c_p \) muß aus dem Vergleich von triaxialen und ebenen Scherversuchen (s. Bild 3.12) ermittelt werden (vgl. auch Gudehus 1973). Mit diesem Parameter läßt sich die Fließkurvenform optimal an Versuchsergebnisse anpassen (Schad\(^1\)). Der Wertebereich für \(c_h \) und für \(c_p \) liegt zwischen:

\[
 -1.0 \leq c_h \leq 1.0 \tag{3.53}
 0 \leq c_p \leq 1.0 \tag{3.54}
\]

Die Grenzwerte für diese beiden Parameter bedeuten:

\[
 c_h = 1.0 : \quad r_K = r_E \text{ (gleichseitiges Sechseck)}
 c_h = 0 : \quad r_K \text{ und } r_E \text{ nach Mohr-Coulomb}
 c_h = -1.0 : \quad \text{dreiecksförmige Deviatorebene}
 c_p = 1.0 : \quad \text{höchste Fülligkeit, mit}
 \quad c_h = 1.0 \quad \rightarrow \quad \text{Kreisform}
 c_p = 0 : \quad \text{Sechseck, mit } c_h = 0 \quad \rightarrow \quad \text{Mohr-Coulomb}
\]

Die **Neigung der Critical-State-Line** kann durch triaxiale Versuche an normalkonsolidierten Proben ermittelt werden. Bei normalkonsolidierten Proben ist der Reibungswinkel \(\varphi'_{CS} \) (CS \equiv Critical-State) nach der Cam-Clay-Theorie mit \(\varphi' \) identisch (\(c' = 0 \), vgl. Bild 3.14). Durch Umrechnung in die \(p, q \)-Ebene läßt sich

\(^1\)Laufende Arbeit am Institut für Geotechnik, Stuttgart
die Neigung M_k (Kompressionsfall) errechnen:

$$M_k = -\frac{6 \sin \varphi'_{CS}}{3 - \sin \varphi'_{CS}}$$ \hspace{1cm} (3.55)

Handelt es sich bei dem mittels einer Finite Elemente-Berechnung zu untersuchenden Material um einen überkonsolidierten Boden ($c' \neq 0$), so ergibt sich der in Bild 3.14 (vgl. z.B. ZIENKIEWICZ/NAYLOR 1971a) dargestellte Zusammenhang.

Der Kompressionsbeiwert λ und der Schwellbeiwert κ können aus dem linearisierten $e, \ln(-\sigma_m)$-Diagramm (s. Bild 3.7) entnommen werden. Es gelten die zwei folgenden Beziehungen (s. z.B. KÖNIG (1985) oder SCHAD (1979)):

- für hydrostatische Erstverdichtung:

$$\lambda = -\frac{de}{d[\ln(-\sigma_m)]}$$ \hspace{1cm} (3.56)

- bei Entlastung von einem Referenzzustand $\sigma_{m,r}, e_r$ ergibt sich für ein Inkrement Δe:

$$\Delta e = -\kappa \ln \left(\frac{\sigma_m}{\sigma_{m,r}}\right)$$ \hspace{1cm} (3.57)

TOPOLNICKI (1987) hat in Versuchen an einem gestörten Ton ("Karlsruhe clay") gezeigt, daß der Kompressionsbeiwert, definiert als

$$\lambda_T = -\frac{d[\ln(1 + e)]}{d[\ln(-\sigma_m)]}$$ \hspace{1cm} (3.58)

über größere Bereiche von σ_m konstant ist als der nach Gleichung (3.56) definierte Parameter. Eine Verbesserung in diesem Sinne für den implementierten Algorithmus wurde in dieser Arbeit nicht durchgeführt. Zum einen deshalb, weil die Versuchswerte auch einer gewissen Streuung unterliegen und zum anderen, weil
sich bei der Nachrechnung von Versuchen aus dieser Arbeit (TOPOLNICKI 1987) mit einem mittleren Wert für λ nach Gleichung (3.56) eine ähnlich akzeptable Übereinstimmung zwischen Theorie und Experiment wie bei TOPOLNICKI ergab. Trotzdem lohnt es sich, diese unterschiedliche Definition des Kompressionsbeiwertes (bei TOPOLNICKI: Kriterium M5) im Auge zu behalten und gegebenenfalls die Formulierung des Stoffgesetzes entsprechend anzupassen.

Die Querkontraktionszahl ν liegt für die meisten bindigen Böden in einem Bereich zwischen 0.1 ≤ ν ≤ 0.3 (vgl. SCHAD 1979). Wenn z.B. Triaxialversuche mit sehr kleinen Entlastungen (elastischer Bereich) ausgewertet werden, läßt sich ν entsprechend den Elastizitätsgleichungen näher bestimmen.

SCHAD (1979) führt die bei manchen Autoren angegebenen höheren Werte für die Querkontraktionszahl – für Sand ν ≈ 0.3 und für bindige Böden ν ≈ 0.4 – darauf zurück, daß plastische Verzerrungen als elastische interpretiert werden, also der Boden als isotropes linear-elastisches Material betrachtet wird. In Experimenten (drainierte triaxiale Scherversuche) wurde festgestellt, daß die Querdehnungszahl vom momentanen Spannungszustand und der Konsolidationsspannung praktisch unabhängig ist WROTH (1971). Dort wurde aufgrund der Unterscheidung zwischen elastischen und plastischen Verzerrungen eine Querkontraktionszahl von 0.12 angegeben und darauf hingewiesen, daß verschiedene Autoren auch bei anderen Tonen eine Querdehnungszahl von ≈ 0.15 ermittelt haben.

\[
p = \sigma_m \quad q = \sqrt{\frac{2}{3}} \sigma^*\]

<table>
<thead>
<tr>
<th>φ' = 12.5°</th>
<th>ψ = 7.0°</th>
<th>M_K = 1.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0 = 0.4</td>
<td>c_t = 0.73</td>
<td>r_E/r_K = 0.83</td>
</tr>
</tbody>
</table>

Bild 3.15: Effektiver Spannungspfad eines triaxialen CU-Versuches
Der Parameter c_0 kann durch undrainede triaxiale Kompressionsversuche bestimmt werden, wobei ein Fließen auf der Kappe stattfinden muß (normalkonsolidierte Probe). In Bild 3.15 ist die Aufweitung der Fließfläche in der hydrostatischen Ebene beispielhaft dargestellt. Wenn man in Gleichung (3.1) die in Bild 3.7 dargestellten Zusammenhänge für die Verfestigungsbeziehung der Cam-Clay-Modelle einsetzt, ergibt sich für die ellipsenförmige Kappe (vgl. Schad (1979)) in der p,q-Ebene:

$$q = \frac{c_0 M_K p}{1 - c_0} \sqrt{\left(2c_0 + p_c \frac{(1 - 2c_0)}{p}\right) \left(\frac{p_c}{p}\right)^{\frac{1}{\kappa}} - 1} \quad (3.59)$$

Diese Gleichung kann für verschiedene c_0-Werte ausgewertet und an Versuchscurven angepaßt werden. In Bild 3.16 ist eine Parameterbestimmung für c_0 am Konstanzer Section (Thamm 1974, S. 62) dargestellt. Für die in Bild 3.16 dargestellten Kurven gilt für die Porenzahl: $d_c = d e^c + d e^p = \text{const}$ und nicht $d e^p = \text{const}$, so daß sich am Schnittpunkt mit der CS-Line keine horizontale Tangente ergibt. Durch den erreichten Spannungspunkt auf der CSL wird bei bekanntem M_K die Lage der Kappe durch den Parameter c_0 festgelegt. Für erstbelastete Böden läßt sich der Bereich für c_0 in der Regel eingeschränken (vgl. Bild 3.16):

$$0.2 \leq c_0 \leq 0.6 \quad (3.60)$$

$$0.1 \leq R = \frac{l_i}{l_b} \leq 0.5 \tag{3.61}$$

Die sich ergebenden unterschiedlichen Spannungs-Verformungspfade für $R = 0.167$ und $R = 1.0$ bei hydrostatischer Be- und Entlastung sind in Bild 3.17 dargestellt.

Die Parameter a und μ bestimmen die Interpolationsregel für die kinematische Verfestigung, s. Gleichung (3.27) bzw. (3.28). In Abhängigkeit von der Lage der inneren Fließfläche werden, sofern diese aktiv ist, der Verfestigungsmodul h_i und damit die Größe der plastischen Verformungen bestimmt. Bei großem Abstand von der Grenzfließfläche ($\varphi/\varphi_0 \rightarrow 1$) liegt der Verfestigungsmodul h_i sehr nahe bei dem Maximalwert $h_{\text{max}} = aE$, Gleichung (3.28). Wenn a und somit auch h_{max} bzw. h_i sehr groß sind, ergeben sich zunächst sehr kleine plastische Verformungsanteile, d.h. das elasto-plastische Material ist sehr steif. Wenn die innere Fläche dem adjungierten Punkt auf der Grenzfläche näherrückt, ändert sich dieser Sachverhalt ($\varphi \rightarrow \varphi_0$) und h_i strebt gegen h_b. In Gleichung (3.28) stellt E den "elastischen" Tangentenmodul dar. Der Parameter a kann z.B. durch rechnerisches
Nachvollziehen eines triaxialen Kompressionsversuchs mit Be- und Entlastungszyklen so bestimmt werden, daß die plastischen Verformungen zutreffend beschrieben werden. In Bild 3.18 ist ein rechnerisch simulierter Kompressionsversuch mit Be-

\[\varepsilon_v (\%) \]

\[p \text{ (kN/m}^2\text{)} \]

\[\begin{array}{|c|c|}
\hline
\mu & 1.0 \\
\phi' & 13^\circ \\
\hline
c_2 & 0.44 \\
R & 0.167 \\
\hline
\end{array} \]

Bild 3.18: Rechnerisch simulierter Kompressionsversuch zur Bestimmung des Parameters \(a \)

und Entlastungszyklen, wie er zur Bestimmung von \(a \) durchgeführt werden müßte, dargestellt. In Vergleichsrechnungen hat sich gezeigt, daß sich der Parameter \(a \) für die meisten Böden zwischen

\[1 \leq a \leq 20 \quad \text{(3.62)} \]

bewegt. In diesem Bereich ist ein mehr oder weniger “sanfter” Übergang vom elastischen zum plastischen Verhalten gewährleistet.

In Bild 3.19 ist ein rechnerischer simulierter Kompressionsversuch mit unterschiedlichen \(\mu \)-Werten dargestellt. Wie aus Bild 3.19 zu erkennen ist, bestimmt dieser Parameter die plastisch dilatanten bzw. kontraktivten Verformungen bei Ent-und Wiederbelastungen und ist somit für die Fülligkeit der Hystereseschleifen verantwortlich. Er muß, ebenso wie \(a \), aus einem triaxialen Kompressionsversuch mit Be- und Entlastungsschleifen bestimmt werden. Da der Einfluß dieses Parameters auf die Traglast nicht ausschlaggebend ist, kann dieser Parameter, wenn man bei praktischen Anwendungen zur Vereinfachung auf eine Bestimmung verzichten will, durch die Wahl von \(\mu = 1.0 \) ausgeschaltet werden.

Die Sensibilität bei den einzelnen Parametern ist problem- oder versuchsabhängig, was selbstverständlich nicht nur für die neuen Parameter gilt. Verändert man z.B. den Parameter \(c_0 \) (vgl. Bild 3.16), so ergibt sich bei gleicher Konsolidationsspannung \(p_c \) für hydrostatische und für deviatorische Spannungspfade eine sehr unterschiedliche Sensibilität gegenüber \(c_0 \). Dies heißt aber nicht, daß die
Bild 3.19: Rechnerisch simulierter Kompressionsversuch zur Bestimmung des Parameters μ

Parameter unterschiedliche Werte bei verschiedenen Randwertproblemen annehmen, sondern lediglich, daß zur Bestimmung der einzelnen Parameter geeignete Versuche herangezogen werden müssen. Für die nicht neu eingeführten Parameter wurde auf eine Sensibilitätsuntersuchung im Rahmen dieser Arbeit verzichtet.

3.4.2 Ausgangszustand

Zusätzlich zu den im vorherigen Abschnitt ermittelten Parametern müssen noch die Anfangsbedingungen festgelegt werden:

- Ausgangsspannungszustand σ_0
- Konsolidationsspannung (Größe der Grenzfließfläche) σ_z
- Lage der inneren Fließfläche η

Der Ausgangsspannungszustand ist im allgemeinen durch das zu lösende Randwertproblem festgelegt.

Die Vorbelastung bzw. die Konsolidationsspannung zu Beginn der Berechnung kann durch

$$p_c = \frac{c_K}{c_0 [M_K - (6 \sin \varphi')/(3 - \sin \varphi')]}
$$

für den Kompressionsfall ($A = 1.0$) bestimmt werden. Der Wert c_K (s. Bild 3.5) errechnet sich in der p, q-Ebene für den Kompressionsfall, vgl. z.B. Schad (1979), wie folgt:

$$c_K = \frac{6c' \cos \varphi'}{3 - \sin \varphi'}
$$

(3.64)
Durch den Wert p_c und die Stoffparameter sind die Grenzfließfläche sowie die Form der inneren Fläche (Ähnlichkeitsbedingung) festgelegt.

Sofern der Ausgangsspannungszustand nicht stark anisotrop ist, kann die Lage der inneren Fläche so bestimmt werden, daß sich das Fließflächenzentrum η der inneren Fläche auf der Raumdiagonale befindet und der Spannungspunkt σ_0 auf der inneren Fließfläche liegt. Dies ist dann der Fall, wenn die innere Fließfläche bei einer Bewegung auf der Raumdiagonalen den Spannungspunkt noch berühren kann. Das numerische Ergebnis wird durch den eventuell begangenen (kleinen) Anfangsfehler praktisch nicht beeinflußt. Bei einem hydrostatischen Ausgangsspannungszustand ist dieses Vorgehen exakt.

Falls die numerische Analyse von einem stärker anisotropen Spannungszustand ausgeht, ist es zweckmäßig, den Konsolidationsvorgang bis zum entsprechenden Anfangsspannungszustand der Berechnung zu simulieren, so daß die Lage der inneren Fläche anschließend festliegt.
4 Versuche und Testrechnungen

Bevor die im Zuge dieser Arbeit durchgeführten Versuche und Test- bzw. Nachrechnungen beschrieben werden, soll vorab die erforderliche Numerik kurz betrachtet werden. Aufgrund der geometrisch nichtlinearen Formulierung (s. Abschnitt 2.3) ergibt sich bereits ein nichtlineares Gleichungssystem, das iterativ gelöst werden muß.

Das verwendete elasto-plastische Stoffmodell führt in einer Berechnung mit finiten Elementen ebenfalls zu einem System nichtlinearer Gleichungen.

Die Spannungen sind bei differentiellen Stoffgesetzen nicht eindeutig durch die Verformung am Ende der Belastung bestimmt. Sie hängen von der Belastungsgeschichte ab, wodurch eine inkrementelle Lastaufbringung erforderlich wird.

4.1 Numerik

Das Gleichgewicht des betrachteten Körpers zum momentanen Zeitpunkt \(t + \Delta t \) wird mit Hilfe des Prinzips der virtuellen Verschiebungen bzw. Leistungen ausgedrückt. Die sogenannte schwache Formulierung der Gleichgewichtsbedingungen lautet (hier ohne Volumenskräfte dargestellt):

\[
\int_V (\text{div} \sigma \, \delta \varepsilon) \, d^3V \quad = \quad 0 \quad \tag{4.1}
\]

\[
\Rightarrow \delta W^{ee} - \int_V \sigma : \delta \varepsilon \, d^3V \quad = \quad 0 \quad \tag{4.2}
\]

Dabei wirkt die Variation \(\delta \) nur auf die Geschwindigkeiten, und \(\sigma \) stellt den Cauchyschen Spannungstensor dar. Der erste Term in Gleichung (4.2) stellt die äußere und der zweite Term die innere virtuelle Leistung dar, wobei zunächst angenommen wird, daß die Belastung von der Verformung unabhängig sei. Mit \(\delta \varepsilon \) als einer zeitunabhängigen virtuellen Verschiebung bzw. Geschwindigkeit ergibt die
abgeleitete Form der Gleichgewichtsbedingungen:

\[\delta W^{ex} - \left[\int_{\Omega} \sigma \cdot \delta L \det F \, d^0V \right]^* = 0 \] \hspace{1cm} (4.3)

Durch diese Ableitung entsteht ein Term, der \(\dot{\sigma} \) enthält. Hierauf läßt sich die elasto-plastische Stoffbeziehung anwenden, womit eine einheitliche Geschwindigkeitsformulierung gewonnen wird. Da das Gebietsintegral vollständig über die aktuelle Konfiguration ausgeführt wird, muß man beachten, daß sich räumliche Integral- und Differentialoperatoren mit den materiellen Zeitableitungen nicht vertauschen lassen. Mit \((\det F)^* = \det F \cdot \text{div} v \) (s. Anhang) folgt:

\[\int_{\Omega} \left[\dot{\sigma} \cdot \delta D + \sigma \cdot (\delta L)^* + (\sigma \cdot \text{div} v) \cdot \delta D \right] \, d^1V = \delta W^{ex} \] \hspace{1cm} (4.4)

Mit \((\delta L)^* = -\delta L \cdot L \) und mit \(\sigma \cdot (\delta L \cdot L) = \sigma \cdot (L^T \delta L^T) \) (Symmetrie von \(\sigma \)) ergibt sich schließlich:

\[\int_{\Omega} \left[\dot{\sigma} \cdot \delta D - \sigma \cdot (L^T \delta L^T) + \text{div} v \cdot \sigma \cdot \delta D \right] \, d^1V = \delta W^{ex} \] \hspace{1cm} (4.5)

Die Terme \(\sigma \cdot (L^T \delta L^T) \) und \(\text{div} v \cdot \sigma \cdot \delta D \) liefern unsymmetrische Matrizen, welche in der in dieser Arbeit verwendeten Formulierung auch links, in der Steifigkeitsmatrix, berücksichtigt werden.

Der Vorteil dieser Geschwindigkeitsformulierung ist darin zu sehen, daß man sich, da alle Rechnungen auf der aktuellen Konfiguration abgewickelt werden, nicht zu überlegen braucht, auf welcher Konfiguration welche Größe definiert ist.

\(\sigma \) stellt in Gleichung (4.5) die gemäß Abschnitt 2.3.2 errechnete Cauchysche Spannung dar. \(\dot{\sigma} \) enthält über den Abbildungstensor \(R \) die Green-Naghdi-Zeitableitung. Für \(\Delta t \rightarrow 0 \) läßt sich Gleichung (2.75) wie folgt schreiben:

\[\dot{\sigma} = R \ddot{\sigma} R^T + \dot{R} \sigma R^T + R \ddot{\sigma} R^T \] \hspace{1cm} (4.6)

Mit \(\ddot{\sigma} = R^T \sigma R \) und mit \(\ddot{\sigma} = R \ddot{\sigma} R^T \) folgt die Green-Naghdi-Ableitung:

\[\dot{\sigma} = \ddot{\sigma}^{GN} + \Omega \sigma - \sigma \Omega \] \hspace{1cm} (4.7)

Beim Übergang auf die Matrizen-Formulierung für die Finite Elemente-Methode ergibt der erste Term in Gleichung (4.5) den symmetrischen Hauptteil der Steifigkeit und enthält die auf das räumliche Bild transformierte konstitutive Matrix.

Wenn man annimmt, daß die äußere Last von der Deformation abhängt – nichtkonservative Belastung –, ergeben sich hieraus ebenfalls nichtsymmetrische Steifigkeitsanteile (vgl. SCHWEIZERHOF, 1982). Sehr häufig aber wird die Formulungsabhängigkeit der Last auf der Belastungsseite im ohnehin notwendigen iterativen Vorgang berücksichtigt (vgl. SCHWEIZERHOF/RAHM 1984). Hierzu verwendet man während des Iterationsprozesses die Last zum Zeitpunkt \(t + \Delta t \) und
integriert über die durch die Iteration erhaltene jeweils aktuelle Konfiguration. Anzumerken ist aber, daß bei Stabilitätsuntersuchungen (Eigenwertanalyse der Steifigkeitsmatrix) die Berücksichtigung nichtkonservativer Belastungen nur auf der Lastseite streng genommen nicht zulässig ist.

Um zur Lösung am Ende eines Lastinkrementes (Zeitpunkt $t + \Delta t$) zu gelangen, wobei die Lösung zu Beginn des Lastinkrementes (Zeitpunkt t) bekannt ist, muß in Gleichung (4.5) auf Inkremente übergegangen werden, d.h. die dort auffindenden Zeitableitungen müssen mit Δt multipliziert werden (Vorabintegration). Diese Gleichung wird nun dazu verwendet, einen Zuwachs in den Verschiebungen zu berechnen, mit dem dann Näherungen für die Verschiebungen, Verzerrungen und Spannungen zur Zeit $t + \Delta t$ ermittelt werden können. Wenn diese Näherungen ermittelt sind, wird überprüft, um wieviel sich die zur Zeit $t + \Delta t$ ermittelte innere virtuelle Arbeit von der äußeren virtuellen Arbeit unterscheidet. Der sich anschließende iterative Prozeß, bei dem immer auf der aus der Iteration erhaltenen neuen Konfiguration gearbeitet wird, wird nachfolgend anhand der zu verwendenden äquivalenten Finite Elemente-Gleichungen erläutert. Verwendet man auf der Lastseite nicht wie in Gleichung (4.5) nur die Zuwächse, sondern die gesamten akkumulierten Lasten (Zeitpunkt $t + \Delta t$), so muß die bis zum Zeitpunkt t aufgelaufen innere virtuelle Arbeit wieder abgezogen werden (Inkrementelles Gleichgewicht).

Wenn man zu den in der Berechnung mit Finiten Elementen verwendeten Matrizengleichungen übergeht, stellt sich Gleichung (4.5) zu Beginn eines Lastinkrements wie folgt dar:

$$\ddagger K \Delta u = \ddagger ^{t+\Delta t} R - \ddagger P$$

(4.8)

Hierin bedeuten:

- $\ddagger K$ = tangentielle Steifigkeitsmatrix, bezogen auf die Geometrie zum Zeitpunkt t;
- Δu = Vektor der Verschiebungsinkremente (Vorsintegration);
- $\ddagger ^{t+\Delta t} R$ = Vektor der äußeren Lasten zum Zeitpunkt $t + \Delta t$, bezogen auf die Geometrie zum Zeitpunkt t;
- $\ddagger P$ = Vektor der Knotenpunktkräfte, die den Elementsspannungen zum Zeitpunkt t äquivalent sind.

Nach Lösung von Gleichung (4.8) ergeben sich die Verschiebungsinkremente Δu, die – wie oben erläutert – im allgemeinen aber nicht die exakte Lösung darstellen. Kennzeichnet man die Iterationszyklen mit einem oberen Index i bzw. $j (j \leq i)$, so erhält man z.B. das bei HALLQUIST (1986) und auch in dieser Arbeit verwendete Schema mit $\Delta u = \Delta u^0$.

Aktualisieren der Geometrie gemäß:

\[t^{+\Delta t} x^0 = t^x + s^0 \Delta u^0 \] (4.9)

Hierbei seien \(x \) der Koordinatenvektor und \(s^i \) der Parameter, der sich aus dem im folgenden Abschnitt diskutierten "line search" ergibt.

- Die sich anschließenden Gleichgewichtsiterationen laufen wie folgt ab:

\[t^{+\Delta t} K^j \Delta u^i = t^{+\Delta t} R^i - t^{+\Delta t} P^i = t^{+\Delta t} Q^i \quad (j \leq i) \] (4.10)

Der Index \(i \) stellt den aktuellen Iterationzyklus und \(Q \) das Residuum aus den Gleichgewichtsbedingungen dar.

- Überprüfen der Konvergenzkriterien nach jedem Iterationzyklus (Energie- norm, Verschiebungs- norm):

\[\frac{|(\Delta u^T)Q^i|}{|(\Delta u^T)Q^0|} \leq \varepsilon_e \] (4.11)

und

\[\frac{||\Delta u^i||}{u_{max}} \leq \varepsilon_d \] (4.12)

Hierbei bedeutet \(||\Delta u^i|| \) die euklidische Norm der aktuellen Verschiebungsinkremente, \(u_{max} \) die maximale Norm des Verschiebungsvektors über alle Lastinkremente bis zum Zeitpunkt \(t \), einschließlich der Iterationen für den momentanen Lastschritt, und \(\varepsilon_e \) bzw. \(\varepsilon_d \) sind die vorgegebenen Toleranzwerte. Wenn beide Kriterien erfüllt sind, ist die Lösung zum Zeitpunkt \(t + \Delta t \) mit ausreichender Näherung gefunden, und die Iteration wird abgebrochen.

- Werden die beiden Kriterien in der aktuellen Iteration nicht erfüllt, wird erneut, sofern die momentane Lösung nicht divergiert, die Geometrie gemäß:

\[t^{+\Delta t} x^{i+1} = t^{+\Delta t} x^i + s^i \Delta u^i \] (4.13)

aktualisiert und die Iteration fortgesetzt.

- Divergenz der Lösung wird wie folgt definiert:

\[||t^{+\Delta t} Q^0|| < ||t^{+\Delta t} Q^{i+1}|| \] (4.14)

Wird innerhalb einer bestimmten Anzahl von Iterationszyklen keine Konvergenz erreicht oder divergiert die Lösung, was unter Umständen bereits im ersten Iterationzyklus (von z.B. 20 als Maximum vorgegeben) geschehen kann, so wird die Steifigkeitsmatrix \(t^{+\Delta t} K \) mit dem momentanen Schätzwert für die Geometrie zum Zeitpunkt \(t + \Delta t \) umgeformt, und die Gleichgewichts- iterationen werden fortgesetzt.
Bei dem in diesem Prozeß verwendeten "line search" wird ein Wert s^i bzw. Δu^i derart gesucht, daß die Arbeit des Residuums Q (s. Gleichung (4.10)) für den aktuellen Verschiebungszuwachs gegen 0 strebt (vgl. Abschnitt 4.1.1):

$$(\Delta u^T)^{i+\Delta t} Q^i \rightarrow 0 \quad (4.15)$$

Einige der nach diesem Schema möglichen Iterationstechniken werden im nachfolgenden Abschnitt dargestellt.

4.1.1 Iterationstechniken

![Newton-Raphson Verfahren](image1)

Bild 4.1: Newton-Raphsonsche Iterationsschemata

Alternativ zu den Formen der Newtonschen Iteration wurde eine Klasse von Verfahren entwickelt, die als Quasi-Newton-Methoden bekannt sind. Diese Methoden arbeiten mit einer Umrechnung der Steifigkeitsmatrix, d.h. eigentlich mit deren Inverser, um eine Sekantennähерung an die Matrix durch Iteration vom Schritt $i-1$ zum Schritt i zu erreichen (vgl. Bild 4.2). Je nach Art des "updates" der Steifigkeitsmatrix bzw. deren Inverser entstehen aus der Grundidee unterschiedliche Methoden. Im allgemeinen erfordern die Quasi-Newton-Methoden weniger

- Vermeidung von Aufbau und Dreieckszerlegung einer neuen Steifigkeitsmatrix,
- Direkte Erzeugung der Inversen aus Vektorinformationen ("Sekantenmethode").

Die bekanntesten Arten sind mit den Namen Broyden-Fletcher-Goldfarb-Shanno (BFGS), Broyden, Davidon, Davidon-Fletcher-Powell (DFP) verküpf.

Während der Iteration wird die inverse Steifigkeitsmatrix z.B. für die BFGS-Methode wie folgt angeähert:

\[
(K^{-1})^i = (I + w^i(v^T)^i)(K^{-1})^{-1}(I + v^i(w^T)^i)
\]

(4.16)

\(I\) bedeutet hierbei die Einheitsmatrix, während \(w^i\) und \(v^i\) Korrekturvektoren, wie sie z.B. bei MATTHIES und STRANG (1979) definiert sind, darstellen. Für die Broydenschne Methode gilt analog:

\[
(K^{-1})^i = (I + \hat{w}^i(\hat{v}^T)^i)(K^{-1})^{-1}
\]

(4.17)

Analog zur BFGS-Methode sind \(\hat{w}^i\) bzw. \(\hat{v}^i\) entsprechende Korrekturvektoren, vgl. z.B. WALKER (1979). Anzumerken ist hier, daß der Broydenschne "update", im Gegensatz zur BFGS-Methode, unsymmetrisch ist.

Der Konvergenzbeweis der Quasi-Newton-Methoden erfordert einen sogenannten "line search", d.h. eine eindimensionale Nullstellensuche. Tatsächlich konvergieren diese Verfahren in fast allen Fällen auch ohne Nullstellensuche. Sie ermöglichen aber eine beschleunigte Reduktion des Residuums der Gleichgewichtsbedingungen und sparen somit aufwendige Auflösungen des großen Gleichungssystems $K\Delta u^i = Q$.

Ausgehend von einer derzeit aktuellen Steifigkeitsmatrix K und dem aktuellen Residuum Q wird ein Verschiebungszuwachs Δu^i berechnet (Entlastung des Residuums in Richtung Δu^i). Die mit $u^i = u^{i-1} + \Delta u^i$ berechneten Residuen $Q(u^{i-1} + \Delta u^i)$ sind wegen der Nichtlinearität des Problems, und weil K nicht die exakte Tangentensteifigkeitsmatrix ist, vom 0 verschieden. Allerdings läßt sich Q durch Verwendung eines gemäß

$$\hat{u}^i = u^i + s^i \Delta u^i$$

mit einem geeigneten skalaren Faktor s^i skalierten Verschiebungszuwachses Δu^i weiter vermindern. Dazu wird eine zusätzliche Optimierungsgleichung erforderlich, aus der s^i bestimmt wird und die als

$$\Delta(u^i)^T Q(u^i + s^i \Delta u^i) = 0$$

gewählt wird. Mathematisch bedeutet dies, daß man den auf den Verschiebungsansatz projizierten Fehler auf 0 zwingt oder daß die Arbeit des Fehlerkraftvektors auf dem Verschiebungssinkrement verschwinden muß. In Bild 4.3 ist das "line search Verfahren" für den eindimensionalen Fall, bei dem es allerdings keinen Nutzen hat, dargestellt.

ds konstant gehalten wird. Die Kurvenverfolgung kann z.B. durch eine Iteration auf der Normalenebene (orthogonal zu ds) oder einer Kugelfläche erreicht werden.

Bild 4.4: Grundprinzip der Bogenlängenmethoden

Bei den für diese Arbeit durchgeführten Finite Elemente-Berechnungen wurde vorwiegend die BFGS und die Broydensche Methode mit line search verwendet.

4.1.2 Spannungsreduktion

Wegen der endlichen Belastungsschritte bei der numerischen Rechnung überschreitet der Spannungspunkt bei jedem Lastschritt an den Integrationspunkten, die plastisch werden, die Fließfläche, was im Rahmen des implementierten Stoffmodells unzulässig ist. Man ist also gezwungen, diesen Fehler im Rahmen der Iteration wieder zu beseitigen. Nachdem die Spannungen σ^e zunächst so bestimmt wurden, als wenn alle Deformationen elastisch wären, erfolgt eine Spannungsreduktion nach Maßgabe der plastischen Deformationen (elastischer Prädiktor – plastischer
Korrektor, d.h. um

\[\Delta \sigma = C^e \cdot \Delta \varepsilon^p, \]

(4.20)

wobei es verschiedene Möglichkeiten gibt, den Zustand, d.h. den Durchstoßpunkt, zu wählen, aufgrund dessen \(\Delta \varepsilon^p \) bestimmt wird:

1. anfänglicher Durchstoßpunkt durch die Fließfläche (explizites Verfahren);
2. Spannungspunkt \(\sigma^e \), der erreicht würde, wenn alle Deformationen elastisch wären;
3. Spannungspunkt am Ende der Reduktion (implizites Verfahren, Iteration erforderlich);
4. Spannungspunkt, den man als Schnittpunkt der Geraden durch den Spannungspunkt \(\sigma^e \) und einen Zentralpunkt der Fließfläche, hier z.B. \(\alpha \) für die Erstbelastungsfläche und \((\eta + \alpha) \) für die innere Fließfläche, mit der Fließfläche findet.

\[\sigma' = \text{Fließflächenpunkt nach plastischer Reduktion} \]

\[\Delta \sigma^r = \text{Spannungsüberschuß} \]

a.) Reduktion parallel zum elast. Prädictorinkrement
b.) Orthogonale Reduktion (vgl. z.B. WINSEMANN)
c.) Zentrische Reduktion (vgl. z.B. HALLEUX (1987))

Bild 4.5: Methoden der Spannungsreduktion

Das explizite Verfahren berücksichtigt das Fließkriterium am Anfang des Inkrementes, während beim impliziten Verfahren der Endzustand maßgebend ist. In dieser Arbeit wurde die vierte Methode gewählt, da sie einen Kompromiß zwischen sehr genauen aber rechenaufwendigen Methoden, wie z.B. der dritten Methode, und einfachen aber ungenauen Methoden, wie der unter Punkt zwei aufgeführten Methode, darstellt.

Als nächster Schritt wird nun die Änderung der Grenzfläche mit Hilfe des \(\Delta \varepsilon^p \) ermittelt. Obwohl sich hiermit der Spannungspunkt der Fließfläche deutlich angenähert hat, ist die Fließbedingung in der Regel immer noch verletzt, so daß sich
eine Iteration anschließen müßte. Dies ist aber in FE-Programmen sehr aufwendig, da die Iteration an jedem Integrationspunkt neu vorgenommen werden müßte. Die verbleibenden Abweichungen des Spannungspunktes von der Fließfläche werden dadurch behoben, daß man den Spannungspunkt einfach auf die Fließfläche "zurückdrückt" (Erfüllung der Konsistenzbedingung). Auch hierzu findet man verschiedene Methoden in der Literatur, die in Bild 4.5 dargestellt sind.

Bild 4.6: Zentrische Spannungsreduktion für die Grenzfließfläche (hydrostatische Ebene)

In dieser Arbeit wird die "zentrische" Reduktion, die im Falle kugelförmiger Fließflächen (ein Zentrumpunkt, vgl. Bild 4.6) mit der orthogonalen Reduktion übereinstimmt, benutzt. Dieses Verfahren wird bei aktiver Erstbelastungsfläche angewandt.

Ist jedoch nur die innere Fläche aktiv, so wird die Korrektur, die Erfüllung der Konsistenzbedingung, so durchgeführt, daß die innere Fließfläche auf den Spannungspunkt zu, entlang der zentrischen Richtung $\sigma - (\eta + \alpha)$, verschoben wird, bis sie diesen erreicht hat. Da die Annahme einer Richtung für die Reduktion ohnehin willkürlich ist, kann die hier eingeführte zentrische Reduktion (s. Bild 4.6) ebensogut verwendet werden. Bei dem für diese Arbeit entwickelten Stoffmodell mit "Fließflächenzentrum" $- \alpha$ für die Grenzfließfläche und $(\eta + \alpha)$ für die innere Fläche - bietet diese Art der Reduktion numerische bzw. programmtechnische Vorteile. Dieses Vorgehen liefert im Grenzübergang bei sehr kleinen Überschreitungen korrekte Ergebnisse und ist daher eine zulässige Näherung.
Der Iterationsvorgang für das Stoffgesetz (vgl. Bild 4.7) läuft wie folgt ab:

1. Bestimmen der Spannungen unter der Annahme, daß die gesamte Deformation im Inkrement elastisch sei.
2. Bestimmung des plastischen Anteils der inkrementellen Deformation.
5. Bei nicht erfüllter Fließbedingung wird die zentrische Spannungsreduktion angewandt. Dies bedeutet für die äußere Fließfläche, daß der Spannungspunkt zentrisch auf die neue Grenzfläche zurückgedrückt wird und für die innere Fläche eine Translation in zentrischer Richtung auf den Spannungspunkt zu.

\[\Delta \sigma^e = C^e \cdot \Delta \varepsilon^{ep} \]

Bild 4.7: Gesamter Iterationsvorgang für das Stoffgesetz

Für das verwendete Zweiflächenmodell ergibt sich bei der Bestimmung der maßgebenden Fließbedingung (vgl. auch Abschnitt 3.3) der im folgenden beschriebene Vorgang.

Wenn am Ende von Punkt 1 festgestellt wird, daß für den Spannungspunkt \(\sigma_f < 0 \) gilt, wird lediglich die elastische Matrix – mit dem derzeit aktuellen Tangentenmodul – aufgestellt, wobei weitere Schritte nicht erforderlich sind. Der Spannungspunkt befindet sich im elastischen Kern.

Ergibt sich hingegen, daß \(\sigma_f \geq 0 \) gilt, so wird zunächst überprüft, ob der Spannungspunkt zudem auf oder außerhalb der Erstbelastungsfläche \((F \geq 0)\) liegt. Wenn ja, wird mit Hilfe des definierten Fließflächenzentrums der Spannungspunkt...
\(\sigma'\) (vgl. Bild 4.6) bestimmt. Der jeweils gültige Bereich (1, 2 oder 3) ergibt sich völlig automatisch, da eine geometrische Schnittpunktbestimmung zwischen der Geraden mit dem Richtungsvektor \(\tau = \sigma - \alpha\) und der Fließfläche durchgeführt wird. Der sich ergebende Fließflächenpunkt kann, je nach Lage von \(\sigma\), im Bereich 1, 2 oder 3 liegen. Entsprechend dem gültigen Bereich tritt die Fließbedingung \(F_1\), \(F_2\) oder \(F_3\) in Kraft, die die Ableitung \(n'\) bzw. \(n^0\) bestimmt, so daß die Art der Belastung festliegt. Die Lage der inneren Fläche liegt bei aktiver Erstbelastungsfläche (s. Abschnitt 3.2.3) automatisch fest, da eine Berührung im adjungierten Punkt gefördert wird.

Gilt nach Beendigung von Punkt 1 der Stoffgesetzesiteration für den Spannungspunkt: \(F < 0\) und \(f \geq 0\), d.h. die innere Fläche ist aktiv, so wird dieselbe Berechnung wie oben angestellt, mit dem Unterschied, daß ein lokales Bezugskoordinatensystem für die innere Fläche (vgl. Abschnitt 3.2.3) gewählt wird. Die Art der Belastung liegt jetzt ebenfalls fest (s. Abschnitt 3.3), wobei sich, solange der Spannungspunkt unterhalb der Erstbelastungsfläche liegt, eine Entfestigung nicht einstellen kann, da \(h = h_i\) immer größer als 0 sein muß.

Nach Beendigung von Punkt 4 müßte sich bei einem vollständig impliziten Verfahren gegebenenfalls eine Iteration (auf Gaußpunktebene) anschließen. Diese Iteration wird durch Punkt 5 ersetzt, wodurch ein Fehler begangen wird, bei dem die Konsistenzbedingung aber trotzdem erfüllt bleibt. Die Iteration erfolgt bei dem beschriebenen Vorgehen über die auf Strukturebene ablaufenden Gleichgewichtsiterationen.

4.1.3 Entwicklung des verwendeten Programmsystems

Als Ausgangsbasis für die Programmentwicklung wurde das am Institut für Geotechnik, Stuttgart, vorhandene Programmsystem FAN sowie das von HALLQUIST (1986) entwickelte Programm NIKE2D herangezogen. Sowohl das Programmsystem FAN als auch das bereits für große Verzerrungen geschriebene Programm NIKE2D, von dem die Hauptimpulse ausgegangen, wurden zur Lösung des vorliegenden Problems stark überarbeitet und zu dem Programmsystem FANLD (Finite element Analyser for Large Deformations) zusammengeführt. Folgende grundlegende Arbeiten waren hierfür erforderlich:

- Datentechnische Kopplung der beiden Programmsysteme zur Gleichungslösung (FAN) sowie zur Plot-File-Erstellung.

- Erweiterung des Programmenteils für die Aufstellung der Elementsteifigkeiten auf nichtsymmetrische Matrizen. Hierfür wurden die "symmetrischen Elementsteifigkeiten" des Programms NIKE2D, welches die Green-Naghdi-Zeitableitung und eine natürliche Formulierung verwendet, als Grundlage herangezogen.
• Einarbeitung des nichtsymmetrischen Steifigkeitsanteils (s. Gleichung (4.5)) in die Elementformulierung.

• Anpassung der Iterationstechniken (NIKE2D) hinsichtlich der implementierten nichtsymmetrischen Gleichungslöser.

• Entwicklung und Erweiterung des Auswertungsteiles (FAN).

\(^1\)Laufende Arbeit am Institut für Geotechnik, Stuttgart
4.2 Triaxialversuche

Um das entwickelte Stoffgesetz und die numerische Implementierung zu testen, wurde eine Serie von drei identischen triaxialen Mehrstuvenversuchen gefahren und nachgerechnet. Bei dem hierfür verwendeten Boden handelt es sich um den bereits von STEINMANN (1985) untersuchten Opalinuston. Der Opalinuston wird zu den veränderlich festen Gesteinen gerechnet, deren Eigenschaften vom Wassergehalt und dem jeweils vorliegenden Verwitterungsgrad abhängig sind. Im unverwitterten Zustand weist der Opalinuston nahezu felsartige Eigenschaften auf. Durch das Auftreten einer mehr oder weniger intensiven Verwitterung verändert sich sein geomechanisches Verhalten sehr schnell (vgl. STEINMANN, 1985). Für die Triaxialversuche wurden gestörte Proben mit $w = 20.6\%$ verwendet. Die Proctor-dichte für den verwitterten Ton lag bei $\rho_{PC} = 1.72\ g/cm^3$. Der optimale Wassergehalt ergab sich zu $w_{opt} = 19.0\%$.

Die Sättigung der Proben wurde durch einen Sättigungsdruck (back pressure) von 5 bar hergestellt.

Da der verwendete Ton im Proctorgerät ausgesprochen homogene Probenkörper ergab, läßt sich die Cam-Clay-Theorie mit guter Näherung anwenden. Die Ausgangs-Konsolidationsspannung $p_c = 365\ kN/m^2$ wurde aufgrund der Kohäsion c', die in einem getrennten Scherversuch bestimmt wurde, ermittelt (s. Abschnitt 3.4.2). Die der Finite Elemente-Berechnung zugrunde liegenden Stoffparameter, die entsprechend Abschnitt 3.4 an getrennten triaxialen Scherversuchen bestimmt wurden, sind in Tabelle 4.1 dargestellt. Sie sollen an dieser Stelle kurz angesprochen werden.

Der Reibungswinkel φ' wurde (zusammen mit c') in einem triaxialen Scherver-

<table>
<thead>
<tr>
<th>Verfestigungsparameter</th>
<th>a</th>
<th>20.0</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohäsion</td>
<td>c'</td>
<td>27.7</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Parameter zur Festlegung der Kappe</td>
<td>c_0</td>
<td>0.4</td>
<td>–</td>
</tr>
<tr>
<td>Parameter für die Devisatorm</td>
<td>c_2</td>
<td>0.1</td>
<td>–</td>
</tr>
<tr>
<td>Ausgangsporennzahl</td>
<td>e_0</td>
<td>0.6115</td>
<td>–</td>
</tr>
<tr>
<td>Steigung der Critical State Line</td>
<td>M_K</td>
<td>0.87</td>
<td>–</td>
</tr>
<tr>
<td>Proportionalitätsfaktor</td>
<td>R</td>
<td>0.3333</td>
<td>–</td>
</tr>
<tr>
<td>Schwellbeiwert</td>
<td>κ</td>
<td>0.015</td>
<td>–</td>
</tr>
<tr>
<td>Kompressionsbeiwert</td>
<td>λ</td>
<td>0.045</td>
<td>–</td>
</tr>
<tr>
<td>Verfestigungssparameter</td>
<td>μ</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>Querkontraktionszahl</td>
<td>ν</td>
<td>0.25</td>
<td>–</td>
</tr>
<tr>
<td>Reibungswinkel</td>
<td>φ'</td>
<td>12.6</td>
<td>°</td>
</tr>
<tr>
<td>Dilatanzwinkel</td>
<td>ψ</td>
<td>0.0</td>
<td>°</td>
</tr>
</tbody>
</table>

Tabelle 4.1: Stoffkennwerte des untersuchten Tones
such (kleine Probe) bestimmt. Die Steigung M_K der Critical-State-Kurve wurde aus einem Triaxialversuch mit hohem Seitendruck (4 bar) ermittelt (Erstbelastungszustand). Der Kompressions- und der Schwellbeiwert wurden anhand eines Triaxialversuches mit Volumenmessung sowie einem Be- und Entlastungspfad bestimmt (linearisiertes p, e-Diagramm). Der Parameter c_0 wurde, nach Bestimmung von λ und κ, durch Auftragen der Versuchskurve und Anpassen des Stoffmodells an diese Kurve (vgl. Bild 3.16) gewonnen. Die Ausgangsporenzahl e_0 wurde konventionell ermittelt. Der Proportionalitätsfaktor R wurde an einem Triaxialversuch (isotrope Kompression), für den zunächst sehr kleine und dann immer größer werdende Be- und Entlastungszyklen gefahren wurden, bestimmt. Sobald bei diesem Versuch der elastische Bereich verlassen wird, d.h. die Verformung nicht mehr vollständig zurückgeht, ist der Spannungspunkt auf der Raumdiagonalen, bei dem dies der Fall ist, bekannt. Da zudem die Anfangs-Konsolidationsspannung p_c bekannt ist und für die Lage η der inneren Fließfläche der Ursprung näherungsweise angenommen werden kann – zu Beginn des Versuchs ist der Probenkörper belastungsfrei –, läßt sich der Proportionalitätsfaktor R errechnen. Die Nichtlinearität des Verfestigungsparameters μ (Exponent in der Gleichung für h_4) wurde bei den nachgezeichneten Mehrstufenversuchen nicht berücksichtigt, d.h. es wurde $\mu = 1$ angenommen. Der Verfestigungsparameter a wurde geschätzt, da eine Vergleichsrechnung gezeigt hat, daß sein Einfluß in dem untersuchten Spannungsbereich vernachlässigbar war. Ebenfalls ohne großen Einfluß auf das Randwertproblem war der Parameter c_2, so daß auch hier auf eine genauere Bestimmung verzichtet worden konnte. Die Querkontraktionszahl wurde zu $\nu = 0.25$ festgelegt, da eine Variation zwischen 0.15 $\leq \nu \leq$ 0.35 keine nennenswerten Unterschiede gezeigt hat. Für die Bestimmung des Dilatanzwinkels ψ wurde ein drainierter Triaxialversuch mit Volumenmessung, woraus sich $\psi \approx 0$ ergab, durchgeführt.

Beiden Mehrstufenversuchen handelt es sich um verschiebungsgesteuerte drainierte Triaxialversuche, bei denen die Seitendruckspannung ($\sigma_2 = \sigma_3$) jeweils für eine Stufe konstant gehalten wurde. Am Ende jeder Stufe wird die Probe mit dem Seitendruck der jeweils nächsten Stufe hydrostatisch konsolidiert. Anschließend wird die Probe verschiebungsgesteuert in σ_1-Richtung bis kurz vor den Grenzustand – keine weitere Lastaufnahme – gefahren. Folgende Seitendrücke p wurden auf jede Probe aufgebracht:

- $p = \sigma_2 = \sigma_3 = -50 \text{ kN/m}^2$
- $p = \sigma_2 = \sigma_3 = -100 \text{ kN/m}^2$
- $p = \sigma_2 = \sigma_3 = -200 \text{ kN/m}^2$
- $p = \sigma_2 = \sigma_3 = -50 \text{ kN/m}^2$

Die Randbedingungen für das mit einer Finiten Elemente-Berechnung zu lösende Problem sind in Bild 4.8 dargestellt. Die Stempelfläche wurde nicht geschmiert (keine Gummi-Membranen), so daß eine Halterung in horizontaler Richtung durch Reibung vorliegt. Die Stauchgeschwindigkeit betrug 0.006 mm/min. Mit Hilfe der Bauchbinden, die laufend abgelesen wurden, läßt sich die Deformation der Probe
4.3 Durchgeführte Testrechnungen

4.3.1 Nachrechnung eines Mehrstuvenversuches

Für die Finite Elemente-Berechnung wurden zwei Netze (vgl. Bild 4.9) verwendet. Aus Symmetriegründen wurde für die rotationssymmetrische Berechnung nur eine Hälfte des Probenkörpers diskretisiert.

Rotationssymmetrische Berechnung:
50 Elemente (linearer Verschiebungsansatz)
66 Knoten

a.) grobe Diskretisierung (obere Hälfte)

Rotationssymmetrische Berechnung:
200 Elemente (linearer Verschiebungsansatz)
231 Knoten

b.) feine Diskretisierung (obere Hälfte)

Bild 4.9: Diskretisierung der Mehrstuvenversuche
Die Unterschiede bei den Verschiebungen und den Spannungen aufgrund der unterschiedlichen Diskretisierung lagen unter 2 %, so daß bereits das in Bild 4.9a dargestellte Netz als ausreichend fein diskretisiert angesehen werden kann.

Stufe 1 \((p = -50 \text{ kN/m}^2)\)
Stufe 3 \((p = -200 \text{ kN/m}^2)\)

Stufe 2 \((p = -100 \text{ kN/m}^2)\)
Stufe 4 \((p = -50 \text{ kN/m}^2)\)

Für die innere Fläche gilt:

- Ausgangszustand für die Stufe \(i \ (p = \sigma_1 = \sigma_2 = \sigma_3)\)
- Belastungsende für die Stufe \(i \ (p = \sigma_2 = \sigma_3)\)
- Entlastung am Ende der Stufe \(i \ (p = \sigma_1 = \sigma_2 = \sigma_3)\)

Bild 4.10: Effektivspannungspfade und Fließkurven der Mehrstufenversuche in Probenmitte
In Bild 4.10 ist der durchfahrene Spannungspfad mit den Fließkurven dargestellt. Aus Bild 4.10 ist sowohl die kinematische Verfestigung der inneren Fläche als auch die isotrope Verfestigung der äußeren Grenzfläche ersichtlich.

Kurz vor und nach dem Fließen (d.h. keine weitere Lastaufnahme) mußten die aufgebrachten Verformungsinkrementen, um Konvergenz zu erhalten, wesentlich kleiner gewählt werden als zu Beginn der numerischen Simulation. Die Ursache hierfür ist aber eher positiv zu werten und liegt darin, daß das Stoffgesetz die Grenzlast – keine weitere Lastaufnahme – sehr gut wiedergibt. Bei großen Inkrementen im Grenzbereich ist auch das Residuum Q (s. Abschnitt 4.1) entsprechend groß, und da die Probe aufgrund des Materialzustandes keine weitere Last aufnehmen kann, ist es selbst mit sehr leistungsfähigen Iterationstechniken unmöglich, für den Fall einer nahezu vollplastifizierten Probe Konvergenz zu erzielen, wenn nicht auf eine "verschiebungskontrollierte Iterationstechnik" umgeschaltet wird.

In Gleichung (4.5) wurde zwischen "linker" (Steifigkeitsmatrix) und "rechter" Seite unterschieden. Prinzipiell sind aber einfach die Gleichgewichtsbedingungen zu erfüllen bzw. zu lösen, so daß eine Klassifizierung nach "linker" und "rechter" Seite willkürlich ist. Die in Gleichung (4.5) auftauchenden und der Steifigkeitsmatrix zugeschlagenen nichtsymmetrischen Terme könnten demnach ebensogut auch rechts berücksichtigt werden. Allerdings hat sich im Grenzfall – kurz vor und nach dem Erreichen der Grenzlast – gezeigt, daß die Berücksichtigung dieser nichtsymmetrischen Terme auf der Steifigkeitsseite für das Gleichungssystem Vorteile hat. Bei größeren Inkrementen war der Genauigkeitsverlust während der Faktorisierung der Steifigkeitsmatrix aufgrund der nichtsymmetrischen Steifigkeitsterme wesentlich geringer. Der unsymmetrische Anteil ist gegenüber dem Hauptteil der Steifigkeit, wegen der Größenunterschiede der elastischen Konstanten zu den Spannungen, in der Regel viel kleiner. Nach starker plastischer Verformung ändert sich dieser Sachverhalt, so daß eine korrekte Berücksichtigung dieser Terme den erwähnten Effekt zeigt. Der Genauigkeitsverlust konnte im Extremfall von 14 Stellen, was bei einer Wortlänge von 64 bit ungefähr der Maschinengenauigkeit entspricht, auf 10 Stellen reduziert werden, so daß im Grenzfall eine Konvergenz ohne den nichtsymmetrischen Steifigkeitsterm überhaupt nicht möglich war.

Für die Laststufen 1 – 3 wurden jeweils 50 Be- und 10 Entlastungsschritte und für die Laststufe 4, die einen wesentlich längeren Belastungspfad enthält, 200 Schritte gewählt. Die Energienorm ϵ_e wurde zu 10^{-1}, die Verschiebungsnorm ϵ_d zu 10^{-2} gewählt. Die Steifigkeitsmatrix wurde zu Beginn jedes Schrittes neu aufgestellt. In der Regel war innerhalb eines Schrittes keine neue Aufstellung der Steifigkeitsmatrix erforderlich. Das BFGS-Verfahren mit line search, der ja lediglich der Konvergenzbeschleunigung dient und mit dem Stoffgesetz nichts zu tun hat (vgl. Abschnitt 4.1), benötigte im Schnitt nur 3 Iterationen bis zur Erreichung der Konvergenz. Dies bedeutet, daß man die Schrittweite auch etwas größer hätte wählen können.
Ein Vergleich der Verformationen am Ende der einzelnen Stufen zwischen einem gefahrenen und dem rechnerisch simulierten verschiebungsgesteuerten Triaxialversuch ist in Bild 4.11 dargestellt. Die Verformationen des oberen Probenrandes in vertikaler Richtung stimmen aufgrund der verschiebungsgesteuerten Simulation a priori überein. Ein Vergleich der Radialverformationen in Probenmitte ergibt über die vier gefahrenen Stufen Unterschiede von 0 bis $\approx 10\%$, was bei den enthaltenen Ungenaigkeiten, wie z.B. Bestimmung der Materialparameter, Messgenauigkeit beim Ablesen der Bauchbinden, Randstörungen an der Probe, sehr gute Werte sind. Am Ende der letzten Stufe stimmen die Radialverformationen in Probenmitte beinahe perfekt überein, während am Ende der Stufen 1-3, wo alle Verformationen noch sehr viel kleiner sind, prozentual gesehen, größere Abweichungen auftreten. Abgesehen von den oben erwähnten Ungenaigkeiten kommt hier der Vergleich "kleiner Zahlenwerte" hinzu, so daß insgesamt die Übereinstimmung über alle Stufen in Probenmitte sehr gut ist. Im oberen und unteren Teil der Probe ist die Übereinstimmung am Ende der Stufe 4 nicht ganz so perfekt (Differenz $\approx 10\%$), was u.a. auf den Randeinfluß (Simulation der oberen und unteren Randbedingungen) zurückzuführen ist, so daß man auch hier von einer guten Übereinstimmung bei den Verformationen zwischen Rechnung und Experiment sprechen kann.

Die aus der FE-Berechnung ermittelten Spannungen sind in den Bildern 4.12 - 4.15 für die letzte Stufe dargestellt. In Bild 4.16 ist die Scherzahl

$$S = \frac{\tan(\varphi'_{mob})}{\tan(\varphi')}$$ \hspace{1cm} (4.21)

und in Bild 4.17 der Verfestigungsmodul h (s. Abschnitt 3.2.3) für die Stufe 4 aufgetragen.
Durchgeführte Testrechnungen

\[\varepsilon_1 = -2.6 \% \quad \varepsilon_1 = -4.1 \% \quad \varepsilon_1 = -6.1 \% \quad \varepsilon_1 = -20.1 \% \]

Stufe 1
\[p = -50 \text{ kN/m}^2 \]
Stufe 2
\[p = -100 \text{ kN/m}^2 \]
Stufe 3
\[p = -200 \text{ kN/m}^2 \]
Stufe 4
\[p = -50 \text{ kN/m}^2 \]

FE-Berechnung (verschiebungsgesteuert)

\[\varepsilon_1 = -2.6 \% \quad \varepsilon_1 = -4.1 \% \quad \varepsilon_1 = -6.1 \% \quad \varepsilon_1 = -20.1 \% \]

Stufe 1
\[p = -50 \text{ kN/m}^2 \]
Stufe 2
\[p = -100 \text{ kN/m}^2 \]
Stufe 3
\[p = -200 \text{ kN/m}^2 \]
Stufe 4
\[p = -50 \text{ kN/m}^2 \]

Verschiebungsgesteuerter Triaxialversuch

Bild 4.11: Verformungen am Ende der einzelnen Belastungsstufen
Bild 4.12: Cauchy-Spannungen σ_{zz}, FE-Berechnung für die Stufe 4

Bild 4.13: Cauchy-Spannungen σ_{rz}, FE-Berechnung für die Stufe 4
Bild 4.14: Cauchy-Spannungen σ_{rr}, FE-Berechnung für die Stufe 4

Bild 4.15: Cauchy-Spannungen σ_{zz}, FE-Berechnung für die Stufe 4
Bild 4.16: Scherzahl S, FE-Berechnung für die Stufe 4

Bild 4.17: Verfestigungsmodul h, FE-Berechnung für die Stufe 4
Ein Vergleich zwischen Rechnung und Experiment ergibt auch für die Spannungen eine sehr gute Übereinstimmung. In Tabelle 4.2 ist ein Vergleich der Spannungen in Probenmitte zwischen Versuch und Rechnung dargestellt. Für die Ermittlung der Spannungen am Versuchskörper wurde die gemessene Gesamtkraft und die aktuelle Fläche in Probenmitte zugrundegelegt. Für die aus der FE-Berechnung ermittelte Spannung wurde ein Mittelwert in Probenmitte (s. Bild 4.12) herangezogen.

<table>
<thead>
<tr>
<th>Stufe</th>
<th>(p) (kN/m²)</th>
<th>Versuchswerte (\sigma^M_{zz}) (kN/m²)</th>
<th>FE-Berechnung (\sigma^M_{zz}) (kN/m²)</th>
<th>FE-Berechnung (geom. linear) (\sigma^M_{zz}) (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-50</td>
<td>-133</td>
<td>-147</td>
<td>-148</td>
</tr>
<tr>
<td>2</td>
<td>-100</td>
<td>-214</td>
<td>-230</td>
<td>-232</td>
</tr>
<tr>
<td>3</td>
<td>-200</td>
<td>-367</td>
<td>-397</td>
<td>-404</td>
</tr>
<tr>
<td>4</td>
<td>-50</td>
<td>-195</td>
<td>-208</td>
<td></td>
</tr>
</tbody>
</table>

\(\sigma^M_{zz} = \text{Mittelwert in Probenmitte (Belastungsende Stufe \(i \))} \)

Tabelle 4.2: Vergleich der Vertikalspannungen in Probenmitte

Zusätzlich zur vollständig (geometrisch und materiell) nichtlinearen Berechnung wurde ein Vergleich angestellt, bei dem die geometrische Nichtlinearität ausgeschaltet wurde. Die sich sich hieraus ergebenden Spannungen sind ebenfalls in Tabelle 4.2 dargestellt. Für die ersten 3 Stufen ergab sich nur ein sehr geringfügiger Unterschied. Die Vertikalverformung \(\varepsilon_z \) betrug am Ende von Stufe 3 ca. -6 %, so daß man sagen kann, daß die geometrische Nichtlinearität in diesem Bereich keine große Rolle spielt. Für die Stufe 4 konnte unter denselben Bedingungen, d.h. gleiche Toleranzwerte \(\varepsilon_x \) und \(\varepsilon_y \), keine Konvergenz erzielt werden. Nach Lockerung dieser Kriterien wurde zwar Konvergenz erreicht, jedoch traten im betrachteten Schnitt Spannungsschwankungen von bis zu 100 % auf, so daß in Tabelle 4.2 für diesen Bereich kein Wert angegeben wurde. Bei den Verformungen haben sich zwischen der nur materiell nichtlinearen und der vollständig nichtlinearen Berechnung keine wesentlichen Unterschiede ergeben.

Die aus der numerischen Simulation ermittelten Scherzahlen \(S \) sowie die Verfestigungsmodule \(h \) (vgl. Bild 4.16 und 4.17) zeigen eine nahezu vollständig ausgereizte Probe, bei der das Ausbilden von Scherfugen, wie sie auch an bis zur Grenzlast gefahrenen Proben beobachtet werden, erkennbar ist. Ein Vergleich des Spannungsverlaufes (Last-Verschiebungskurve) ist in Bild 4.18 in Probenmitte für den gesamten Versuch dargestellt.

Für den Versuch wurde zur Spannungsberechnung (Bild 4.18) wiederum die gemessene Kraft durch die aktuelle Fläche geteilt, während bei der für die Finite Elemente-Berechnung ermittelten Kurve ein Element in Probenmitte (vgl. Bild

Die "Zitterline" aus der FE-Berechnung am Ende von Stufe 4 (s. Bild 4.18) rührt wohl hauptsächlich daher, daß die Auswertung der Spannungen der Einfachheit halber an dem Element 1 (Probenmitte) durchgeführt wurde. Ein verschmierter Wert, d.h. ein Mittelwert über die gesamte Probe, würde vermutlich eine etwas glattere Kurve ergeben. Die Instabilität der Versuchskurve (Ende Stufe 4) wurde nicht näher untersucht.
4.3.2 Nachrechnung eines Biaxialversuches

<table>
<thead>
<tr>
<th>Verfestigungsparameter</th>
<th>a</th>
<th>1.0</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohäsion</td>
<td>c'</td>
<td>2.3</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Parameter zur Festlegung der Kappe</td>
<td>c_0</td>
<td>0.4</td>
<td>–</td>
</tr>
<tr>
<td>Parameter für die Deviatorform</td>
<td>c_2</td>
<td>0.4</td>
<td>–</td>
</tr>
<tr>
<td>Ausgangsporenzahl</td>
<td>e_0</td>
<td>1.401</td>
<td>–</td>
</tr>
<tr>
<td>Steigung der Critical State Line</td>
<td>M_K</td>
<td>1.1635</td>
<td>–</td>
</tr>
<tr>
<td>Proportionalitätsfaktor</td>
<td>R</td>
<td>0.3333</td>
<td>–</td>
</tr>
<tr>
<td>Schwellbeiwert</td>
<td>κ</td>
<td>0.140</td>
<td>–</td>
</tr>
<tr>
<td>Kompressionsbeiwert</td>
<td>λ</td>
<td>0.200</td>
<td>–</td>
</tr>
<tr>
<td>Verfestigungsparameter</td>
<td>μ</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>Querkontraktionszahl</td>
<td>ν</td>
<td>0.25</td>
<td>–</td>
</tr>
<tr>
<td>Reibungswinkel</td>
<td>φ'</td>
<td>20.0</td>
<td>°</td>
</tr>
<tr>
<td>Dilatanzwinkel</td>
<td>ψ</td>
<td>10.0</td>
<td>°</td>
</tr>
</tbody>
</table>

Tabelle 4.3: Stoffkennwerte für den "Karlsruher Ton"

Die aus der Arbeit von TOPOLNICKI (1987) bestimmten Stoffparameter – z.T. durch Kalibrierung an einem anderen Versuch – sind in Tabelle 4.3 dargestellt. Da die meisten Stoffparameter bei dem Modell von TOPOLNICKI eine andere Bedeutung besitzen, konnten nur die Parameter e_0, φ' und c' direkt verwendet werden. Da der Anfangsspannungszustand des nachzurechnenden Versuches 307 bekannt ist, wird c' bei dem in dieser Arbeit entwickelten Modell nicht benötigt, wenn man annimmt, daß der Ausgangsspannungszustand eine Erstbelastung darstellt, d.h. man geht davon aus, daß der Spannungspunkt auf der Erstbelastungsfläche liegt – c' wird ja lediglich dazu benutzt, die Anfangs-Konsolidationsspannung p_c (vgl. Abschnitt 3.4.2) zu ermitteln. Die Querkontraktionszahl ν, der Verfestigungsparameter μ sowie der Parameter c_0 wurden festgelegt und nicht weiter variiert. Die weiteren Parameter in Tabelle 4.3 wurden durch Kalibrierung am Versuch 306 (TOPOLNICKI 1987) bestimmt. Anzumerken ist an dieser Stelle noch, daß die Steigung der CSL größer als bei TOPOLNICKI ist – es wird dort eine modified CSL (MCSL) benutzt –, was aber auch daher rührt, daß der Reibungswinkel
φ' im Vergleich zur Neigung der MCSL relativ groß ist. Bei dem in dieser Arbeit entwickelten Stoffmodell ist der Reibungswinkel (Neigung der Grenzfließfläche im überkritischen Bereich) entscheidend. Eine weitere Auffälligkeit sind die höheren Werte λ und κ. Während der Kompressionsbeiwert λ noch im Bereich der Werte von TOPOLNICKI liegt (im einfach linearisierten p, e-Diagramm), ist der Schwellbeiwert κ deutlich größer. Dies könnte daran liegen, daß bei den Versuchen von TOPOLNICKI in erster Linie das plastische Erstbelastungsverhalten maßgebend ist. Dies bedeutet, daß die Differenz $\lambda - \kappa$ wichtiger ist – sie steht in der Gleichung für den Verfestigungsmodul h_0 – als der absolute Wert von κ oder anders ausgedrückt, daß der "elastische" Tangentenmodul E gegenüber h_0 eine untergeordnete Rolle spielt. Eine genauere Untersuchung dieses Sachverhaltes wurde in dieser Arbeit nicht durchgeführt.

\[x_{i+1} = x_i + \frac{\varepsilon}{\chi} \Delta t \]

(4.22)
Durchgeführte Testrechnungen

Bild 4.20: Biaxialversuch von Topolnicki (1987) im σ_m, σ^*-Diagramm

gewählt. χ bedeutet hierbei eine beliebige Variable und Δt einen ausreichend kleinen Zeitschritt. Für die bei Topolnicki durchgeführten Berechnungen wurde $\Delta t = 0.001$ gewählt. Hierdurch ergibt sich bei Dehnungen von $\varepsilon_i \approx 40\%$ und einer Dehnungsgeschwindigkeit von $\varepsilon = 0.5\%/h$, wie sie bei den Versuchen aufgebracht wurde, eine um zwei Zehnerpotenzen größere Schrittzahl als für die Finite Elemente-Berechnung, was sich auf die Qualität der Pfade naturgemäß sehr
5 Zusammenfassung

Aus den möglichen Stofftheorien wurde das Konzept der Plastizitätstheorie ausgewählt. Dieses Konzept ist jedoch keineswegs die einzige Theorie, welche sich für die Beschreibung von Böden eignet, es ist eine Möglichkeit und nicht a priori die beste. Mit dem entwickelten elasto-plastischen Zweiflächennmodell mit isotrop- und kinematischer Verfestigung lassen sich auch komplexe Spannungspfade gut beschreiben. Durch die Einführung einer zweiten Fließfläche, die auf MRÓZ et al. zurückgeht, kommt man auch bei Verformungsberechnungen unterhalb der Traglast, d.h. unterhalb der "Grenzschwellfläche", dem wirklichen Stoffverhalten erheblich näher.

Um konkrete Randwertprobleme mit großen Verzerrungen lösen zu können, muß das Stoffgesetz und der für große Verzerrungen notwendige Algorithmus in ein Finite Elemente-Programm implementiert werden. Beim Übergang von einer Geschwindigkeitsformulierung auf Inkremente, die bei der Methode der Finiten
Elemente erforderlich sind, kommt die Numerik als wichtiger Punkt hinzu. Der Vorteil der verwendeten Geschwindigkeitsformulierung ist darin zu sehen, daß man sich, da alle Rechnungen auf der aktuellen Konfiguration abgewickelt werden, nicht zu überlegen braucht, welche Größe auf welcher Konfiguration definiert ist.

In dieser Arbeit wurde eine Finite Elemente-Formulierung für große Deformationen auf nichtsymmetrische Matrizen, aufgrund einer nichtassoziierten Fließregel für das Stoffgesetz, erweitert. Durch diese Vorarbeit war es möglich, den in der Arbeitsgleichung auftauchenden nichtsymmetrischen Steifigkeitsterm auch auf der "Steifigkeitsseite" zu berücksichtigen. Im Grenzfall, z.B. bei einem vollplastifizierten Körper, verbessert dieser Term die Konditionierung der Steifigkeitsmatrix entscheidend und ermöglicht zum Teil dadurch überhaupt erst eine Lösung in diesem Bereich. Unterhalb der Traglast ergeben sich bei einer wahlweisen Berücksichtigung dieses Termes auf der Lastseite oder auf der Steifigkeitsseite keine Unterschiede, insbesondere deshalb, da dieser Term im allgemeinen zwei bis drei Größenordnungen kleiner als der symmetrische Hauptteil der Steifigkeit ist.

Die Finite Elemente-Formulierung und das Stoffgesetz wurden an Versuchen getestet. Die Übereinstimmung der errechneten Verformungen und Spannungen war, in Anbetracht der Komplexität der Spannungsfade, sehr gut. Da sowohl die Messungen bei einem Versuch als auch die Finite Elemente-Berechnungen stets mit einem Fehler behaftet sind, wäre eine vollkommene Übereinstimmung Zufall.

6 Literatur

MRÓZ, Z. (1969): An attempt to describe the behaviour of metals under cyclic loads using a more general workhardening model, ACTA Mechanica 7, S. 199-212.

TERZAGHI, K. (1936): The shearing resistance of saturated soils and the angle between the planes of shear, 1. ICSMFE, Cambridge, Band 1, S. 54-56.

THAMM, B. (1974): Berechnung der Anfangssetzungen und der Anfangszonenwasserdrucke eines wassergesättigten normalverdichteten Tones, Mitteilung 1, Institut für Geotechnik, Universität Stuttgart, Eigenverlag des IGS.

7 Anhang

Einige im Text nicht näher erläuterte Umformungen werden im folgenden dargestellt.

7.1 Zerlegung des Geschwindigkeitsgradienten

Der Geschwindigkeitsgradient L wird in einen elastischen (reversiblen) und in einen plastischen (irreversiblen) Anteil (vgl. Gleichung (2.33)) zerlegt. Für den Geschwindigkeitsgradienten L gilt:

$$ L = \dot{F} F^{-1} $$

(7.1)

Mit Hilfe des Produktansatzes $F = F_e F_p$ für den Deformationsgradienten folgt:

$$ L = (F_e F_p)^*(F_e F_p)^{-1} $$

$$ = \dot{F}_e F_p (F_e F_p)^{-1} + F_e \dot{F}_p (F_e F_p)^{-1} $$

(7.2)

Mit $(F_e F_p)^{-1} = F_p^{-1} F_e^{-1}$ ergibt sich:

$$ L = \dot{F}_e F_p F_p^{-1} F_e^{-1} + F_e \dot{F}_p F_p^{-1} F_e^{-1} $$

$$ = \dot{F}_e F_e^{-1} + F_e \dot{F}_p F_p^{-1} F_e^{-1} $$

$$ \Rightarrow L = L_e + L_p $$

(7.3)

mit

$L_e = \dot{F}_e F_e^{-1}$ und $L_p = F_e \dot{F}_p F_p^{-1} F_e^{-1}$

(7.4)
7.2 Forderungen an objektive Zeitableitungen

Die geeignete mitrotierende Zeitableitung wurde im Abschnitt 2.2 durch eine physikalisch motivierte Wahl von Direktorenystemen, die dem Prinzip der Materialobjektivität (vgl. Gleichung (2.18)) entsprechend zulässig sein müssen, festgelegt. Mit \(\ddot{\sigma} \) als allgemeinem Symbol für mitrotierende Zeitableitungen folgt (vgl. Gleichung (2.20)):

\[
\ddot{\sigma} = G^T \sigma H^T, \quad \ddot{\sigma} = G^{-1}\sigma (H^{-1})^T
\]

(7.5)

Setzt man diese beiden Gleichungen ineinander ein, so folgt:

\[
\ddot{\sigma} = G (G^{-1}\sigma (H^{-1})^T)^* H^T
\]

\[
\ddot{\sigma} = G G^{-1}\sigma (H^{-1})^T H^T + G G^{-1}\dot{\sigma} (H^{-1})^T H^T + G G^{-1}\ddot{\sigma} (H^{-1})^T H^T
\]

\[
\ddot{\sigma} = G G^{-1}\sigma + \dot{\sigma} + \sigma (H^{-1})^T H^T
\]

(7.6)

Definiert man die Rotationsgeschwindigkeitstensoren \(K_G \) und \(K_H \) wie folgt:

\[
\dot{G} = K_G G \quad \text{sowie} \quad \dot{H} = K_H H
\]

(7.7)

so ergibt sich als allgemeine Form der mitrotierenden und objektiven Zeitableitungen:

\[
\ddot{\sigma} = \dot{\sigma} - K_G \sigma - \sigma K_H^T
\]

(7.8)

Die physikalische Motivation und die Einschränkung des Objektivitätsprinzips, insbesondere wegen der Probleme mit der Aufteilung einer Bewegung in Deformations- und Rotationsanteile, laufen nicht auf eine eindeutige Zeitableitung hinaus. Um aus der Vielfalt der vorgeschlagenen Zeitableitungen sinnvollere und weniger sinnvolle Zeitableitungen auszuwählen, dienen die folgenden Kriterien:

- Ist \(\ddot{\sigma} = 0 \), so sollen die Invarianten \(I_1, I_2, I_3 \) von \(\sigma \) für beliebige Tensoren \(\sigma \) stationär bleiben. Alle Invarianten von \(\sigma \) lassen sich aus den drei Invarianten

\[
J_1 = \sigma \cdot 1 \\
J_2 = \frac{1}{2} \sigma \cdot \sigma \\
J_3 = \frac{1}{3} \sigma^2 \cdot \sigma
\]

errechnen. Hieraus folgt:

\[
\dot{J}_1 = 1 \cdots \dot{\sigma} \\
\dot{J}_2 = \sigma \cdots \dot{\sigma} \\
\dot{J}_3 = \sigma^2 \cdots \dot{\sigma}
\]
Verallgemeinert muß also für $\bar{\sigma} = 0$

$$f(\sigma) \cdots \bar{\sigma} = 0$$ \hspace{1cm} (7.9)

erfüllt werden. Aus $\bar{\sigma} = 0$ folgt:

$$\dot{\sigma} = K_G \sigma + \sigma K_H^T,$$ \hspace{1cm} (7.10)

so daß sich wegen der Kommutativität des doppelt skalaren Produktes

$$[\sigma f(\sigma)] \cdot (K_G + K_H^T) = 0$$ \hspace{1cm} (7.11)

ergibt. Weil dies für alle σ gelten muß, folgt:

$$K_H = -K_G^T$$ \hspace{1cm} (7.12)

Die Invarianzbedingung fordert somit Zeitableitungen der Form:

$$\bar{\sigma} = \dot{\sigma} - (K_G \sigma - \sigma K_G)$$ \hspace{1cm} (7.13)

- Für Tensoren σ, die symmetrisch sind und es auch bleiben, d.h. $\sigma = \sigma^T$, $\dot{\sigma} = \dot{\sigma}^T$, soll auch die mitrotierende Zeitableitung symmetrisch sein: $\bar{\sigma} = \bar{\sigma}^T$.

Transponiert man Gleichung (7.8) und zieht dies von Gleichung (7.8) ab, folgt unter Beachtung der Bedingungen der Symmetrieerhaltung $\sigma = \sigma^T$:

$$\sigma(K_G^T - K_H^T) - (K_G - K_H)\sigma = 0$$ \hspace{1cm} (7.14)

Führt man die Abkürzung $X = (K_G - K_H)$ ein, so folgt nach Aufteilung von X in einen symmetrischen und einen antimetrischen Anteil:

$$\sigma X^* - X^* \sigma = -\sigma (X^*)^T + X^* \sigma$$

$$= \sigma X^* + X^* \sigma$$ \hspace{1cm} (7.15)

Dieses Problem läßt sich als

$$B = AX +XA$$ \hspace{1cm} (7.16)

darstellen. Für antimetrische B, symmetrische A zwingt dieser Ansatz der Unbekannten X Antimetrie auf. Die Lösung für dieses Problem ist bei Stickforth (1983) angegeben und lautet:

$$X = \frac{1}{2(I_1 I_2 - I_3)} \left[(I_1^2 + I_2)B + I_1 I_3 A^{-1} BA^{-1} \\
+ABA - I_3(A^{-1}B + BA^{-1}) - I_1(AB + BA) \right]$$ \hspace{1cm} (7.17)
I_1, I_2, I_3 stellen wie oben die Invarianten von σ dar und es gilt:

\[A = \sigma \]

und

\[B = \sigma X^* - X^* \sigma \]

σ^{-1} läßt sich über das Cayley-Hamiltonsche Theorem,

\[\sigma^{-1} = \frac{1}{I_3} (\sigma^2 - I_1 \sigma + I_2 \mathbf{1}) \]

ermitteln, so daß folgt:

\[
X^a = \frac{1}{2(I_1 I_2 - I_3)} \left\{ (I_1^2 + I_2)(\sigma X^* - X^* \sigma) \right. \\
+ I_1 I_3 \sigma^{-1}(\sigma X^* - X^* \sigma) \sigma^{-1} \\
+ \sigma (\sigma X^* - X^* \sigma) \sigma \\
- I_3 \left[\sigma^{-1}(\sigma X^* - X^* \sigma) + (\sigma X^* - X^* \sigma) \sigma^{-1} \right] \\
- I_1 \left[\sigma (\sigma X^* - X^* \sigma) + (\sigma X^* - X^* \sigma) \sigma \right] \right\}
\]

(7.18)

\[
X^a = \frac{1}{2(I_1 I_2 - I_3)} \left\{ (I_1^2 + I_3)(\sigma X^* - X^* \sigma) \right. \\
+ \frac{I_1 I_3}{I_3} \sigma X^* (\sigma^2 - I_1 \sigma + I_2 \mathbf{1}) - \frac{I_1 I_3}{I_3} (\sigma^2 - I_1 \sigma + I_2 \mathbf{1}) X^* \\
+ \sigma^2 X^* \sigma - \sigma X^* \sigma^2 - I_3 X^* + I_3 X^* \\
+ \frac{I_3}{I_3} (\sigma^2 - I_1 \sigma + I_2 \mathbf{1}) X^* \sigma - \frac{I_3}{I_3} \sigma X^* (\sigma^2 - I_1 \sigma + I_2 \mathbf{1}) \\
- I_1 \left[\sigma^2 X^* - \sigma X^* \sigma + \sigma X^* \sigma - X^* \sigma^2 \right] \right\}
\]

(7.19)

\[
X^a = \frac{1}{2(I_1 I_2 - I_3)} \left\{ I_1^2 (\sigma X^* - X^* \sigma) + I_2 \sigma X^* - I_2 X^* \sigma \\
+ I_1 X^* \sigma^2 - I_2 X^* \sigma + I_1 I_2 X^* \\
- I_1 \sigma^2 X^* + I_2^2 \sigma X^* - I_1 I_2 X^* \\
+ \sigma^2 X^* \sigma - \sigma X^* \sigma^2 + \sigma^2 X^* \sigma \\
- I_1 \sigma X^* \sigma + I_2 X^* \sigma - \sigma X^* \sigma^2 + I_1 \sigma X^* \sigma - I_2 \sigma X^* \\
- I_1 \sigma^2 X^* + I_1 \sigma X^* \sigma - I_1 \sigma X^* \sigma + I_1 X^* \sigma^2 \right\}
\]

(7.20)

\[
X^a = \frac{1}{(I_1 I_2 - I_3)} \left\{ I_1^2 (\sigma X^* - X^* \sigma) \\
+ I_1 (X^* \sigma^2 - \sigma^2 X^*) + \sigma^2 X^* \sigma - \sigma X^* \sigma^2 \right\}
\]

(7.21)

(7.22)

Für vorgegebene X^* ist X^a nach Gleichung (7.22) eindeutig bestimmt, jedoch von σ selbst abhängig. Die Symmetrierhaltung soll aber für alle symmetrischen Tensoren σ gelten, so daß die geschweifte Klammer in Gleichung
(7.22) von \(\sigma \) unabhängig sein muß. Dies gelingt, wie man durch Koeffizientenvergleich feststellt, nur für \(X' = 0 \) und für \((\sigma X' - X' \sigma) = 0 \), was einen Kugelanteil \(a \cdot 1 \) liefert, so daß \(X = a \cdot 1 \) die einzige von \(\sigma \) unabhängige Lösung von Gleichung (7.22) ist. Die Symmetrieerhaltung erfordert also

\[
K_G = K_H + a \cdot 1
\]
(7.23)

Beide Forderungen zusammen lassen somit nur noch antimetrische Rotationsgeschwindigkeitstensoren \(K_G \) und ein einheitliches Direktorensystem für beide Indizes zu. Es gilt also:

\[
K_G = K_H = -K_G^T
\]
(7.24)
7.3 Ableitung der nichtsymmetrischen Steifigkeitssterme (Geometrieterme)

Ausgehend von den Gleichgewichtsbedingungen (vgl. Gleichung (4.3))

\[\delta W_{ex}^* = \left[\int_{\partial V} \sigma \cdot \delta L \det F \, d^\nu V \right]^* = 0, \quad (7.25) \]

wobei \(\delta \) nur auf die Geschwindigkeiten wirkt, folgt:

\[\int_{\partial V} \left[\sigma \cdot \delta L \det F + \sigma \cdot (\delta L)^* \det F + \sigma \cdot \delta L (\det F)^* \right] d^\nu V = \delta W_{ex}^*. \quad (7.26) \]

Für \((\det F)^*\) gilt nach STICKFORTH (1983):

\[
\begin{align*}
(\det F)^* &= \det F \cdot F^{-1} = \det F \cdot \dot{F} = \det F \cdot F^{-1} = \det F \tr \nabla \otimes v \\
(\det F)^* &= \det F \div v
\end{align*}
(7.27)
\]

Es ergibt sich somit:

\[
\begin{align*}
\int_{\partial V} \left[\sigma \cdot \delta L + \sigma \cdot (\delta L)^* + \sigma \cdot \delta L \div v \right] d^\nu V &= \delta W_{ex}^* \\
= \int_{\partial V} \left[\sigma \cdot \delta D + \sigma \cdot (\delta L)^* + (\sigma \div v) \cdot \delta L \right] d^\nu V &= \delta W_{ex}^*
\end{align*}
(7.28)
\]

Hierbei ist die Ableitung des Geschwindigkeitsgradienten \((\delta L)^*\) erforderlich. Für \((\nabla \otimes \delta v)^*\) gilt (vgl. STICKFORTH, 1983):

\[
(\nabla \otimes \delta v)^* = \left(\varepsilon^\kappa \otimes \frac{\partial}{\partial \zeta^\kappa} \delta v \right)^*
\]

\[
= \varepsilon^\kappa \otimes \delta v,_{\kappa} + \varepsilon^\kappa \cdot (\delta v,_{\kappa})^*,
\]

wobei \(\zeta^\kappa\) die materiellen Koordinaten sind. \(\delta v\) sei nun eine zeitunabhängige Variation, so daß mit \((\delta v,_{\kappa})^* = 0\) folgt:

\[
(\nabla \otimes \delta v)^* = -v,_{\lambda} \varepsilon^\lambda \otimes \delta v,_{\kappa}
\]

\[
= -v,_{\lambda} \varepsilon^\lambda \otimes \varepsilon^\mu \otimes \delta v,_{\mu}
\]

\[
= -\nabla \otimes v \cdot \nabla \otimes \delta v
\]
(7.29)

Für \((\delta L)^*\) gilt somit:

\[
(\delta L)^* = ((\nabla \otimes \delta v)^T)^*
\]

\[
= -(\nabla \otimes v \cdot \nabla \otimes \delta v)^T
\]

\[
= -(\nabla \otimes \delta v)^T (\nabla \otimes v)^T
\]

\[
(\delta L)^* = -\delta L \cdot L
\]
(7.30)
Mit $\sigma \cdot (\delta L \cdot L) = \sigma \cdot (L^T \delta L^T)$ (Symmetrie von σ) ergibt sich dann:

$$\int_V \left[\sigma \cdot \delta D - \sigma \cdot (L^T \delta L^T) + \text{div}v \sigma \cdot \delta L \right] \, dV = \delta \dot{W}^{ex}$$ (7.31)

Die Terme $\sigma \cdot (L^T \delta L^T)$ und $\text{div}v \sigma \cdot \delta D$ liefern unsymmetrische Matrizen, welche im folgenden abgeleitet werden.

Für den ersten Term folgt:

$$x = \sigma \cdot (L^T \delta L^T) = \sigma \cdot (\nabla \otimes v) \cdot (\nabla \otimes \delta v)$$ (7.32)

ν seien die Verschiebungsinkremente oder Geschwindigkeiten und w enthalte die Komponenten von $\nabla \otimes v$, δw die von $\nabla \otimes \delta v$.

$$w^T = (v_{1,1}, v_{1,2}, v_{2,1}, v_{2,2}, v_{3,3})$$ (7.33)

Analog zu Gleichung (7.33) ergibt sich δw, so daß gilt:

$$x = w^T A \delta w$$ (7.34)

Für die Berechnung von A folgt:

$$x = \sigma \cdot (\nabla \otimes v) \cdot (\nabla \otimes \delta v) =$$

$$= \sigma \cdot \begin{bmatrix}
v_{1,1} & v_{2,1} & 0 \\
v_{1,2} & v_{2,2} & 0 \\
0 & 0 & v_{3,3}
\end{bmatrix} \begin{bmatrix}
\delta v_{1,1} & \delta v_{2,1} & 0 \\
\delta v_{1,2} & \delta v_{2,2} & 0 \\
0 & 0 & \delta v_{3,3}
\end{bmatrix}$$

$$= \sigma \cdot \begin{bmatrix}
v_{1,1} \delta v_{1,1} + v_{2,1} \delta v_{1,2} & v_{1,1} \delta v_{2,1} + v_{2,1} \delta v_{2,2} & 0 \\
v_{1,2} \delta v_{1,1} + v_{2,2} \delta v_{1,2} & v_{1,2} \delta v_{2,1} + v_{2,2} \delta v_{2,2} & 0 \\
0 & 0 & v_{3,3} \delta v_{3,3}
\end{bmatrix}$$ (7.35)

Für σ gilt im rotationssymmetrischen Fall mit $\sigma_{12} = \sigma_{21}$:

$$\sigma = \begin{bmatrix}
\sigma_{11} & \sigma_{12} & 0 \\
\sigma_{12} & \sigma_{22} & 0 \\
0 & 0 & \sigma_{33}
\end{bmatrix}$$

$$\Rightarrow \sigma \cdot (\nabla \otimes v) \cdot (\nabla \otimes \delta v) =$$

$$= \sigma_{11} [v_{1,1} \delta v_{1,1} + v_{2,1} \delta v_{1,2}] + \sigma_{12} [v_{1,2} \delta v_{1,1} + v_{2,2} \delta v_{1,2}] + \sigma_{12} [v_{1,1} \delta v_{2,1} + v_{2,1} \delta v_{2,2}] + \sigma_{22} [v_{1,2} \delta v_{2,1} + v_{2,2} \delta v_{2,2}] + \sigma_{33} [v_{3,3} \delta v_{3,3}]$$ (7.36)

$$x = [v_{1,1}, v_{1,2}, v_{2,1}, v_{2,2}, v_{3,3}] A$$ (7.37)
\[
A = \begin{bmatrix}
\delta v_{1,1} \\
\delta v_{1,2} \\
\delta v_{2,1} \\
\delta v_{2,2} \\
\delta v_{3,3}
\end{bmatrix} = \begin{bmatrix}
A_{11} \delta v_{1,1} + A_{12} \delta v_{1,2} + A_{13} \delta v_{2,1} + A_{14} \delta v_{2,2} + A_{15} \delta v_{3,3} \\
A_{21} \delta v_{1,1} + A_{22} \delta v_{1,2} + A_{23} \delta v_{2,1} + A_{24} \delta v_{2,2} + A_{25} \delta v_{3,3} \\
A_{31} \delta v_{1,1} + A_{32} \delta v_{1,2} + A_{33} \delta v_{2,1} + A_{34} \delta v_{2,2} + A_{35} \delta v_{3,3} \\
A_{41} \delta v_{1,1} + A_{42} \delta v_{1,2} + A_{43} \delta v_{2,1} + A_{44} \delta v_{2,2} + A_{45} \delta v_{3,3} \\
A_{51} \delta v_{1,1} + A_{52} \delta v_{1,2} + A_{53} \delta v_{2,1} + A_{54} \delta v_{2,2} + A_{55} \delta v_{3,3}
\end{bmatrix}
\]

(7.38)

\[
x = v_{1,1} [A_{11} \delta v_{1,1} + A_{12} \delta v_{1,2} + A_{13} \delta v_{2,1} + A_{14} \delta v_{2,2} + A_{15} \delta v_{3,3}] \\
+ v_{1,2} [A_{21} \delta v_{1,1} + A_{22} \delta v_{1,2} + A_{23} \delta v_{2,1} + A_{24} \delta v_{2,2} + A_{25} \delta v_{3,3}] \\
+ v_{2,1} [A_{31} \delta v_{1,1} + A_{32} \delta v_{1,2} + A_{33} \delta v_{2,1} + A_{34} \delta v_{2,2} + A_{35} \delta v_{3,3}] \\
+ v_{2,2} [A_{41} \delta v_{1,1} + A_{42} \delta v_{1,2} + A_{43} \delta v_{2,1} + A_{44} \delta v_{2,2} + A_{45} \delta v_{3,3}] \\
+ v_{3,3} [A_{51} \delta v_{1,1} + A_{52} \delta v_{1,2} + A_{53} \delta v_{2,1} + A_{54} \delta v_{2,2} + A_{55} \delta v_{3,3}]
\]

(7.39)

Durch Koeffizientenvergleich folgt:

\[
A = \begin{bmatrix}
\sigma_{11} & 0 & \sigma_{12} & 0 & 0 \\
\sigma_{12} & 0 & \sigma_{22} & 0 & 0 \\
0 & \sigma_{11} & 0 & \sigma_{12} & 0 \\
0 & \sigma_{12} & 0 & \sigma_{22} & 0 \\
0 & 0 & 0 & 0 & \sigma_{33}
\end{bmatrix}
\]

(7.40)

Für den zweiten Term folgt:

\[
y = \text{div} \sigma \cdot \delta L = w^T B \delta w
\]

(7.41)

\[
\sigma \cdot \delta L = \begin{bmatrix}
\sigma_{11} & \sigma_{12} & 0 \\
\sigma_{12} & \sigma_{22} & 0 \\
0 & 0 & \sigma_{33}
\end{bmatrix} \begin{bmatrix}
\delta v_{1,1} \\
\delta v_{2,1} \\
\delta v_{3,3}
\end{bmatrix}
\]

(7.42)

\[
\sigma \cdot \delta L = \sigma_{11} \delta v_{1,1} + \sigma_{12} \delta v_{2,1} + \sigma_{12} \delta v_{1,2} + \sigma_{22} \delta v_{2,2} + \sigma_{33} \delta v_{3,3}
\]

(7.43)

Mit

\[
\text{div} \sigma = v_{1,1} + v_{2,2} + v_{3,3}
\]

(7.44)

folgt:

\[
\text{div} \sigma \cdot \delta L = [v_{1,1} + v_{2,2} + v_{3,3}] [\sigma_{11} \delta v_{1,1} + \sigma_{12} \delta v_{2,1} + \sigma_{12} \delta v_{1,2} + \sigma_{22} \delta v_{2,2} + \sigma_{33} \delta v_{3,3}]
\]

(7.45)

Analog zum ersten Term folgt durch Koeffizientenvergleich:

\[
B = \begin{bmatrix}
\sigma_{11} & \sigma_{12} & \sigma_{12} & \sigma_{22} & \sigma_{33} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\sigma_{11} & \sigma_{12} & \sigma_{12} & \sigma_{22} & \sigma_{33} \\
\sigma_{11} & \sigma_{12} & \sigma_{12} & \sigma_{22} & \sigma_{33}
\end{bmatrix}
\]

(7.46)
Die Subtraktion \(B - A \) liefert nun die gesuchte Matrix für beide unsymmetrischen Terme zusammen:

\[
B - A = \begin{bmatrix}
0 & \sigma_{12} & 0 & \sigma_{22} & \sigma_{33} \\
-\sigma_{12} & 0 & -\sigma_{22} & 0 & 0 \\
0 & -\sigma_{11} & 0 & -\sigma_{12} & 0 \\
\sigma_{11} & 0 & \sigma_{12} & 0 & \sigma_{33} \\
\sigma_{11} & \sigma_{12} & \sigma_{12} & \sigma_{22} & 0
\end{bmatrix}
\] (7.47)
LEBENSLAUF

geboren: am 17.08.1957 in 7200 Tuttlingen

Schulbildung: Nach 4 Jahren Grundschule Eintritt in das Gymnasium Tuttlingen am 01.09.1967. Abschluß mit der Reifeprüfung am 03.05.1977.
 Am 01.10.1978 Immatrikulation an der Universität Stuttgart im Fachbereich Bauingenieurwesen.
 Im Sommer 1984 Abschluß des Bauingenieurstudiums an der Universität Stuttgart mit einer Diplomarbeit im Fach Grundbau und Bodenmechanik (jetzt: Geotechnik).
 Vom 01.07.1985 bis 30.06.1988 Immatrikulation an der Universität Stuttgart mit dem Abschlußziel Promotion aufgrund eines Stipendiums der Robert Bosch Stiftung GmbH.

 Vom September 1981 bis Juni 1982 in Calgary, Kanada als Student der Universität von Calgary aufgrund eines Stipendiums des DAAD.

Arbeitsverhältnisse: Vom 01.09.1984 bis zum 30.06.1985 Bearbeitung eines Forschungsauftrages der DFG am Institut für Geotechnik der Universität Stuttgart.
 Seit 01.07.1988 Mitarbeit an einem Forschungsvorhaben am Institut für Geotechnik der Universität Stuttgart.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Autor</th>
<th>Jahr</th>
<th>Titel</th>
<th>Preis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thamm, B.</td>
<td>1974</td>
<td>Anfangssetzungen und Anfangsponenwasserüberdrücke eines normal-</td>
<td>DM 10,--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>verdichteten wassergesättigten Tones</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Gußmann, P.</td>
<td>1975</td>
<td>Einheitliche Berechnung von Grundbruch und Böschungsbruch</td>
<td>DM 5,--</td>
</tr>
<tr>
<td>3</td>
<td>Feoser, V.</td>
<td>1975</td>
<td>Die Bedeutung des Kalziumcarbonats für die bodenphysikalischen Eigen-</td>
<td>DM 10,--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>schaften von Löß</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Du Thinh, K.</td>
<td>1976</td>
<td>Standsicherheit von Böschungen: Programm-Dokumentation</td>
<td>DM 200,--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Preis einschl. Quellenprogramm:</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Smoltczyk, U./ Pertschi, O./ Hilmer, K.</td>
<td>1976</td>
<td>Messungen an Schleusen in der UdSSR. Schleusennorm der UdSSR (SN 303-65)</td>
<td>DM 18,--</td>
</tr>
<tr>
<td>6</td>
<td>Hilmer, K.</td>
<td>1976</td>
<td>Erddruck auf Schleusenkammerwände</td>
<td>DM 18,--</td>
</tr>
<tr>
<td>7</td>
<td>Laumans, Q.</td>
<td>1977</td>
<td>Verhalten einer ebenen, in Sand eingespannten Wand bei nichtlinearen Stoffeigenschaften des Bodens</td>
<td>DM 18,--</td>
</tr>
<tr>
<td>8</td>
<td>Lächler, W.</td>
<td>1977</td>
<td>Beitrag zum Problem der Teillächenpressung bei Beton am Beispiel der Pfahlkopfanschlüsse</td>
<td>DM 15,--</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Jahr</td>
<td>Titel</td>
<td>Preis</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>9</td>
<td>Spotka, H.</td>
<td>1977</td>
<td>Einfluß der Bodenverdichtung mittels Oberflächen-Rüttelgeräten auf den Erddruck einer Stützwand bei Sand</td>
<td>DM 15,--</td>
</tr>
<tr>
<td>10</td>
<td>Schad, H.</td>
<td>1979</td>
<td>Nichtlineare Stoffgleichungen für Böden und ihre Verwendung bei der numerischen Analyse von Grundbauaufgaben</td>
<td>DM 20,--</td>
</tr>
<tr>
<td>11</td>
<td>Ulrich, G.</td>
<td>1980</td>
<td>Verschiebungs- und kraftgesteuerte Plattendruckversuche auf konsolidierenden Böden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gußmann, P.</td>
<td>1980</td>
<td>Zum Modellgesetz der Konsolidation</td>
<td>DM 20,--</td>
</tr>
<tr>
<td>12</td>
<td>Saldén, D.</td>
<td>1980</td>
<td>Der Einfluß der Sohlenform auf die Traglast von Fundamenten</td>
<td>DM 25,--</td>
</tr>
<tr>
<td></td>
<td>Schweikert, O.</td>
<td></td>
<td>Vergleich nationaler Richtlinien für die Berechnung von Fundamenten</td>
<td>DM 15,--</td>
</tr>
<tr>
<td>Nr.</td>
<td>Author</td>
<td>Year</td>
<td>Title</td>
<td>Price</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>17</td>
<td>Gruhle, H.-D.</td>
<td>1981</td>
<td>Das Verhalten des Baugrundes unter Einwirkung vertikal gezogener Ankerplatten als räumliches Problem des Erdwiderstandes</td>
<td>DM 30,—</td>
</tr>
<tr>
<td>18</td>
<td>Kobler, W.</td>
<td>1982</td>
<td>Untersuchungen über Böschungs- und Grundbruch bei begrenzten Lastflächen</td>
<td>DM 25,—</td>
</tr>
<tr>
<td>19</td>
<td>Lutz, W.</td>
<td>1983</td>
<td>Tragfähigkeit des geschlitzten Baugrunds neben Linienlasten</td>
<td>DM 25,—</td>
</tr>
<tr>
<td>21</td>
<td>Schweikert, O.</td>
<td>1984</td>
<td>Der Einfluß des Böschungswinkels b auf die Berechnung des aktiven Erddrucks</td>
<td>DM 20,—</td>
</tr>
<tr>
<td>22</td>
<td>Vogt, N.</td>
<td>1984</td>
<td>Erdwiderstandsermittlung bei monotonen und wiederholten Wandbewegungen in Sand</td>
<td>DM 25,—</td>
</tr>
<tr>
<td>24</td>
<td>Schad, H.</td>
<td>1985</td>
<td>Möglichkeiten der Böschungssicherung bei kleinen Baugruben</td>
<td>DM 35,—</td>
</tr>
<tr>
<td>25</td>
<td>Gußmann, P.</td>
<td>1985</td>
<td>Die Methode der Kinematischen Elemente</td>
<td>DM 20,—</td>
</tr>
<tr>
<td>26</td>
<td>Steinmann, B.</td>
<td>1985</td>
<td>Zum Verhalten bindiger Böden bei monotoner einaxialer Beanspruchung</td>
<td>DM 25,—</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Jahr</td>
<td>Titel</td>
<td>Preis</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>28</td>
<td>Kolb, H.</td>
<td>1988</td>
<td>Ermittlung der Sohlreibung von Gründungskörpern unter horizonalem kinematischen Zwang</td>
<td>DM 25,--</td>
</tr>
<tr>
<td>29</td>
<td>Ochmann, H.</td>
<td>1988</td>
<td>Ebene Grenzzustände von Erdböschungen im stochastischen Sicherheitskonzept</td>
<td>DM 25,--</td>
</tr>
<tr>
<td>30</td>
<td>Breinlinger, F.</td>
<td>1989</td>
<td>Bodenmechanische Stoffgleichungen bei großen Deformationen sowie Belastungs- und Entlastungsvorgängen</td>
<td>DM 30,--</td>
</tr>
</tbody>
</table>
Weitere Veröffentlichungen des Institutes für Geotechnik und seiner Mitarbeiter

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Die Nummern 6 bis 13 enthält das o.g. Heft Geotechnik Nr. 2, das von der DEUTSCHEN GESELLSCHAFT FÜR ERD- UND GRUNDBAU E.V., Essen, zum Preis von DM 20.- verkauft wird.</td>
<td></td>
</tr>
</tbody>
</table>
Zur Bebaubarkeit von vorbelasteten Verwitterungsböden.
Fortschritt-Berichte VDI-Z., Reihe 4, Nr.25, 70S.

Anmerkungen zum Gleitkreisverfahren.

[22] Smoltczyk, U. (1975)
Wie kann man Baugruben verbilligen?
Der Architekt 2, S.94-103.

Schwierigkeiten beim Bauen im entfestigten Tonstein.

Pfahl gründung eines Eisenbahndammes.
Proc. 6th Europ. Conf. SMFE, 1,2, S.561-566.

Erdruck auf Schleusenkammerwände.

[26] Laumanns, Q./ (1976) Schad, H.
Calculation of mat foundations on clayey silts.

Franke, E./
Schuppener, B.
Earth Pressure Variations Due to Temperature Change.

Lateral Deformation Testing in Keuper Marl Boreholes.

Wagnis Baugrund.
Deutsche Architekten- u. Ingenieurzeitschrift 8/9, S.12-16.

Der Einfluß der Temperatur auf den Erdruck hinter Bauwerkswänden.
Geotechnik 1, S.75-83.

Die Verwendung nichtlinearer Stoffgesetze bei der numerischen Analyse von Grundbauaufgaben.

1.1 Internationale Vereinbarungen; Klassifizierung des Fachschrifttums und Symbole
1.2 Baugrundgutachten
1.7 Numerische Verfahren in der Bodenmechanik
1.10 Berechnung von Zeitsetzungen
Verlag W. Ernst u. Sohn Berlin München.

